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Abstract: Ti6Al4V titanium alloy has been widely used as medical implant material in orthopedic
surgery, and one of the obstacles preventing it from wide use is toxic metal ions release and
bacterial implant infection. In this paper, in order to improve corrosion resistance and antibacterial
performance of Ti6Al4V titanium alloy, ZnO doped tantalum oxide (TaxOy) multilayer composite
coating ZnO-TaxOy/TaxOy/TaxOy-TiO2/TiO2/Ti (ZnO-TaxOy) was deposited by magnetron sputtering
at room temperature. As a comparison, monolayer TaxOy coating was prepared on the surface
of Ti6Al4V alloy. The morphology and phase composition of the coatings were investigated by
field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), the elemental
chemical states of coating surfaces were investigated by X-ray photoelectron spectroscope (XPS).
The adhesion strength and corrosion resistance of the coatings were examined by micro-scratch
tester and electrochemical workstations, respectively. The results show that the adhesion strength
of multilayer ZnO-TaxOy coating is 16.37 times higher than that of single-layer TaxOy coating.
The ZnO-TaxOy composite coating has higher corrosion potential and lower corrosion current density
than that of TaxOy coating, showing better corrosion inhibition. Furthermore, antibacterial test
revealed that multilayer ZnO-TaxOy coating has a much better antibacterial performance by contrast.

Keywords: zinc oxide; tantalum oxide; Ti6Al4V; anti-inflammatory modification; antibacterial
property; magnetron sputtering; corrosion resistance; adhesion strength

1. Introduction

Ti6A14V titanium alloy, as a kind of ideal biomedical material, has been widely used in tooth
implant, bone trauma products, artificial joints and other hard tissue substitutes or prostheses due to
its excellent properties, such as biocompatibility, acceptable corrosion resistance, and comprehensive
mechanical properties [1–3]. However, with the increase of service time, the release of Al and V ions
owing to the interaction between Ti6Al4V and human body fluid may cause some toxic-relevant
side effects (such as poisoning, allergies, and carcinogenesis), which eventually lead to failure of the
implant [4–7]. Meanwhile, frequent bacterial infections during and after implantation can also lead
to implant failure. Practically, 20% of implant failure are reported to be attributed to implant-related
bacterial infections [8–10]. Therefore, improving the corrosion resistance and antibacterial properties
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of Ti6Al4V, in order that it attains an ideal anti-inflammatory modified surface and durably compatible
with in vivo biological surroundings, has always been one of the research hotspots and also a factual
challenge in the clinical application.

Since the corrosion behavior and bacterial infection of Ti6Al4V alloy are related to its surface
properties, these features can be customized by surface coatings. In recent years, various inorganic
coatings such as TiO2, Al2O3, SiO2, ZrO, Ta2O5, DLC, and HA have been used for surface modification of
Ti6Al4V alloys, and their corrosion properties in vitro have also been investigated [11–17]. Among these
coatings, tantalum oxide (TaxOy) film has recently attracted much attention due to its advantages
such as excellent corrosion resistance, good biocompatibility, and good wear resistance, as well as
its ability to inhibit the growth of bacteria [18–21]. At present, various techniques for preparing
TaxOy film have been reported, including magnetron sputtering [18–22], liquid phase deposition
(LPD) [23,24], electrochemical deposition [25], pulsed laser deposition (PLD) [26], atomic layer
deposition (ALD) [27] and sol-gel method [28,29]. It is pointed out that the magnetron sputtering,
with thus fabricated films’ characteristics of high density and uniformity, high strong adhesion,
low processing temperature, and easy-controlling film structure/composition, will be the ideal
techniques for TaxOy films preparation [30,31].

Previous studies have reported that ZnO exhibits excellent antibacterial activities in various
bacteria, such as staphylococcus aureus, Salmonella and Escherichia coli [32–36]. A small amount of
ZnO doping into the surface layer of implant materials can obviously improve the antibacterial
properties [37,38]. Furthermore, the addition of ZnO to the implant material can enhance the
proliferation and differentiation of osteoblast cells, thus promoting osteogenesis [39,40]. In particular,
the inhibitory effect of ZnO on bacterial growth is independent of ultraviolet radiation (UV) light,
and does not change the pH of the surrounding medium [41]. More important, Zn is an essential trace
element in the human body and plays an extremely important role in physiological activities such
as DNA synthesis, enzymatic activity, and biomineralization [42]. All these advantages make ZnO
suitable for acting as a functional agent to solve the antibacterial problem. In addition, there are few
reports on ZnO doped TaxOy coatings prepared by magnetron sputtering in the present work.

