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A B S T R A C T   

A focus on water quality has intensified globally, considering its critical role in sustaining life and 
ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. 
Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks 
early, monitoring infectious disease trends, and providing real-time insights, particularly in 
vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a 
comprehensive understanding of community health and lifestyle habits. With the rise in global 
COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels world-
wide. Despite advancements in water treatment, poorly treated wastewater discharge remains a 
threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, 
serving as complementary surveillance, is pivotal for monitoring community-level viral in-
fections. However, there is untapped potential for WBE to expand its role in public health sur-
veillance. This review emphasizes the importance of WBE in understanding the link between viral 
surveillance in wastewater and public health, highlighting the need for its further integration into 
public health management.  
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1. Introduction 

Public attention and concern for the environment has become increasingly prominent in recent years, particularly in relation to 
water resources, emerging as a significant societal issue [1]. The proportion of the population with access to safely managed sanitation 
increased from 47 % to 54 % between 2015 and 2020, despite the global recognition of efforts to improve drinking water facilities [2]. 
However, current estimates suggest that over 2 billion people lack improved water sources, and more than 3.5 billion lack access to 
proper sanitation [3]. Socioeconomic and environmental factors exacerbate this crisis, contributing to the degradation of water and 
sanitation infrastructure, especially in developing regions, exposing billions to water, sanitation, and hygiene (WaSH)-related diseases 
[4]. 

The discharge of untreated wastewater in urban areas presents a significant challenge. According to UN-Water, in poor urban 
regions, a substantial amount of wastewater is released directly into nearby drainage channels or water bodies without any treatment. 
This unprocessed effluent contains household waste, human excrement, hazardous chemicals, and medical refuse, leading to envi-
ronmental contamination, particularly in densely populated residential zones [5]. While access to safe drinking water, sanitation, and 
hygiene is vital for improving living standards, it also plays a crucial role in safeguarding both public health and the environment [6]. 
As countries strive to enhance their sanitation coverage, it is imperative that they minimize the release of untreated sewage into the 
environment by harnessing the energy and nutrients contained within it [6]. 

Water, despite being a recyclable resource, requires effective management to ensure a secure supply and prevent the spread of 
pathogenic organisms and contaminants [7]. While advancements in water treatment processes have led to a substantial decrease in 
the occurrence of waterborne diseases [8], the discharge of untreated or poorly treated wastewater into water bodies remains a threat 
to both water quality and availability, increasing the potential for the spread of pathogens [4,9]. 

In this context, Wastewater-Based Epidemiology (WBE) serves as a complementary surveillance tool, particularly for monitoring 
community-level infectious diseases caused by viruses and other microorganisms [10]. WBE serves as a valuable tool for the timely 
identification of potential outbreaks, monitoring temporal and geographical trends in infectious diseases, gathering comprehensive 
epidemiological data in specific regions, especially within socially vulnerable areas, and providing real-time insights into the situation 
[11]. It is distinguished by its heterogeneous composition of biological materials, including wound materials and various bodily fluids, 
such as respiratory and nasal secretions, saliva, urine, feces, and semen from infected individuals (symptomatic, asymptomatic, 
presymptomatic, and postsymptomatic) [12]. 

Conventional public health surveillance strategies rely on the confirmation of suspected cases through clinical, epidemiological, or 
laboratory outcomes, which limits the identification of asymptomatic and presymptomatic individuals [10]. Conversely, WBE provides 
a methodology to analyze the composition, detect waste, and quantify pathogens in wastewater [13]. Initially, utilized for poliovirus 
surveillance [14] and detection of illicit drugs and various chemicals [15], researchers have since applied WBE to screen a wide range 
of microorganisms, further expanding its scope during the COVID-19 pandemic [16]. 

WBE facilitates a real-time assessment of community health status, exposure levels to different substances and microorganisms, and 
tracking of pathogen sources by tracing pipelines and delimiting geographic areas [17]. Additionally [18],it is a valuable tool for 
issuing early warnings about infectious disease outbreaks through wastewater monitoring, providing epidemiological data for precise 
interventions by governments and health entities [17]. 

Despite its advantages, WBE encounters obstacles such as legal constraints [19], technical adjustments [20], and data variation due 
to multiple factors (e.g., rainfall [21], age [22], infection prevalence [23], and waste discharge [24]). Therefore, further under-
standing, refinement, and global collaboration are essential to advance the technical processes involved in WBE [18]. 

