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Abstract

Unmanned vehicles need to make a comprehensive perception of the surrounding environ-

mental information during driving. Perception of automotive information is of significance. In

the field of automotive perception, the sterevision of car-detection plays a vital role and ster-

evision can calculate the length, width, and height of a car, making the car more specific.

However, under the existing technology, it is impossible to obtain accurate detection in a

complex environment by relying on a single sensor. Therefore, it is particularly important to

study the complex sensing technology based on multi-sensor fusion. Recently, with the

development of deep learning in the field of vision, a mobile sensor-fusion method based on

deep learning is proposed and applied in this paper——Mobile Deep Sensor Fusion Model

(MDSFM). The content of this article is as follows. It does a data processing that projects 3D

data to 2D data, which can form a dataset suitable for the model, thereby training data more

efficiently. In the modules of LiDAR, it uses a revised squeezeNet structure to lighten the

model and reduce parameters. In the modules of cameras, it uses the improved design of

detecting module in R-CNN with a Mobile Spatial Attention Module (MSAM). In the fused

part, it uses a dual-view deep fusing structure. And then it selects images from the KITTI’s

datasets for validation to test this model. Compared with other recognized methods, it

shows that our model has a fairly good performance. Finally, it implements a ROS program

on the experimental car and our model is in good condition. The result shows that it can

improve performance of detecting easy cars significantly through MDSFM. It increases the

quality of the detected data and improves the generalized ability of car-detection model. It

improves contextual relevance and preserves background information. It remains stable in

driverless environments. It is applied in the realistic scenario and proves that the model has

a good practical value.
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Introduction

As we know, visual intervention has a significant influence on drivers’ behaviour [1–2]. After

the implementation of driverless technology, this phenomenon may be alleviated. In the field

of driverless technology, the use of Light Detection and Ranging (LiDAR) point cloud to make

up for the deficiencies of visual technology and improve the accuracy of environmental detec-

tion will be the key developing directions for environmental awareness of unmanned vehicles

in the future [3]. Moreover, 3D data, which is produced by various 3D sensors such as LIDAR

and stereo cameras, has been widely deployed by industry leaders such as Google, Uber, Tesla,

and Mobileye, for mobile robotic applications such as autonomous driving and humanoid

robots [4]. Notably, the traffic accidents of unmanned vehicles often occurin an instant, which

makes it necessary to obtain traffic data with high resolution [5]. Point cloud data, which is

composed of reliable depth information, can provide accurate location and shape characteris-

tics for scene understanding, such as object recognition and semantic segmentation [4]. To

gather high-precision information about the suroundings of unmanned ground vehicles,

LiDAR is frequently used to collect large-scale point clouds [6].The evolution and improve-

ment of LiDAR and cameras have increased the quality and quantity of the gathered data [7],

which can dispose of the conundrum well.

In the unmanned environment-aware device, LiDAR and cameras have their own advan-

tages and disadvantages [8]. The advantage of the camera is that the cost is low, and there are

many people who use the camera to develop algorithms, and the technology is relatively

mature. The disadvantage of the camera is that it is relatively limited by ambient light. The

advantage of the LiDAR is that it has a long detecting range and can accurately acquire the

three-dimensional information of the object. In addition, its stability is quite high and the

robustness is good. However, the current cost of LiDAR is high, and the final shape of the

product has not yet been determined. Practices have proved that compared with single-sensor

system, multi-sensor technology can enhance the survivability of the system, improve the reli-

ability and robustness of the whole system, increase the real-time performance of the system

and information utilization, and enhance the credibility of the data in solving problems such

as detecting, tracking and recognizing [9].

The non-scanning imaging system is a new type of imaging radar that appeared in the

1990s. It can overcome the problems of low frame rate, small field of view and large volume

due to the lack of mechanical scanning devices [10]. It has high frame rate, wide field of view

and volume. The principle of LiDAR point cloud imaging system is based on the laser beam

scanning the target scene, receiving the laser radiation reflected by the scene, generating a con-

tinuous analog signal, and reducing the image into a real-time target scene [11]. Principle of

LiDAR point cloud imaging is as Fig 1. LiDAR point cloud is a kind of active detecting

Fig 1. Principle of the on-board LiDAR and camera imaging. (a) shows the location of the LiDAR and camera on a

car. (b) shows specific scanning range of LiDAR.