However, the low adhesion strength of the ceramic coatings to the metal substrate may become the
first obstacle to their widespread application [43]. The Mismatch of the thermal expansion coefficients
(CTE) between the ceramic coatings and the metal substrate leads to the development of excessive
stresses at the interface. It is well known that intermediate layer can be used to reduce the CTE
mismatch between two different materials and consequently, give a better effect to the mechanical
properties [44]. Thus, the multilayer films with one or more intermediate layers have been widely
applied in versatile industries to improve the performance and lifespan of the components owing
to its numerous advantages, such as superior bonding strength, hardness, toughness, and corrosion
resistance compared to the monolayer films [45].

In this study, a novel multilayer composite coating ZnO-TaxOy/TaxOy/TaxOy-TiO2/TiO2/Ti (code
ZnO-TaxOy) was prepared on the surface of Ti6Al4V alloy by magnetron sputtering at room
temperature. The microstructure of the as-deposited coating was investigated by X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy
(FE-SEM). The wettability, adhesion strength and corrosion resistance of the composite coating was
evaluated and compared by contact angle measurement, micro-scratch test, and electrochemical
corrosion, respectively. For comparative purposes, these measurements were also carried out on
TaxOy coated Ti6Al4V and uncoated Ti6Al4V. By understanding the microstructure and properties of
ZnO-TaxOy composite multilayer coatings, our work is expected to provide a valuable reference for
biomedical applications of this novel coating.
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2. Materials and Experimental Design

2.1. Preparation of Coatings

Figure 1 shows the structures of coated samples. As can be seen from the figure, ZnO-TaxOy

multilayer composite coatings consists of five layers, of which the 1st layer to 3rd layer are Ti metal
layer, TiO2 ceramic layer and TiO2-TaxOy ceramic mixed layer, respectively. Those three layers were
used as the intermediate transition layers and elements penetrated at two adjacent layers interface
where many elements exist together, which would be helpful to alleviate the interfacial stress and
improve coating adhesion [46–49]. The 4th layer of TaxOy is mainly provided for improving the
corrosion resistance of the Ti6Al4V titanium alloy, and the 5th layer (top layer) is TaxOy doped with
ZnO which acts as an antibacterial agent. Ti6Al4V (BAOTI Group Co., Ltd., Baoji, Shaanxi, China)
substrate of a thickness 0.6mm was cut to the size of 10 mm × 10 mm, and its nominal composition in
wt% is: Al, 6.8; V, 4.5; Fe, 0.3; O, 0.2; C, 0.1; N, 0.05; H, 0.015, and the balance, Ti. The substrates were
polished using SiC emery paper with a grit size of 300, 600, 1000, and 2000, respectively. Thereafter,
the substrates were ultrasonically cleaned in acetone and alcohol, each for 15 min, then dried in a
pre-vacuum dryer (ZKT-6050, Shanghai Hasuc Instrument Manufacture Co., Ltd., Shanghai, China).
A high vacuum magnetron sputtering system (JCP-450, Beijing Technol Science Co., Ltd., Beijing,
China) was used for plasma cleaning and depositing coating. Prior to deposition, the substrate and
targets were cleaned in turn by plasma cleaning with the following process parameters: background
pressure of 1.0 × 10−3 Pa, argon flow of 20 sccm, cleaning power of 200 W and the cleaning time of
20 min. Afterward, ZnO-TaxOy multilayer composite coating was deposited on Ti6Al4V surfaces by
sequentially depositing Ti film, TiO2 film, TaxOy-TiO2 film, TaxOy, and ZnO-TaxOy film. Ta and Ti
targets (Zhongnuo New Material Technology Co., Ltd. Beijing, China) had a purity of 99.99% and a
size of ϕ 75 × 5 mm. During deposition, argon and oxygen were used as sputtering gas and reaction
gas, respectively, both with the purity of 99.99%. The distance between the substrate and target was
75 mm, and the base pressure was 1 × 10−3 Pa. The sputtering mode, deposition parameters of coatings
are shown in Table 1.

Table 1. Deposition parameters.