Abbreviations 

ACE2 angiotensin-converting enzyme 2 
HAV hepatitis A 
HEV hepatitis E 
hAdV human adenovirus 
MCTI Ministry of Science, Technology, and Innovation 
MPXV monkeypox virus 
NWSS National Wastewater Surveillance System 
NPSs new psychoactive substance 
NoV noroviruses 
NSAIDs nonsteroidal anti-inflammatory drugs 
PEG polyethylene glycol 
PHEIC Public Health Emergency of International Concern 
qnrS quinolone antibiotic resistance gene 
SWEEP Surveillance of Wastewater for Early Epidemic Prediction 
WaSH water-, sanitation-, and hygiene 
WBE Wastewater-based epidemiology 
WWTP wastewater treatment plant (WWTP)  
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Policy and regulatory frameworks are crucial for effective WBE programs for infectious disease surveillance [25,26]. The U.S. 
National Wastewater Surveillance System (NWSS) exemplifies growing recognition of wastewater monitoring’s importance [27]. 
Collaboration between federal agencies and global initiatives like Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) 
enhances outbreak resilience [28]. Despite WBE’s promise, ethical guidelines are lacking, emphasizing the need for considerations like 
privacy protection and responsible data use. 

This literature review aims to explore the current state of wastewater monitoring for viral pathogens, highlighting its benefits, 
challenges, and applications as a public health tool. 

2. Water quality 

Sewer networks (SNs), also known as wastewater networks, constitute a fundamental component of urban infrastructure, serving as 
conduits for wastewater and stormwater to wastewater treatment plants (WWTPs) for processing or disposal [29]. These networks play 
a pivotal role in safeguarding public health and safety, preserving the urban water environment, mitigating the risk of waterborne 
diseases, and averting urban floods [30]. However, the efficacy of SNs is increasingly being challenged by a myriad of factors such as 
population expansion, climate variations, alterations in pollutant discharge patterns, and evolving human activities [29,31,32]. 

The ramifications of these challenges on water quality are significant, as underscored by the outbreaks of infectious diseases linked 
to extreme weather events, often exacerbated by compromised drinking water supplies and deficiencies in water supply and sanitation 
[33,34]. The World Health Organization (WHO) estimates a substantial toll on human lives due to diarrheal diseases attributable to 
inadequate water, sanitation, and hygiene (WaSH) practices, particularly in low- and middle-income countries [35,36]. 

Understanding the intricate interplay between climate change and water quality is paramount. Long-term shifts in temperature, 
precipitation patterns, and sea levels can exert profound stressors on water resources, thereby affecting availability and quality [34]. 
Furthermore, warmer ambient temperatures can influence the survival and proliferation of pathogens in water sources, with 

Table 1 
Examples of potential human biomarkers from public exposure and lifestyle for public health monitoring through WBE.  

Biomarkers Type Description Sample References 

Public exposure biomarkers 
Triazines Chemicals Pesticides Urine [54–56] 
Pyrethroids [54–56] 
Organophosphates [54–56] 
Phosphorous flame retardants and 

plasticizers 
Industrial chemicals commonly used 
in consumer goods 

[57] 

Bisphenol A Industrial chemical commonly used 
in plastics 

[58] 

N,N-dietil-meta-toluamida Chemical compound present in 
insect repellent 

[60] 

Enteroviruses Pathogens Nonenveloped pathogenic virus Wound materials, respiratory and nasal 
secretions, saliva, urine, feces, and semen 

[73] 
Norovírus [74,75] 
SARS-CoV-2 Enveloped pathogenic virus [78] 
Monkeypox [76,77] 
Cryptosporidium Enteric protozoan parasites Feces [79] 
Giardia 
Candida auris Opportunistic fungal pathogen Skin, wounds, blood, sputum, urine and feces [80] 
Campylobacter jejuni Pathogen causing bacterial 

gastroenteritis 
Feces [81] 

Campylobacter coli 
Phages of Vibrio cholerae O1 and O139 Vibrio cholerae phages Feces [82] 
CrAssphage Cross-assembly phage [83,84] 
Lifestyle Biomarkers 
Paracetamol Medications Pain and fever medication Urine [60] 
Allopurinol Preventive medication [61] 
Ketoprofen NSAIDs/Analgesic (nonopioid) [59,60] 
Ibuprofen Urine/feces [59] 
Quinolonas and qnrS Antibiotic class and antibiotic 

resistance gene 
[66,67] 