https://doi.org/10.1371/journal.pone.0236947.g001
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technology, which can acquire the three-dimensional spatial information of the target accu-

rately and quickly. Due to its unique technical advantages in object recognition, classification,

high-precision 3D imaging and measurement, the application scope and development pros-

pect of LiDAR are quite broad. Recently,3D imaging LiDAR is gradually developed from single

point scanning to small array scanning, line array sweep and array flash imaging. At the same

time, the single photon detection technology is becoming mature and the detection sensitivity

is getting higher and higher. With the development of modern detection technology, it is more

and more inclined to the fusion detection of various sensors and the development of 3D imag-

ing is also inclined to the combination of active and passive imaging to obtain more abundant

target’s information [12]. LiDAR point cloud have broad applied prospects in the field of traf-

fic engineering. In terms of transportation, Zhang Z. Y. [5] proposed that a LiDAR sensor was

installed at the roadside for data collection, which is convenient for collecting data. Wu [13]

proposed a new mode of retrieving data using LiDAR that roadside LiDAR deployment pro-

vides a solution to obtain the real-time high-resolution micro traffic data of unconnected road

users for the connected-vehicle road network. Zhang Mingfang [14] proposed a new method

for classifying an oncoming vehicle’s turning behavior at intersection using 3D LIDAR. Javan-

mardi [15] proposed that state-of-the-art localization approaches adopt 3D Lidar to observe

the surrounding environment and match the observation with a priori known 3D point cloud

map for estimating the position of the vehicle within the map. Dimitrievski [16] present a

novel 2D-3D pedestrian tracker designed for applications in autonomous vehicles using

LiDAR datasets. Lim [17] proposed a LiDAR information based authentication mechanism

for V2V communication, to authenticate vehicles locally without involvement of a trusted

authority and infrastructures. Zeng [18] present a real-time three-dimensional (RT3D) vehicle

detection method that utilizes pure LiDAR point cloud to predict the location, orientation,

and size of vehicles.

In fact, it is very easy for the camera to find the same object, such as tracking people or

tracking the car, but for LiDAR, it is very difficult to identify whether the front and rear frames

are the same car and the same pedestrian. LiDAR has one advantage: if it can be told by the

camera that the two frames are the same object, then LiDAR can be used to know the object in

the interval between the two frames about the speed of motion and the displacement of the

motion. This is very critical, because only the tracking of moving objects can make some pre-

dictions. During the driving process, it has to know the moving state of the surrounding

objects at all times. For unmanned driving, in addition to estimating the position of the vehicle

and navigating, it is also necessary to track and predict surrounding objects and moving

objects, which is very meaningful.

As mentioned above, relying on only one kind of sensor is difficult to accurately detect tar-

gets, if there are other factors that interfere with its normal operation. Nowadays, many

researchers have conducted a comprehensive study on sensor fusion, and their purpose is to

make up for the shortcomings of single sensor through sensor fusion. Ali MAH [19] proposed

that the sensor fusion algorithm of LiDAR and cameras is used to remove noises and uncer-

tainties from sensors’ data and provide optimum measurements for path planning. Dimi-

trievski [16] employed Camera and LiDAR data fusion to solve the association problem where

the optimal solution is found by matching 2D and 3D detections to tracks using a joint log-

likelihood observation model. Asvadi [20] proposed a multi-mode car-detection system that

integrates data from 3D-LIDAR and color cameras with data from LIDAR and cameras in

three modes. Then it was combined to improve car-detection. Many investigators have studied

the methods of sensor fusion to improve the detecting efficiency and accuracy. Chen Xiaozhi

[21] proposed Multi-View 3D networks (MV3D), a sensory-fusion framework that takes both

LIDAR point cloud and RGB images as inputs and predicts oriented 3D bounding boxes.
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Mousavian [22] present a method using deep learning for 3D object detection and pose esti-

mation from a single image, which first regresses relatively stable 3D object properties using a

deep convolutional neural network and then combines these estimates with geometric con-

straints provided by a 2D object bounding box to produce a complete 3D bounding box. Dan-

fei Xu [23] proposed a novel fusion network using deep learning, which predicts multiple3D

box hypotheses and their confidences, using the input 3D points as spatial anchors. Stanislas

[24] described a novel probabilistic sensor fusion framework aimed at improving obstacle

detection accuracy and classification of various targets experienced in the Maritime RobotX

Challenge. Frossard [25] proposed a novel approach to tracking by detection that can exploit

both cameras as well as LIDAR data to produce very accurate 3D trajectories, which is an end-

to-end learning method of multi-sensor 3D tracking by detection.