Coating Code Layer
Number

Coating Material Sputtering Mode Sputtering
Power (W)

Deposition
Time (min)

Gas flow (sccm)

Ar O2

ZnO-TaxOy

1st layer Ti RF sputtering 200 15 16 /
2nd layer TiO2 RF reaction sputtering 200 15 16 4

3rd layer TaxOy-TiO2
TaxOy DC reaction sputtering 250

15 24 6TiO2 RF reaction sputtering 200
4th layer TaxOy DC reaction sputtering 250 120 16 4

5th layer ZnO-TaxOy
ZnO RF sputtering 150

15 16 4TaxOy DC reaction sputtering 250
TaxOy / TaxOy DC reaction sputtering 250 120 16 4Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 17 

 

 

 
Figure 1. Schematic representation of ceramic composite coating structure: (a) TaxOy coating, (b) 
ZnO-TaxOy coating. 

2.2. Characterization of Coatings 

The phase composition of the coatings was analyzed by X-ray diffraction (XRD, Ultima IV, 
Rigaku Corporation, Tokyo, Japan) with Cu Kα radiation. The surface and cross-section 
morphologies of coated samples was investigated by a field emission scanning electron microscopy 
(FESEM, SU8000, Hitachi Group, Tokyo, Japan) equipped with energy dispersive X-ray 
spectroscopy (EDS). For taking a cross-section measurement, the coating samples were suspended in 
the epoxy resin, cured at 25 °C for 24 h, and then cut into 4 mm × 4 mm × 4 mm. Next, the 
cross-section of coating sample was ground with 600 to 2000 grit SiC paper. The elemental 
compositions and chemical states of coating surfaces were investigated by X-ray photoelectron 
spectroscope (XPS, EscaLab 250Xi, Thermo Fisher Scientific Inc., Waltham, MA, US), equipped with 
monochromatic Al Kα radiation (6 mA, 12 kV and 1486.68 eV). To remove surface contaminants, it is 
indispensable to sputter the surface using 2 kV Ar+ with raster area of 4 mm2 for 20 s. The scanning 
range was from 5° to 90°, with scan speed of 2°/min. 

2.3. Scratch Test 

Scratch tests was carried to estimate the adhesion strength of coated samples with MFT-4000 
scratch tester (MFT-4000, Lanzhou Institute of Chemical Physics of the Chinese Academy of Sciences, 
Lanzhou, China). During scratch test, a conical diamond indenter (angle 120° and radius 200 μm) 
subjected to a progressive normal load from 0.1 N to 50 N moved across the surface of the coated 
samples with loading rate of 50 N/min. simultaneously, the variation of friction force, normal force 
and acoustical signal in terms of scratch distance were recorded continuously. Two critical loads, i.e., 
Lcl and Lc2 in the scratch test were defined for the failure of the coatings. Lcl was the first critical load, 
which belongs to cohesive failure characterized by local coating puncture. With the gradual increase 
of normal load, the diamond indenter is passed through the coating into the substrate, cracks appear 
in the bottom and sides of the scratch, and the coating near the scratch appears to flake off, 
eventually the coatings had completely fallen off from the substrate along the scratch path. At this 
time, the friction force is abruptly changed, and an inflection point can be observed on the friction 
curve. This load force was recorded as the second critical load, Lc2, which can be used to indicate the 
adhesion strength of the coatings. In order to determine the failure modes of the coating and 
associate them with the load at which they occurred, the scratch images were observed using an 
optical microscope (Seika Machinery, Inc. a subsidiary of Seika Corporation, KH-7700, Tokyo, 
Japan).  

2.4. Contact Angle Measurement 

The contact angles (CAs) measurements were performed to estimate the surface wettability at 
20 °C and the ambient humidity (50%), using a contact angle goniometer (JC20001, Shanghai 
Zhongchen Digital Technology Co., Ltd., Shanghai, China) by the sessile drop method. The droplets 
were laid onto the sample surfaces by a standard micro-syringe, and the droplet images were 

Figure 1. Schematic representation of ceramic composite coating structure: (a) TaxOy coating,
(b) ZnO-TaxOy coating.
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2.2. Characterization of Coatings

The phase composition of the coatings was analyzed by X-ray diffraction (XRD, Ultima IV, Rigaku
Corporation, Tokyo, Japan) with Cu Kα radiation. The surface and cross-section morphologies of
coated samples was investigated by a field emission scanning electron microscopy (FESEM, SU8000,
Hitachi Group, Tokyo, Japan) equipped with energy dispersive X-ray spectroscopy (EDS). For taking a
cross-section measurement, the coating samples were suspended in the epoxy resin, cured at 25 ◦C for
24 h, and then cut into 4 mm × 4 mm × 4 mm. Next, the cross-section of coating sample was ground
with 600 to 2000 grit SiC paper. The elemental compositions and chemical states of coating surfaces
were investigated by X-ray photoelectron spectroscope (XPS, EscaLab 250Xi, Thermo Fisher Scientific
Inc., Waltham, MA, US), equipped with monochromatic Al Kα radiation (6 mA, 12 kV and 1486.68 eV).
To remove surface contaminants, it is indispensable to sputter the surface using 2 kV Ar+ with raster
area of 4 mm2 for 20 s. The scanning range was from 5◦ to 90◦, with scan speed of 2◦/min.