Caffeine Drugs Psychoactive drug Urine 
Urine 
Urine 

[60,62] 
Alcohol Recreational substance [62–65] 
Nicotine Stimulant found in tobacco [62–65] 
Cocaine Illicit drugs Urine [53,71, 

72] 
Metafetamina [71,72] 
3,4-metilenodioximetanfetamina 

(ecstasy) 
Mephedrone NPSs derived from methcathinone [68,69] 
Methylone 
1,4-methylimidazoleacetic acid Metabolites Metabolite of histamine turnover Urine [46] 
8-iso-prostaglandin F2α  Lipid membrane product [70] 

qnrS: quinolone antibiotic resistance gene; NSAIDs: nonsteroidal anti-inflammatory drugs; NPSs: new psychoactive substance. 

M. Carmo dos Santos et al.                                                                                                                                                                                          



Heliyon 10 (2024) e33873

4

implications for public health [37,38]. 
Addressing these challenges necessitates concerted efforts in wastewater management and treatment. Sustainable Development 

Goal (SDG) target 6.3 emphasizes the imperative of reducing the proportion of untreated wastewater discharged into the environment 
by 2030, aiming at improving ambient water quality [39]. Effective wastewater management practices are pivotal in curbing water 
pollution, given the significant contribution of inadequately treated wastewater to environmental degradation [40]. 

Wastewater treatment plants (WWTPs) emerge as pivotal players in mitigating water environmental pollution arising from direct 
wastewater discharge [41]. However, discharges from various sources, including domestic households, municipalities, and industrial 
activities, underscore the persistent challenge of wastewater pollution, necessitating comprehensive treatment measures [42]. 

3. Wastewater-based epidemiology (WBE) 

Integral components of public health involve interventions aimed at safeguarding societal well-being [43]. Infectious disease 
surveillance utilizes techniques such as sentinel surveillance, clinical-based surveillance, questionnaires or surveys, hospital admission 
data and mortality and morbidity rates [44]. However, bias, long execution time, resource insensitivity, ethical issues, and excessive 
cost hinder these methods [17,45]. Moreover, data collection may be limited to only symptomatic patients seeking clinical care, 
resulting in underreporting and delayed outbreak identification [16]. In this context, population testing needs to be more strategic and 
targeted. 

Wastewater acts as a collective fingerprint, reflecting population habits and health [46]. Biomarkers from human excretions, 
including metabolites, endogenous chemical substances, and pathogenic microorganisms, can provide data [17]. Consequently, 
wastewater has demonstrated its potential as a tool for monitoring human behavior and health [47]. This practice, known as 
Wastewater-Based Epidemiology (WBE), involves the sampling, concentration, and systematic analysis of wastewater markers, 
enabling the provision of population-scale information regarding activity and exposure in each sewage system-connected area [48]. 

WBE’s origins date back to the early 20th century, with applications in monitoring typhoid fever in the 1920s [49,50] and 
poliovirus in the 1930s and 1980s [14,51]. It was formally introduced in 2001 [52] and later used for monitoring illicit drugs [53]. 
Since then, WBE has been utilized to assess various indicators (Table 1), such as (1) public exposure products such as pesticides 
[54–56], industrial chemicals [57,58] and pharmaceutical products [59–61] and (2) lifestyle products such as caffeine, alcohol, and 
tobacco [60,62–65], antibiotics and corresponding resistance genes [66,67], new psychoactive substances [68,69], stress biomarkers 
[46,70], illicit drugs [71,72], and infectious disease agents, including viruses [73–78] and protozoa [79]. 

The effectiveness and potential of WBE, particularly for viral infectious agents, stem from the widespread presence and resilience of 
viruses in both untreated and treated wastewater, as well as in receiving water bodies, reflecting the population’s infection pattern [85, 
86]. During the global polio eradication program, this method was utilized not only to assess polio circulation in the population but 
also to evaluate poliovirus immunization [87,88]. Moreover, it facilitated the prediction of hepatitis A and norovirus outbreaks [74]. 