It usually uses previous car-detecting methods to identify cars. The problems with the

methods are as follows. (a)The detection of the first step usually depends on the characteristics

and rules of artificial design, such as setting some thresholds, surface normals, etc., and the

generalized ability is poor [26]. (b)Multi-stage processing means that complex errors may

occur—clustering and classification are not based on a certain context, and environmental

information around the target is missing [27]. (c)This type of method is unstable for the

computational time and accuracy of single-frame LiDAR scanning, which is contrary to the

safety requirements (stable, small variance) in autonomous driving scenarios [28].Therefore,

in recent years, many ideas of detecting targets based on deep learning have been proposed.

Mobile Deep Sensor Fusion Model (MDSFM) is proposed in this paper, which uses convolu-

tional neural network to extract features of images and implement fusion of the LiDAR and

camera in car-detection. It can improve accuracy and efficiency through settling the deficien-

cies in the traditional car-detection using MDSFM.

Materials and methods

Three-dimensional data processing

Datasets. The datasets are released by KITTI (A project of Kartsruhe Institute of Technol-

ogy and Toyota Technological Institute at Chicago) and the typical samples of the datasets are

shown in Fig 2. The datasets contain over 93 thousand depth maps with corresponding raw

LiDAR scans and RGB images, aligned with the "raw data" of the KITTI datasets, including the

3D and BEV datasets for validation [29]. The datasets are used to evaluate the performance of

computer vision such as stereo, optical flow, visual odometry, 3D object detection, and 3D

tracking in the driving environment and we supplement information suitable for programs

and practices. As shown in Fig 3, the entire KITTI datasets contain images collected from cit-

ies, campuses, etc. Each image has up to 15 cars evenly, as well as various degrees of occlusion

and truncation. The entire datasets consist of 389 pairs of stereo images and optical flow maps,

Fig 2. The depths and stereo images of the datasets. (a) shows an RGB image. (b) and (c) show different depths of

LiDAR scanning images. (d) shows a 3D labeled image in the perspective of the camera.

https://doi.org/10.1371/journal.pone.0236947.g002
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a 39.2 km visual ranging sequence, and images of more than 200k 3D labeled objects, which

are sampled and synchronized at a frequency of 10 Hz.

The pretreatment of LiDAR point cloud data. In order to improve the speed of the algo-

rithm, many algorithms do not directly utilize the 3D point cloud data, but project the point

cloud data to a 2D plane and then process it. Common two-dimensional data forms are Range

Image and Elevation Image. The main reasons are that the accuracy of object detection directly

in three dimensions is not high enough, and currently path planning and vehicle control gen-

erally only consider the motion of the car body in a two-dimensional plane. From the testing

results, the algorithms are better than object detection in three-dimensional space. The object

detection method directly acting in three-dimensional space has also made a breakthrough in

recent years. It extracts the features of the three-dimensional point cloud with the invariance

of orders through some operators, and then processes directly in the three-dimensional point

cloud through a specially designed network. The advantage of this type of method is that it can

perform indiscriminate detection of objects in any positions and directions of the entire three-

dimensional space. The idea is novel but limited by the capabilities of the algorithm itself, the

capabilities of the hardware device, and the actual application scenarios.

The traditional designs of CNN are mostly used for two-dimensional image-pattern-recog-

nition, and the formats of the three-dimensional point cloud data do not conform to this

mode, and the point cloud data is sparse and irregular, and this extraction of feature is unfa-

vorable [30]. Therefore, before inputting data to CNN, the data is first spherically projected to

a two-dimensional and dense data. The spherical projection is as Fig 4.