2.3. Scratch Test

Scratch tests was carried to estimate the adhesion strength of coated samples with MFT-4000
scratch tester (MFT-4000, Lanzhou Institute of Chemical Physics of the Chinese Academy of Sciences,
Lanzhou, China). During scratch test, a conical diamond indenter (angle 120◦ and radius 200 µm)
subjected to a progressive normal load from 0.1 N to 50 N moved across the surface of the coated
samples with loading rate of 50 N/min. simultaneously, the variation of friction force, normal force and
acoustical signal in terms of scratch distance were recorded continuously. Two critical loads, i.e., Lcl and
Lc2 in the scratch test were defined for the failure of the coatings. Lcl was the first critical load,
which belongs to cohesive failure characterized by local coating puncture. With the gradual increase of
normal load, the diamond indenter is passed through the coating into the substrate, cracks appear in
the bottom and sides of the scratch, and the coating near the scratch appears to flake off, eventually the
coatings had completely fallen off from the substrate along the scratch path. At this time, the friction
force is abruptly changed, and an inflection point can be observed on the friction curve. This load force
was recorded as the second critical load, Lc2, which can be used to indicate the adhesion strength of the
coatings. In order to determine the failure modes of the coating and associate them with the load at
which they occurred, the scratch images were observed using an optical microscope (Seika Machinery,
Inc. a subsidiary of Seika Corporation, KH-7700, Tokyo, Japan).

2.4. Contact Angle Measurement

The contact angles (CAs) measurements were performed to estimate the surface wettability at
20 ◦C and the ambient humidity (50%), using a contact angle goniometer (JC20001, Shanghai Zhongchen
Digital Technology Co., Ltd., Shanghai, China) by the sessile drop method. The droplets were laid
onto the sample surfaces by a standard micro-syringe, and the droplet images were captured using a
camera. To obtain accurate water contact angle data, the measurements were repeated at five different
locations of the samples.

2.5. Electrochemical Measurements

The electrochemical characteristics of the samples were detected with electrochemical
workstation (SP-15/20A, Bio-Logic Science Instruments, Seyssinet-Pariset, France) with a conventional
three-electrode system in which platinum sheet was used as the counter electrode (CE), a saturated
Ag/AgCl electrode as the reference electrode (RE) and the samples as the working electrode (WE).
The electrolyte was simulated body fluid (SBF) [50], at pH 7.4. One cm2 of the sample surface was
exposed to the SBF solution. Potentiodynamic polarization curves were conducted in the range of
−0.3~2.0 V with a scanning rate of 1 mV/s [51,52]. The corrosion potential (Ecorr) and corrosion current
density (Icorr) were calculated by the Tafel extrapolation method. All the experiments were repeated
three times.
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2.6. Antibacterial Experiment

The plate counting method is commonly used to quantitatively evaluate the antimicrobial
properties of materials [53,54]. In this study, the bacterial strain of S. aureus (ATCC6538, Guangzhou
Institute of Microbiololgy, Guangzhou, China), which is a classic strains of implant associated
infections [53], was employed to analyze the antibacterial properties of coated samples in vitro by
the plate counting method. Prior to the antibacterial test, all samples were placed in sealed test
tubes and sterilized at 121 ◦C, 0.1 MPa for 30 min using a fully automatic autoclave. A series of
bacterial suspension with concentrations of 105–108 CFU/ml using 0.9% NaCl solution were prepared
for experiments. Then 60 µL of the bacterial suspension with a concentration of 107 CFU/mL was put
onto the sample surface, and cultured in a shaking incubator at 37 ◦C for 24 h. Thereafter, the sample
with the suspension was placed into a sterile glass tube with 4 mL 0.9% NaCl solution and uniformly
mixed with a vortex mixer. The suspension was then diluted by 100 times with 0.9% NaCl solution
and mixed thoroughly again. The 200 µL of the diluted 100-fold bacterial solution was evenly spread
on the counting agar plates using a screw inoculator, and then incubated in a shaking incubator at
37 ◦C for 24 h. Then these plates were photographed and the bacterial colonies were counted by an
automatic colony imaging analysis system (Sphere Flash, Barcelona, Spain). Antimicrobial ratio (K) of
the specimens was calculated using the formula [54]:

K =
A− B

A
× 100% (1)

where A and B was the average number of bacterial colonies (CFU/mL) for uncoated Ti6Al4V as the
control group and for the coating sample, respectively. The obtained value represented an average of
three test data

3. Results and Discussion

3.1. Microstructural Characterization of the Coatings

The surface morphology of the uncoated Ti6Al4V and coated Ti6Al4V are revealed in Figure 2.
Figure 2a exhibits the surface characteristics of uncoated Ti6Al4V substrate after sandpaper polishing.
Figure 2b–e show the surface features of the coating samples after depositing 1st layer Ti film,
2nd layer TiO2 film, 3rd layer TaxOy-TiO2 film and 5th layer ZnO-TaxOy film, respectively. The surface
morphology of TaxOy/Ti6Al4V is shown in Figure 2f. In these figures, some directional grooves with
different depths and widths are clearly visible, which was formed by the polishing grit. Although the
groove was gradually covered by the coating with the increase of the thickness of the deposited coatings,
it can still be found that there are grain boundaries or gaps with the same direction. Compared with
TaxOy coatings, TaxOy-TiO2 coating has less directional grooves, better surface smoothness, indicating
a better coating quality. It is suggested that a small size abrasive should be used to polish the surface
of the substrate to obtain high quality coating surface with low roughness.

Figure 3 displays the cross-section images of coated samples. The coating thicknesses of the TaxOy

and ZnO-TaxOy samples were 3.97 µm (Figure 3a) and 5.2 µm (Figure 3b), respectively. As can be
seen, no obvious discontinuity or crack was detected between the coating and the Ti6Al4V substrate in
ZnO-TaxOy coatings samples, indicating that the multilayer ZnO-TaxOy coatings are well bonded to the
substrate. However, some brittle cracks occur in the monolayer TaxOy coating samples, which suggests
its bonding strength to Ti6Al4V substrate is lower than that of ZnO-TaxOy coating sample.
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The XRD spectra of uncoated and coated Ti6Al4V samples are shown in Figure 4. Compared
with the XRD pattern of bare Ti-6Al-4V substrate, no characteristic peaks can be found both for TaxOy

and ZnO-TaxOy films in Figure 4a, indicating an amorphous structure. The results are consistent
with previous studies [20,46,47]. The reason for this amorphous nature of the deposited film may
be deposition temperature [55], sputtering power [56], flow ratio of oxygen to argon [57], element
doping [57], etc. The local magnification pattern shows that the diffraction pattern of TaxOy films is
composed of diffuse-scattering curves and two humps appears in the 2θ range of 20◦–65◦ in Figure 4b.
The positions of humps coincide with the peak position of several possible tantalum oxides, such as
TaO, TaO2 and Ta2O5 based on data in JCPDS card No.78-0724, 19-1296 and 25-0922, which signifying
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that the deposited TaxOy films may be one and more phases [47]. Besides, compared with TaxOy

films, the diffraction curve of ZnO-TaxOy films becomes flat with broader hump, implying the lower
crystallinity of ZnO-TaxOy films. The degradation of crystallinity may be caused by the incorporation
of ZnO [58]. In addition, according to the data in JCPDS card NO.16-1451, the diffraction peak position
of ZnO is around 31◦ of 2θ, and it is also in the hump area. The specific stoichiometric composition of
ZnO-TaxOy films needs further analysis by XPS technique.
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Figure 5 shows the elements mapping images on the surface of ZnO-TaxOy coating samples.
The constituent elements of the coating are Ta, Zn and O. It can be observed from the figure that
each element is uniformly distributed throughout the coating. Combined with XRD analysis, the Ta
element exists in its oxides, while a small amount of Zn comes from ZnO. These results show that ZnO
has been incorporated into the TaxOy film. TaxOy has a significant effect on improving the corrosion
resistance and biocompatibility of Ti6Al4V [1,9–20], while the presences of ZnO have a positive effect
on improving the antibacterial properties of the ZnO-TaxOy coatings [32].
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Figure 6 shows the EDS analysis results of the ZnO-TaxOy coating surface. It can be seen that the
content of O, Ta and Zn are approximately 16.1 wt%, 79.18 wt% and 4.72 wt% respectively. The content
of each element in the coating is mainly related to the preparation parameters such as sputtering power
and oxygen flow rate.
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Figure 7 presents the XPS survey spectrum and elemental high-resolution spectra of ZnO-TaxOy

coated samples. It is clear that Ta, Zn and O are detected from the outermost coating of ZnO-TaxOy

coated samples. The Ta 4f high-resolution spectrum contains three pairs of Ta 4f double peaks belonging
to three chemical states of tantalum, shown in Figure 7b. The Ta 4f7/2 peaks associated with Ta4+