The unprecedented crisis caused by the COVID-19 pandemic emphasized the necessity for a comprehensive surveillance tool 
capable of quickly and economically monitoring population dynamics for health professionals [44]. Building on its success in 
monitoring enteric viruses [74,87,88], WBE was adopted as a supplementary monitoring tool for COVID-19, overcoming logistical and 
cost challenges associated with traditional surveillance systems [18,89] and revolutionizing the public health landscape. 

Currently, more than 4600 sites across 72 countries have implemented WBE for COVID-19 screening (“COVID-19 WBE Collabo-
rative Dashboard,” 2023). This tool has the potential to aid in government policy decision-making before viral transmission or out-
breaks, thanks to its predictive capabilities [17,90]. This approach has also demonstrated its value in underdeveloped countries, such 
as Brazil, which encounter challenges in implementing traditional surveillance systems due to difficulties in conducting widespread 
testing and subsequent underreporting of cases [91]. Through WBE, viral shedding from asymptomatic patients, who naturally 
contribute to the spread of COVID-19 [92] and are typically not covered by syndromic surveillance, were also detectable [93]. 
Moreover, owing to its adaptability, the surveillance infrastructure can be swiftly redirected to new and emerging targets [44], as 
observed in the California monitoring network (USA), where wastewater underwent routine testing for SARS-CoV-2 and other viruses, 
demonstrating its potential for Monkeypox surveillance as well [76]. 

Despite its various applications and benefits, the global adoption of this tool is limited to regions with centralized sewage collection 
and treatment infrastructure [47]. With approximately 3.5 billion people lacking access to safe sanitation services and 419 million 
individuals worldwide practicing open defecation [94], the existence of inadequate sanitation systems renders certain populations 
susceptible to infectious disease transmission and complicates their detection and monitoring through WBE due to the absence of 
accessible composted human waste [18]. 

Nonetheless, South Africa, with only 57 % of the population having access to a sewage system [47], has implemented a national 
wastewater surveillance system for SARS-CoV-2 that is currently operational (https://www.nicd.ac.za/diseases-a-z-index/disease- 
index-covid-19/surveillance-reports/weekly-reports/wastewater-based-epidemiology-for-sars-cov-2-in-south-africa/). However, 
most WBE studies primarily focus on economically favorable countries or those with adequate or moderate sewage infrastructure [95, 
96]. 

4. Viruses in wastewater 

A wastewater treatment plant (WWTP) is a facility that employs a combination of various processes (e.g., physical, chemical, and 
biological) to treat incoming wastewater, eliminating pollutants [97]. Currently, there are 109,159 identified WWTPs worldwide, 
located in 129 countries (67 % of the world’s countries), receiving substantial amounts of wastewater daily, laden with biomarkers 
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[47]. These biomarkers include a variety of microorganisms and/or their RNA/DNA residues, particularly enteric pathogens, providing 
insights into the occurrence of infectious diseases in a local catchment area [13,44]. Among these are various viruses frequently 
detected in domestic sewage and food industries [13,98]. This diversity of viruses primarily stems from the substantial amount of 
human excreta received, which may be influenced by factors such as seasonality, characteristics of the covered population area, and 
the prevalence of circulating viruses in the population [99,100]. 

Viruses are known to be high-risk pathogens, posing a significant threat due to their propensity for mutation and adaptation to new 
hosts, particularly RNA viruses [44,101]. According to Murphy (2017), several types of wastewater, such as raw sewage, primary 
effluent, secondary effluent, and aerated lagoons, have demonstrated that temperature plays a critical role in the viability of viruses. 
Notably, adenoviruses present in primary and secondary effluent exhibited considerable survival times (T99) of up to 58 and 48 days, 
respectively, particularly under cold temperatures (4 ◦C) in the absence of light [102]. 

Consequently, several viruses have been identified, including pathogenic enteric viruses such as norovirus [74,75], enterovirus [8, 
73], adenovirus [103,104], astrovirus [105,106], rotavirus [7,107], hepatitis A virus [108], and hepatitis E virus [109,110]. More-
over, researchers have recently applied this approach to SARS-CoV-2 [111,112] and the reemerging Monkeypox virus [76,113]. These 
viruses have the potential to be transmitted from wastewater to human beings through direct contact as well as through the ingestion 
or inhalation of aerosols [114]. Table 2 exemplifies some of the viruses found in wastewater. 