Generally speaking, the azimuth is the angle with respect to the true north direction, but in

the LiDAR coordinate system, the azimuth is the angle with respect to the x direction (directly

in front of the vehicle). The calculation of φ and θ can be expressed as:

y ¼ arcsin
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p

� ¼ arcsin
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

8
>><

>>:

ð1Þ

Where (x, y, z) are the coordinates of each point in the three-dimensional point cloud. So for

every point in the point cloud, you can calculate (θ, φ) by its (x, y, z). It projects the points in

the three-dimensional coordinate system to a spherical coordinate system. This spherical

Fig 3. The scenes in the datasets. (a) shows the ‘Road’ scenes. (b) shows the ‘City’ scenes. (c) shows the ‘Residential’ scenes. (d)

shows the ‘Campus’ scenes. (e) shows the ‘Person’ scenes.

https://doi.org/10.1371/journal.pone.0236947.g003
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coordinate system is already a two-dimensional coordinate system, but for the sake of under-

standing, it differentiates its angle to obtain a two-dimensional cartesian coordinate system.

The coordinate system can be expressed as:

i ¼
y

dy

j ¼
�

d�

8
>><

>>:

ð2Þ

Then, each point in the spherical coordinate system can be represented by a point in a Car-

tesian Coordinate System, as Fig 5. Through such a layer transformation, it projects the posi-

tion (x, y, z) of any point in the three-dimensional space to the position (i, j) of a point in the

two-dimensional coordinate system. It extracts each point in the point cloud. Five features (x,

y, z, intensity, range) are placed in the corresponding two-dimensional coordinates (i, j).

Sensor fusion based on MDSFM

Compared to previous sensor fusion models, this model is more lightweight, which uses only

two inputs to complete the fusion of LiDAR and camera. Compared with previous sensor

fusion models that have three inputs, the dual-view MDSFM directly reduces the amount of

calculation under the premise of ensuring accuracy. It is also one of our jobs to connect

LiDAR and camera modules. The images processed by LiDAR and camera modules are used

as inputs for 3D Box Regressor.

As shown in Fig 6, in the view of LiDAR, the input point cloud is processed by CNN, which

includes fireModules, and then it outputs results according to 3D box regressor and 3D pro-

posals, and then processed by the deep fusion module of MDSFM. It applies a convolutional

network on the 2D point map and predicts 3D boxes densely from the convolutional feature

maps. It is more efficient, and on the basis of ensuring the efficiency, we improve the accuracy

of detection. The significance of using fireModules is that it helps to reduce the parameters of

the convolutional network but capable of achieving the accuracy of AlexNet model [31], which

is lightweight and efficient. Under the same conditions, compared to AlexNet, the parameters

of squeezing model are 50x less than AlexNet, but the performance is similar to AlexNet [31].

As shown in Fig 7, the fireModule mainly consists of two layers of convolution operations: one

is the squeezed layer with 1x1 convolutional kernels, the other is the expanded layer with 1x1

and 3x3 convolutional kernels. The fireDeconv has a more Deconv layer than the fireModule.

Fig 4. The spherical projection. (a) shows coordinates from 3D target to 2D target. (b) shows observer’s perspective.

https://doi.org/10.1371/journal.pone.0236947.g004
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Fig 5. The projection of three-dimensional graphics to two-dimensional graphics. (a) shows Cartesian Coordinate

System. (b) shows that a size of (H, W, C; where C = 5) tensor is obtained. (c) shows a three-dimensional object. (d)

shows a 2D trainable dataset.

https://doi.org/10.1371/journal.pone.0236947.g005

Fig 6. The structural network of Mobile Deep Sensor Fusion Model.

https://doi.org/10.1371/journal.pone.0236947.g006
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Of course, the structure can be compressed to make the model smaller. In order to reduce the

number of parameters and computation, it replaces convolution and deconvolution with fire-

Modules and fireDeconvs in this module.

In the view of the camera, the input images are the front view. This module uses the revised

detecting design of the lightweight R-CNN. Moreover, it consists of a Context Enhancement

Module (CEM) and a Mobile Spatial Attention Module (MSAM). The key idea of CEM that

leverages semantic and context information from multiple scales is to aggregate multi-scale

local and global information to produce more discriminating features and the receptive field

size plays an important role in CNN models [32]. CNNs can only capture information inside

the receptive field. Thus, a large receptive field can leverage more context information and

encode long-range relationship between pixels more effectively. This is crucial for the localiza-

tion subtask, especially for the localization of large objects. In CEM, feature maps of three

scales are merged: C4, C5, and Cglb [33]. And Cglb is the global feature information stemmed

from global average pooling on C5. By using local and global information, CEM effectively