(TaO2), Ta3+(Ta2O3), and Ta2+ (TaO) are located at 24.4 eV, 24 eV, 23.6 eV respectively, and the spin-orbit
splitting of Ta 4f7/2 to Ta 4f 5/2 is 1.8ev, agrees with reported values [59–61]. The value state of Ta is
related to the concentration of oxygen and the temperature during or after oxidation. The results
indicate that three kinds of tantalum suboxides exist in ZnO-TaxOy coating surface and Ta2O5 does not
appear. The binding energies of Zn 2p peak at 1021.8 eV and 1044.8 eV corresponding to Zn 2p3/2 and
Zn 2p1/3 indicated that Zn element is present in the form of ZnO in the coatings [62]. As shown in
Figure 7c, the O1s spectra of the coating consist of four Gaussian component peaks. The subpeak (P1)
at 531.95 eV, the subpeak (P2) at 530.65 eV and subpeak (P4) at 529.55 is attributed to TaO2, Ta2O3,
and TaO, respectively. The subpeak (P3) at 530.05 eV is assigned to ZnO. The above results show that
Zn and Ta on the surface of ZnO-TaxOy coatings exist in the chemical state of ZnO and three tantalum
suboxides (TaO2, Ta2O3 and TaO), respectively.
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3.2. Adhesion Strength 

The adhesion strength between the deposited coating and substrate was investigated by scratch 
test. The critical loads of the scratch test were assessed by optical microscopy observations, with the 
help of scratch curves. As shown in Figure 8 and Figure 9, with the increase of the scratch length, the 
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3.2. Adhesion Strength

The adhesion strength between the deposited coating and substrate was investigated by scratch
test. The critical loads of the scratch test were assessed by optical microscopy observations, with the
help of scratch curves. As shown in Figures 8 and 9, with the increase of the scratch length, the loading
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force increases proportionally, while the friction force shows the characteristic of oscillatory rise.
The fluctuation of the friction force against scratch length may be the occurrence of film cracking and
shifting due to weak interface bonding. For TaxOy coating samples, when the scratch length is 0.65 mm,
continuous perforation and peeling of the TaxOy coating occurs (Figure 8b), and the critical load Lc2 is
5.42 N (Figure 8a), which means that the binding strength of TaxOy is 5.42 N. Some of TaxOy films
were accumulated at the end of the scratch, exposing the Ti6Al4V substrate along the scratch track, as
shown in Figure 8c.

Figure 9 shows the scratch curve of the ZnO-TaxOy coating and the magnified image of scratch
track. The scratch direction is from left to right. As local coating perforation was observed at the
scratch distance of 1.14 mm in Figure 9b, the first critical load is 9.46 N (Figure 9a). When the scratch
length is 4.99 mm, the continuous perforation appeared, with a normal load of 41.58 N, indicating that
the binding strength of ZnO-TaxOy coating was 41.58 N. After several intermediate layers introduced
into the ZnO-TaxOy multilayer coating, the composition changed gradually from the bulk Ti6Al4V
substrate to the ZnO-TaxOy coating, preventing from evident interphase/interface (possible interface
reaction or diffusion mechanism) [63,64] and cracks in coating (As shown in Figure 3). As a result of
it, the multilayer coating demonstrated a fine binding with the substrate. What’s more, it should be
noted that TaxOy coating and the Ti6Al4V substrate differ remarkably in thermal expansion coefficient
(CTE); an environmental temperature fluctuation may cause the peel-off or dysfunction/defect of the
whole coatings. The intermediate layer plays a buffering effect to reduce the CTE mismatch between
the Ti6Al4V (αTi6Al4V = 8.9 × 10−6 K−1) [65] substrate and TaxOy coating (αTa-O = 2.9 × 10−6 K−1) [66].
Under some temperature variations, it maintains the binding ability and post heating treatment could
facilitate the interfacial reactions and diffusions, in turn enhancing the adhesion strength between the
Ti6Al4V substrate and the multilayer coating.
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In addition, Figures 8 and 9 obviously reveal that under the same experimental condition,
the scratch width of ZnO-TaxOy sample is lower than that of TaO sample. As the coating thickness
increases, the scratch resistance of coating surface enhances, and the scratch width and depth are
decreased [67]. The coating thickness of ZnO-TaxOy sample is greater than that of sample (Figure 3),
so it has higher surface resistance to scratch, and shows smaller scratch width compared with TaxOy