4.1. Enteric viruses 

Enteric viruses are pathogens that infect and replicate within enterocyte cells of the gastrointestinal tract in humans, causing 
nonbacterial gastrointestinal infections [99,115]. Infected individuals shed millions of viral particles in their feces (105 to 1011 viral 
particles per gram of feces), as well as in body fluids, which eventually enter the sewage system [86,99]. These agents possess 
characteristics that increase their infectious potential, such as stability in acidic environments, a nonenveloped structure, low viral 
titers needed to infect a host, and high rate of viral particle shedding [115]. Additionally, these viruses are more resistant to standard 
decontamination processes in drinking water and wastewater treatment [116]. This situation makes viral enteric infections a signif-
icant public health concern, contributing to various diseases, particularly diarrhea, which is the second leading cause of death in 
children under 5 years old, resulting in an estimated 525,000 deaths annually, mainly due to contaminated food and water sources 
[117]. 

There are several human enteric viruses responsible for gastrointestinal infections, such as adenovirus, astrovirus, norovirus, 
hepatitis E virus, enteroviruses, hepatitis A virus, and rotavirus. The most notable among these are the noroviruses (NoV), belonging to 
the Caliciviridae family, which are a group of nonenveloped, single-stranded, positive-sense RNA viruses of approximately 7700 nu-
cleotides in length, with a size of 27–30 nm [115,118,119]. These viruses are responsible for millions of cases of acute nonbacterial 
gastroenteritis worldwide, with the main genogroups being GI, GII, and GIV [120]. Estimates indicate that noroviruses cause 64,000 
hospitalizations due to diarrhea, 900,000 visits to pediatric clinics in industrialized countries, and up to 200,000 deaths of children 
under 5 years of age in developing countries [121]. In addition, they account for approximately 700 million episodes of diarrhea 
globally, constituting 20 % of all diarrhea cases annually [119]. Symptoms of NoV infection typically include vomiting and diarrhea of 
short duration, with an average duration of elimination in feces of up to four weeks but lasting for months in immunocompromised 
patients [122,123]. Transmission occurs through contaminated food and from person to person via the fecal-oral route [120,123]. Due 
to its ability to survive at different temperatures and resist disinfection with chlorine or alcohol, NoV easily spreads in the environment 
[123,124]. Despite its significance, an effective vaccine has not been widely developed, relying primarily on supportive treatment to 
reverse dehydration and electrolyte abnormalities [122]. 

Among viral hepatitides, hepatitis A (HAV) and E viruses are the most common agents of acute viral hepatitis globally and are 

Table 2 
Identified viruses in wastewater samples.  

Virus Location Methodology Type of sample Reference 

Norovirus Sweden Real-time qPCR Sewage [74] 
Spain Sequencing and phylogenetic Analysis Sewage [75] 

Enterovirus Bahrain Conventional PCR Influents and effluents [8] 
United States Sequencing Composite wastewater [73] 

Adenovirus Italy Real-time qPCR Inflows and outflows [103] 
United States Real-time qPCR Wastewater, surface water, and combined sewer overflows [104] 

Astrovirus Uruguay Sequencing and phylogenetic analysis Sewage [105] 
China Sequencing and phylogenetic analysis Sewage [106] 

Rotavirus South Africa Real-time qPCR Final effluents [7] 
Iran Real-time qPCR Influent and final effluents [107] 

Hepatitis A Argentina Real-time qPCR Wastewater [108] 
Hepatitis E France Real-time qPCR Influents and effluents [109] 

Italy Real-time qPCR Sewage [110] 
SARS-CoV-2 Netherlands Real-time qPCR Sewage [111] 

Bangladesh Real-time qPCR Wastewater [112] 
Monkeypox Netherlands Real-time qPCR Wastewater [113] 

United States Droplet Digital PCR Settled solids and liquid wastewater [76]  
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transmitted through the fecal-oral route [125]. In 2015, viral hepatitis accounted for 1.34 million deaths, with 0.8 % and 3.3 % of 
deaths attributable to HAV and HEV, respectively [126]. HAV belongs to the Hepatovirus genus of the Picornaviridae family, possessing 
a single positive-stranded RNA genome of 7.5 kb and causing only acute infections [127]. Infections associated with HAV primarily 
occur in emerging and low-income countries, and in addition to the fecal-oral route, infections can occur between people, with the 
latter responsible for most outbreaks in developed countries [127,128]. Despite the availability of a vaccine for HAV, experts estimate 
that over 100 million infections occur annually worldwide [129]. Like norovirus, HAV has a high potential for dissemination due to its 
high physical resistance to adverse conditions, which is conferred by its highly cohesive capsid [127]. Hepatitis A can range from mild 
to severe, with more severe effects in adults, leading to high excretion of viral particles, estimated at 1011 genome copies per gram of 
feces shortly before symptom onset [130]. This, coupled with high physical resistance and the excretion of viral particles, highlights 
the intrinsic link between oral-fecal transmission and suboptimal sanitation [127]. 