Fig 7. The key modules of sensor fusion method. (a) shows the structure of fireModules. (b) shows the structure of

fireDeconvs. (c) shows a Context Enhancement Module. (d) shows a Mobile Spatial Attention Module.

https://doi.org/10.1371/journal.pone.0236947.g007
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expands the receptive field and refines it. Moreover, compared to the previous FPN structure,

CEM involves only two 1x1 convolutions and c-layers, which is speedier in terms of computa-

tions. The key idea of MSAM is to use the information from 3D box regression (3DBR) to

refine the charactermatic distribution of the feature map. And MSAM uses the information

trained in 3D box regression to refine the feature distribution. 3D box regression is trained to

recognize foreground regions under the supervision of ground truths. Therefore, the interme-

diate features in 3D box regression can be used to distinguish foreground features from back-

ground features. MSAM accepts two inputs: the intermediate feature map from 3DBR F 3DBR

and the thin feature map from CEM FCEM
.

Due to the lightweight nature of MSAM, it is more suitable for mobile devices. The output

of MSAM FMSAM is defined as:

FMSAM ¼ FCEM ReLU6ðF 3DBR þ 3Þ

6
ð3Þ

Where ReLU6 is a piecewise linear function that limits the maximum output to 6. The ReLU6
can be implemented in many deep learning frameworks, and at the same time, the loss of the

precision value is reduced during quantization. Each 3D box is parameterized by (x, y, z, l, w,

h), which are the center and size of the 3D box. 3DRB is regressed to t = (Δx, Δy, Δz, Δl, Δw,

Δh), which are the offsets of the center and size in the 3D box.

However, it is necessary to take into account the accuracy of this real-time model. In

extracting features, it uses the optimized module named Position Sensitive ROI Align (PSRol

Align) [34]. To improve the accuracy of the model, it uses PSRol align to optimize the results.

The main improvement is to reduce errors caused by two-step quantizations. The operation is

to keep the boundary coordinate values of the ROI and the boundary values of all units in each

ROI in the form of floating points. In each unit, the pixel values of a fixed number of sampling

points at a fixed position are calculated for average pooling. The main idea is to manually

introduce the information of the position in the charactermatic aggregation, thereby effectively

improving the sensitivity of deeper neural networks to the information of the car’s position.

And computations are performed directly on the entire picture, which also greatly optimizes

the operating speed of the network.

As shown in Fig 6, to enable more interactions among features of the intermediate layers

from the view of LiDAR and camera, it uses the dual-view deep fusion, which can be expressed

as:

f0 ¼ fLiDAR � fCAMERA

fl ¼ HLiDAR
l ðfl� 1Þ �HCAMERA

l ðfl� 1Þ

8l ¼ 1; � � � ; L

8
><

>:
ð4Þ

Where all of f are features and {Hl, l = 1, � � �, L} are feature transformation functions and� is a

join operation (e.g., concatenation, summation).

Implement a program with the Robot Operating System on the

experimental car

Robot Operating System (ROS) is to provide a flexible framework for developers, which con-

tains a list of tools, libraries, and conventions. At the same time, ROS can also provide middle-

ware similar to operating systems for heterogeneous computing clusters.

As Fig 8(a) shows, the top is the camera and Lidar is under the camera. As Fig 9 shows, the

camera is installed above the LiDAR and using retractable stands can change its height. The
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camera is responsible for navigation, avoiding obstacles and collecting images. The Raspberry

Pi is the core of the robot and controls the LiDAR and camera. The computer with GPU for

high-performance computation is connected to the Raspberry Pi via network, and the model

can be tested normally after debugging according to the data transmitted by Raspberry Pi. As

Fig 8(b) shows, the straight rod connected to the LiDAR can be freely telescoped to meet the

height of LiDAR. It needs to be adjusted for the height and angle of the camera and LiDAR to

ensure that cars can be detected, and also calibrate the camera and LiDAR to ensure accurate

detection of the vehicle. As Fig 8(c) and 8(d) show, it uses the Velodyne VLP-32C LiDAR,

which can track 32 targets simultaneously. Furthermore, the VLP-32C LiDAR has 32 channels,

an effective range of 200 meters, and a double echo mode that produces approximately 1.2 mil-

lion 3D point cloud coordinates per second in a view of 360˚ horizontal field and a 40˚ vertical

field. The dense channel distribution of the ULTRA Puck near the horizontal angle gives it a

higher resolution over longer distances. It operates in a dual returning mode and can capture