sample. Further observation can be found that the first spallation occurred on the edges of scratch
track near the LC1 position (Figures 8b and 9b), and then more spallation dominated on both side of
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the scratch track, which revealed that the coating’s adhesive strength was higher than its cohesive
strength, since spallation normally appear in brittle coatings and is induced by cracks on the coating
surface or within the coating [68]. For TaO sample, the spallation appeared at a lower critical load,
compared with ZnO-TaxOy sample, indicating that the adhesive strength of the TaxOy coating was
lower than that of ZnO-TaxOy coating.Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 17 

 

  
Figure 9. (a) Friction force and load force as a function of scratch length for ZnO-TaxOy coatings, (b) 
scratch starting position, and (c) scratch end position. 

3.3. Corrosion Behavior 

The representative potentiodynamic polarization curves of the un-coated and coated Ti6Al4V 
samples in the SBF are shown in Figure 10. The corrosion potential (Ecorr) and corrosion current 
density (Icorr) derived by Tafel extrapolation method and were shown in Table 2. The corrosion 
potential describes the substrates’ tendency to corrode and the corrosion current density indicates 
the corrosion rate [18]. The corrosion potential of uncoated Ti6Al4V substrate was approximately 
−0.19 V, while the corrosion potential of TaxOy and ZnO-TaxOy coated Ti6Al4V shift towards the 
positive potentials, the corrosion potential of TaxOy and ZnO-TaxOy coated samples was −0.11 V and 
0.02 V, respectively. The corrosion current densities measured from Ti6Al4V, TaxOy and ZnO-TaxOy 
coated Ti6Al4V was about 7.07 μA/cm2, 3.85 μA/cm2, and 1.12 μA/cm2, respectively, exhibiting a 
descending trend in the SBF. These indicated that the TaxOy and ZnO-TaxOy coatings diminish 
appreciably the corrosion rate of Ti6Al4V substrate. The excellent corrosion resistance of the coated 
samples may be concerned with the superior stability of TaxOy ceramic coatings. Besides, the 
ZnO-TaxOy coatings showed better corrosion resistance than TaxOy coating, this can be mainly 
explained by the fact that ZnO-TaxOy coatings has higher surface quality and better bond with 
Ti6Al4V substrate than TaxOy coatings does. The above analyses reveal that the ZnO-TaxOy coatings 
might ensure favorable anti-corrosion property in implant application. 

 
Figure 10. Potentiodynamic polarization curves of the uncoated and coated samples in SBF. 

Figure 9. (a) Friction force and load force as a function of scratch length for ZnO-TaxOy coatings,
(b) scratch starting position, and (c) scratch end position.

3.3. Corrosion Behavior

The representative potentiodynamic polarization curves of the un-coated and coated Ti6Al4V
samples in the SBF are shown in Figure 10. The corrosion potential (Ecorr) and corrosion current density
(Icorr) derived by Tafel extrapolation method and were shown in Table 2. The corrosion potential
describes the substrates’ tendency to corrode and the corrosion current density indicates the corrosion
rate [18]. The corrosion potential of uncoated Ti6Al4V substrate was approximately −0.19 V, while the
corrosion potential of TaxOy and ZnO-TaxOy coated Ti6Al4V shift towards the positive potentials,
the corrosion potential of TaxOy and ZnO-TaxOy coated samples was −0.11 V and 0.02 V, respectively.
The corrosion current densities measured from Ti6Al4V, TaxOy and ZnO-TaxOy coated Ti6Al4V was
about 7.07 µA/cm2, 3.85 µA/cm2, and 1.12 µA/cm2, respectively, exhibiting a descending trend in the
SBF. These indicated that the TaxOy and ZnO-TaxOy coatings diminish appreciably the corrosion rate
of Ti6Al4V substrate. The excellent corrosion resistance of the coated samples may be concerned
with the superior stability of TaxOy ceramic coatings. Besides, the ZnO-TaxOy coatings showed better
corrosion resistance than TaxOy coating, this can be mainly explained by the fact that ZnO-TaxOy

coatings has higher surface quality and better bond with Ti6Al4V substrate than TaxOy coatings does.
The above analyses reveal that the ZnO-TaxOy coatings might ensure favorable anti-corrosion property
in implant application.