Hepatitis E virus (HEV), considered the fifth hepatitis virus (after A, B, C, and D), is a nonenveloped virus of approximately 27–40 
nm in diameter with a RNA genome with positive single-stranded polarity belonging to the sub-family Orthohepevirinae and genus 
Paslahepevirus [131,132]. This virus can be excreted in the feces, coinciding with viremia, appearing a few days before clinical 
symptoms, and persisting for 14–21 days [131]. Among the species, researchers have identified eight different genotypes, but only four 
(HEV1, HEV2, HEV3, and HEV4) have been described as infecting humans [133]. Genotypes 1 and 2 exclusively infect humans, with 
contaminated water as the main route of transmission, leading to large outbreaks of the disease in developing countries; these ge-
notypes only lead to acute viral hepatitis [132,134]. In contrast, genotypes 3 and 4 infect humans through the consumption of meat 
products or close contact with infected animals, making them zoonotic and using pigs as the main reservoirs; infections from these 
genotypes may result in extrahepatic manifestations or become chronic in immunocompromised patients [125,134]. Large outbreaks 
of waterborne hepatitis E viruses have been associated with genotypes 1 and 2 in Africa and Asia, while infections with genotypes 3 and 
4 are zoonotic infections of pigs and pork products and cause sporadic cases of hepatitis in industrialized environments [125]. 

The high levels of excreted nonenveloped enteric infectious agents in stools, along with their insufficient removal from wastewater, 
pose a risk of contaminating water bodies, which serve as sources of drinking water and crop irrigation [99,116]. Consequently, the 
provision and adequacy of sanitation services, the quality of wastewater treatment, mismanagement of sewage, and various hygiene 
practices are inherently linked to infection rates [86,115,116,135]. Viral infections have also been associated with the reuse of 
partially treated or untreated wastewater for irrigation purposes, particularly in addressing scarce water supplies [136]. This practice 
of using wastewater-derived water for crop irrigation poses risks to the health of farmers and consumers. Furthermore, groundwater 
contamination, runoff to surface water, or even exposure to aerosols can affect surrounding communities [136,137]. 

Several disease outbreaks related to the consumption of vegetables contaminated with enteric viruses have been reported 
worldwide. For example, eleven outbreaks of lettuce-related gastroenteritis led to 260 notifications in Denmark, caused by human 
norovirus (NoV) [138]. In addition, positive samples for human adenovirus (hAdV) were obtained in four European countries during 
the production, processing, and sale phases of fruits [139]. These authors also reported the detection of hAdV in 9.5 % of irrigation 
water samples. The main challenge with wastewater-derived water is the Wastewater Treatment Plant’s (WWTP) inability to 
completely remove or inactivate the viruses present in sewage [85,137]. Although enteric viruses cannot reproduce in water, they can 
survive for extended periods (up to 130 days) and cause infections at low viral titers (1–50 viral infectious units from a tissue culture) 
when ingested [8,99,140]. Typically, conventional wastewater treatment systems can eliminate between 50 % and 90 % of the viruses 
present in sewage, but the discharged treated water into the aquatic environment still contains a significant viral load [8,99,141]. 