Fig 8. The construction of the robot. (a) shows the main construction of a robot. (b) shows the installed part of the robot. (c) and

(d) show Velodyne LiDAR used in the experiment.

https://doi.org/10.1371/journal.pone.0236947.g008

Fig 9. The parameters of the robot. (a) shows the front view of the robot. (b) shows the lateral view of the robot.

https://doi.org/10.1371/journal.pone.0236947.g009
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larger details of 3D images. The small size and light weight make this sensor ideal for automo-

tive applications. The detected images and point clouds are sent to the computer connected to

the Raspberry Pi and at the same time it calls the model for recognition. The operating process

of the ROS project is shown in Fig 10.

Results and discussion

Result on KITTI’s benchmark

It usually evaluates performance using the mature KITTI’s benchmark of 3D object detection.

Far objects are thus filtered based on their bounding box height in the image plane. As only

objects also appearing on the image plane are labeled, objects in no car areas do not count as

false positives. It notes that the evaluation does not take care of ignoring detections that are

not visible on the image plane—these detections might rise to false positives. For cars it

requires an 3D bounding box overlap of 70%. Evaluated Criteria and difficulties are defined as

follows according to the convention of KITTI [29].

1. Easy (E): Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. trunca-

tion: 15%.

2. Moderate (M): Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded,

Max. truncation: 30%.

3. Hard (H): Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max.

truncation: 50%.

The performance of car-detection is evaluated. It derives the precision-recall curves as

shown in Fig 11. The precision (P), the recall (R) and the Intersection over Union (IoU) are

Fig 10. The operating process of ROS.

https://doi.org/10.1371/journal.pone.0236947.g010
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used as the indexes of the performance, and are respectively defined as:

precision ¼
TP

TPþ FP

recall ¼
TP

TP þ FN

IOU ¼
TP

TP þ FP þ FN

8
>>>>>>><

>>>>>>>:

ð5Þ

Where True Positive (TP) is the number of predicting positive samples as positive samples;

True Negative (TN) is the number of predicting negative samples as negative samples; False

Positive (FP) is the number of predicting negative samples as positive samples; False Negative

(FN) is the number of predicting positive samples as negative samples.

The main configuration of hardware used for training is: CPU (Core i7-9700) and GPU

(Titan X). The processor is a GPU (TITAN X) according to the KITTI’s benchmark.

It selects images from the KITTI’s datasets for validation to test this model. It evaluates the

mentioned models on the KITTI’s benchmark of detecting objects that provides 7,481 images

for training and 7,518 images for testing. The code is implemented by TensorFlow and Python.

So before running the code, we need to install the TensorFlow-GPU. Based on the above ware-

house, it calls a trained model to identify and fuse the input images of the LiDAR and camera,

and concurrently it forms 3D bounding boxes in order to identify cars accurately as shown in

Fig 12.

Average Precision (AP) is the area under the Precision-recall curve. 3D detecting results are

evaluated by using the 3D and BEV AP values at 0.7 IoU threshold for the car-class. The other

mentioned sensor-fusion methods are admittedly mature and have better performances of the

recognized methods currently in the field of multi-view fusion and real-time 3D car-detection.

As shown in Table 1, it evaluates the performance of the method from the perspectives of

Three-Dimensional (3D) car-detection and Bird’s Eye View (BEV). In terms of 3D car-detec-

tion, AP3D in column E of our method is 83.81%, which is higher than values of the other meth-

ods. AP3D in column M of our method is 75.12%, which is less than the value of AVOD

method, but higher than values of the other methods. AP3D in column H of our method is

72.33%, which is less than the value of AVOD method but higher than values of the other meth-

ods. In the bird’s-eye view, APBEV in column E of our method is 90.35%, which is higher than

Fig 11. The evaluated results of the Mobile Deep Sensor Fusion Model. (a) shows the evaluated result of 3D car-detection. (b)

shows the evaluated result in the bird’s eye view.

https://doi.org/10.1371/journal.pone.0236947.g011
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Fig 12. Comparison of the methods for car detection. (a) only shows the camera’s view. (b) shows Ground Truth. (c)-(f) show

performances of the other methods. (g) shows the performance of our method.

https://doi.org/10.1371/journal.pone.0236947.g012
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values of the other methods. APBEV in column M of our method is 78.20%, which is higher

than the value of MV3D method. APBEV in column H of our method is 75.02%, which is higher

than the value of MV3D method. The runtime of our method is 0.047 seconds in the same

hardware and datasets, which is more efficient and has a reasonable real-time performance.