Table 2. Corrosion parameters derived from polarization curves of Figure 10.

Sample Ti6Al4V TaxOy ZnO-TaxOy

Ecorr (V vs. Ag/AgCl) –0.19 ± 0.02 −0.11 ± 0.01 0.02 ± 0.01
Icorr (µA/cm2) 7.07 ± 0.012 3.85 ± 0.003 1.12 ± 0.004
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3.4. Wettability

Wettability refers to the ability or propensity of a liquid to spread on a solid surface. The wettability
of the solid is usually evaluated by the contact angle. The smaller the contact angle, the better the
wettability of the solid. Figure 11 shows the measured 4 contact angle data and the images of water
drops on the surface of un-coated and coated Ti6Al4V samples. The water contact angle of Ti6Al4V
alloy substrate is 84.27◦ ± 2.6◦, indicating the hydrophilic surface. While TaxOy and ZnO-TaxOy

coated on Ti6Al4V alloy exhibits the water contact angle greater than 90◦ with hydrophobic properties.
The hydrophobicity of the surface helps prevent the initial adhesion of bacteria and the formation of
biofilms on the surface [66,69], and is beneficial for improving the corrosion resistance of the surface.
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While the hydrophobic surface can prevent cells from directly adhering on the coating surface,
the amount of protein previously adsorbed on the hydrophobic surface is higher than that on the
hydrophilic surface [70,71]. Protein can induce indirect cell adhesion, so the hydrophobic surface is
beneficial to indirect cell adhesion. In addition, the hydrophilic surface, which was good for direct
cell adhesion, actually causes side effects on protein adsorption followed by indirect cell adhesion.
Therefore, the initial cell adsorption surface is neither too hydrophobic nor too hydrophilic [72].
In addition, the wettability of the surface can be controlled by doping the coating, decreasing surface
roughness of the substrate, and adopting appropriate sputtering parameters [73].
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3.5. Antibacterial Property

The antibacterial properties of the ZnO-TaxOy coating were compared with those of bare Ti6Al4V
alloy and TaxOy coating. S. aureus was selected as the test bacteria. Figure 12a–c shows the image
of bacteriological tests of S. aureus on solid agar plates incubated at 37 ◦C for 24 h on Ti6Al4V
surface, TaxOy and ZnO-TaxOy coatings. It is clear that there are a large number of S. aureus
colonies incubated on Ti6Al4V surface, while several S. aureus colonies are observed on ZnO-TaxOy

coating. These results revealed that ZnO incorporated TaxOy films strongly inhibited S. aureus growth,
which had an antibacterial rate of 90.65%, while the rate for the TaxOy coating was 19.78% (Figure 12d).
The antimicrobial activity of ZnO-TaxOy coatings are due to the generation of reactive oxygen species
(ROS), and release of Zn2+ ions [74]. The production of ROS including superoxide anion (O2

2−),
hydrogen peroxide (H2O2), and hydroxide (OH−). The O2− and OH− cannot penetrate into the cell
membrane due to their negative charges, while H2O2 molecules are able to pass through the bacterial
cell wall, subsequently leading to injuries and destruction, and finally triggering cell death [75].
The ROS produced by ZnO can kill bacteria as well as affect the growth of osteoblasts. ROS arrests
osteoblasts proliferation, decrease osteoblasts growth and/or differentiation, and promotes osteoblasts
death by activating various signaling [76]. The key problem of ZnO used in implant is to determine
its ideal content, because of that Zn has been shown to promote osseointegration or have cytotoxic
effects at low and high concentrations, respectively [77–79]. The released Zn2+ ions penetrate into
the interior of the cell through the cell membrane, then interact with the genome and plasmid DNA,
which interferes with the growth of the bacteria and destroys the amino acid metabolism, eventually,
leading to cell death [80,81].
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4. Conclusions

In this paper, ZnO doped tantalum oxide (TaxOy) multilayer composite coatings
(ZnO-TaxOy/TaxOy/TaxOy-TiO2/TiO2/Ti, coating code ZnO-TaxOy) were successfully fabricated on the
Ti6Al4V substrate surface with magnetron sputtering technique. The results suggest that the ZnO-TaxOy

coating had great potential for improving the corrosion resistance and enhancing antibacterial property
against S. aureus for Ti6Al4V implants. This study provides an alternative modified coating on Ti6Al4V
for orthopedic application. However, the cytocompatibility and more optimization of the ZnO-TaxOy

coatings (e.g., preparation parameters, coating thickness and composition) remain to be completed in
the future.
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