Microbiological evaluation and monitoring are widely used worldwide to ensure water safety [4]. For this purpose, bacterial in-
dicators such as Escherichia coli and total and fecal coliforms are typically used [142]. However, this tool may not demonstrate the 
occurrence of enteric viruses in water, as WWTPs efficiently remove these bacterial indicators, and their persistence in the environ-
ment is shorter than that of the observed enteric viruses [143,144]. Bacteria are more susceptible than certain viruses to disinfection 
processes, such as UV treatment and chlorination, which are typically used in wastewater treatment [145,146]. Intrinsic factors of 
virus morphology and biochemistry, such as the virus capsid, size, and the capacity to aggregate with solid waste materials in sewage, 
can support the survival of the virus during the treatment steps, keeping them potentially infectious [86]. Additionally, they can 
remain stable in the environment for extended periods, particularly when associated with solids, which act as potential viral reservoirs 
[147]. Goyal et al. (1984) detected human enteric viruses in sediments from sewage sludge 17 months after sludge disposal ended 
[148]. Thus, the stability and persistence of enteric viruses in environmental water, even after passing through WWTPs, and their risks 
to human exposure through the pollution of drinking water sources, recreational waters, and food [99] make the monitoring of these 
viruses in water sources an essential tool for improving public health. 

In Italy, monitoring revealed trends in hepatitis E virus over nine years (2011–2019), both in terms of virus occurrence and 
circulating genotypes [110]. These authors described the positivity of 74 out of 1374 (5.4 %) sewage samples for HEV in 13 of the 20 
Italian regions, of which 56 (75.6 %) and 18 (24.3 %) belonged to the G3 genotype and G1, respectively. In the Campania Region, La 
Rosa et al. (2020) detected HAV RNA in 39 out of 463 water samples (20 of them positive in sewage) over four years, with 31 belonging 
to the IA genotype and 31 to the IB genotype. Thirteen of the 39 samples were collected during the 2015 HAV outbreak, and 10 of them 
were characterized as IA strains, showing 99–100 % nt identity with the epidemic strain (ISS 1 1 N 2015 Hu) isolated from patients 
with acute hepatitis in the same region [149]. In France, through wastewater monitoring, a wide range of circulating viral pathogens 
were detected, including adenovirus, enterovirus, parechovirus, rotavirus, norovirus, and hepatitis A and E [150]. 

Thus, sewage analysis is a potentially sensitive tool for tracking viral circulation in the area connected to the WWTP and for 
detecting the cocirculation of several different viral lineages [151]. Furthermore, wastewater surveillance may provide an opportunity 
for countries that do not have an early warning system for enteric virus outbreaks [152]. In South Africa, researchers detected and 
characterized NoV GI and GII from wastewater samples [144]. This study detected NoV in 78 out of 108 samples (61.1 %), with 33 out 
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of 54 in the influent and 45 out of 54 in the effluent, demonstrating the existence of at least 16 NoV genotypes circulating in the Free 
State and Gauteng. 

4.2. SARS-CoV-2 

The COVID-19 outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global 
impact, leading to significant human and economic losses [153]. Researchers have underscored the zoonotic transmission potential of 
coronaviruses, highlighting the urgent need for effective surveillance and public health measures [154,155]. 

The high expression of the angiotensin-converting enzyme 2 (ACE2) receptor, particularly in the lower respiratory tract, has 
contributed to the severe respiratory manifestations observed in COVID-19 cases [156,157]. SARS-CoV-2, like SARS-CoV, invades cells 
by utilizing the ACE2 enzyme as a receptor in its pathogenic mechanism, leading to a range of clinical presentations, from mild to 
severe, often accompanied by a robust immune response [158]. The presence of ACE2 receptors in various organs, including the 
respiratory tract, lungs, kidneys, blood vessels, heart, and small intestine, has raised questions about the various clinical presentations 
and extrapulmonary manifestations of the disease [155,159]. Gastrointestinal symptoms associated with COVID-19 have prompted 
investigations into the detection of SARS-CoV-2 in stool samples, revealing significant viral titers and prolonged shedding of the virus, 
even in asymptomatic individuals [160–162]. 

Furthermore, the high prevalence of asymptomatic cases has underscored the need for comprehensive epidemiological surveillance 
strategies to effectively monitor and control the spread of the virus [17]. WBE has emerged as a valuable noninvasive tool for 
monitoring the presence of SARS-CoV-2 RNA in sewage, as shown in the examples in Table 3, providing crucial insights into the 
dynamics of viral transmission [11,15,163]. Studies conducted in Brazil and Germany have demonstrated a temporal correlation 
between measured concentrations of SARS-CoV-2 RNA in wastewater and the subsequent increase in clinical cases, with lead times 
ranging from 7 to 14 days [96,164]. Similarly, the relationship between viral titers in wastewater and the corresponding trends in 
clinical cases has been observed in Mexico, highlighting the predictive capabilities of WBE in tracking disease dynamics [165]. 