Result on ROS

In this system, it uses the LiDAR and camera to collect information about the surrounding

cars. Then it processes information and recognizes cars. The recorded samples are as Fig 13.

The robot moves from east to west. During driving the robot, if the driving speed is too fast,

bumps will occur and cause the phenomenon of unstable imaging. Therefore, it sets the driv-

ing speed of the experimental car at a slow speed. Moreover, if the height of the device is set

too low, on the one hand, it is not conducive to detect other cars; on the other hand, it is dan-

gerous that other moving cars may not see the experimental car and collide with it. Therefore,

we set the height of the camera to 1.772 m and the angle is 12 degrees down the horizontal

line. The details of each frame are summarized as Tables 2–4.

Table 1. Average Precision (AP) of car-detection (IoU = 0.7).

Method AP3D (%) APBEV (%) Runtime(s)

E M H E M H

MV3D [21] 71.09 62.35 55.12 86.02 76.90 68.49 0.360

AVOD [35] 77.63 86.61 76.06 86.80 85.44 77.73 0.080

F-PointNet [36] 81.20 70.39 62.19 88.70 84.00 75.33 0.170

ContFuse [37] 82.54 66.22 64.04 88.81 85.83 77.33 0.060

MDSFM 83.81 75.12 72.33 90.35 78.20 75.02 0.047

https://doi.org/10.1371/journal.pone.0236947.t001

Fig 13. The recorded samples. (a) shows the image of Frame 1. (b) shows the image of Frame 50. (c) shows the image of Frame 100.

(d) shows the image of Frame 150. (e) shows the image of Frame 200.

https://doi.org/10.1371/journal.pone.0236947.g013

Table 2. Detailed information about general specifications.

Frame. name general specifications

No.of frames Scene condition Robot’s situation Obj. type

(a) 1 urban moving car

(b) 50 urban moving car

(c) 100 urban moving car

(d) 150 urban moving car

(e) 200 urban moving car

https://doi.org/10.1371/journal.pone.0236947.t002
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Conclusions

The specific innovations and contributions are as follows:

Firstly, it does a data processing that projects 3D data to 2D data, which can form a dataset

suitable for the model, thereby training data more efficiently.

Secondly, in the modules of LiDAR, it uses a revised structure to lighten the model and reduce

parameters. In the modules of cameras, it uses the improved design of detecting module in

R-CNN with a Mobile Spatial Attention Module (MSAM). In the fused part, it uses a dual-

view deep fusing structure.

Thirdly, it selects images from the KITTI’s datasets for validation to test this model. Compared

with other recognized methods, it shows that our model has a fairly good performance.

Finally, it implements a ROS program on the experimental car and our model is in good

condition.

The results show that it can improve performance of detecting easy cars significantly

through MDSFM, which takes advantages of both LiDAR and cameras. Moreover, it increases

the quality of the detected data and improves the generalized ability of car-detection model. It

improves contextual relevance and preserves background information. It remains stable in

driverless environments. Ultimately, it is applied in the realistic scenario and proves that the

model has a good practical value.

Supporting information

S1 Fig. Robot Operating System (ROS).

(DOCX)

S2 Fig. The RGB images.

(DOCX)

Table 4. Detailed information about LiDAR’s challenging factors.

Frame. name LIDAR’s challenging factors

No. of obj. points Distance to the obj. Velocity variations

(a) low!high far!near no

(b) high near no

(c) high near no

(d) high near no

(e) high!low near!far yes

https://doi.org/10.1371/journal.pone.0236947.t004

Table 3. Detailed information about camera’s challenging factors.

Frame. name Camera’s challenging factors

Occlusion Illumination variations Obj.pose variations Change in the obj. size

(a) no no no no

(b) no no no no

(c) yes no yes yes

(d) yes no no no

(e) yes no no no

https://doi.org/10.1371/journal.pone.0236947.t003
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S3 Fig. The point clouds.

(DOCX)
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