Despite its potential, standardizing WBE methods for SARS-CoV-2 detection remains a significant challenge [90,175]. The complex 
nature of wastewater, coupled with variations in sewage composition and the unique characteristics of SARS-CoV-2 shedding, demand 
continued efforts to optimize and refine surveillance strategies [176,177]. Efforts toward standardization are imperative to enhance 
the reliability and consistency of wastewater-based surveillance, ensuring its continued effectiveness in addressing current and future 
public health challenges posed by viral outbreaks [111]. 

4.3. Monkeypox 

Monkeypox virus (MPXV) is a double-stranded DNA virus measuring 200–250 nm and enveloped in a lipoprotein membrane [178]. 
It belongs to the genus Orthopoxvirus, Poxviridae family, and Chordopoxvirinae subfamily [179]. Researchers first discovered MPXV in 
monkeys in Denmark in 1958 [180]. In 1970, it was first isolated from humans and reported in a 9-year-old child from the Democratic 
Republic of Congo [181]. Currently, MPXV remains endemic in West and Central Africa, and the infection has been associated with 
zoonotic transmission from small mammals [76]. However, the global monkeypox outbreak of 2022 presented an unusual scenario. 
For the first time, the disease emerged in countries that hadn’t previously reported cases and lacked established epidemiological links 
to known monkeypox-endemic regions [182]. 

On July 23, 2022, the monkeypox virus was designated a worldwide health emergency of international significance, affecting 
approximately 20,000 people across numerous nations [179,183]. Since then, this zoonotic disease has spread to more than 110 
countries beyond Africa, primarily in those not historically considered endemic [113,184]. 

The World Health Organization (WHO) recognized the global outbreak of monkeypox as a Public Health Emergency of Interna-
tional Concern (PHEIC) on July 23, 2022 [185]. To date, 78,000 cases have been confirmed in 110 locations worldwide (102 with no 
history of the disease), resulting in 42 deaths [184,186]. Experts have attributed the MPX outbreak in 2022 to mutations in MPXV, 
climate change, and reduced cross-immunity resulting from the absence of smallpox vaccination in the adult/young population, 
globalization, and high-risk sexual activity [187]. 

The infection is a self-limiting condition, with symptoms lasting between 2 and 4 weeks [12]. However, it can occasionally be fatal, 
with rates of up to 10 % of cases in endemic countries [188] and 3–6% for the 2022 MPX outbreak [189]. MPXV can occur through 
zoonotic or anthroponotic transmission, with the latter considered the main cause of the current outbreak [190]. Transmission occurs 
through contact with respiratory droplets, touching characteristic MPX injuries, body fluids, and contaminated objects [191]. 
Symptomatic cases exhibit main symptoms, including fever, swollen lymph nodes, and localized rashes, which can progress 
throughout the body [192]. Patient isolation is recommended to prevent transmission [178], and two vaccines are currently available, 
JYNNEOSTM (live, replication-incompetent vaccinia virus) and ACAM2000® (live, replication-competent vaccinia virus) [193]. 

In human patients, MPXV genomic DNA has been isolated from skin lesions, the nasopharynx, plasma, semen, urine, and feces 
samples [179,194]. Among the tested samples, the skin lesions exhibited the highest virus concentration [195]. Therefore, the 
diagnosis can involve laboratory methods such as viral isolation, tissue immunohistochemistry, molecular diagnosis, electron mi-
croscopy, and serology [187]. However, these diagnostic methods are costly, and many are not commercially available, especially in 
emerging countries [178]. 

Wastewater surveillance could be a potential approach, given its ability to detect emerging pathogens in small or large communities 
at a low cost and through noninvasive means [17]. MPXV can reach the sewage system through domestic water discharged into it, 
which contains human excreta and feces, respiratory secretions, saliva, and runoff from skin lesions released during bathing [12]. 
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Given the success of WBE in monitoring viral diseases, including during the COVID-19 outbreak, several places worldwide have begun 
to monitor MPXV in wastewater, using these data as a complementary epidemiological tool (Table 4). The first report of MPXV in 
wastewater occurred in Spain, with samples collected during the week of the first suspected MPX human infection, detecting the 
presence of MPXV DNA in 63 out of 312 samples analyzed [196]. MPXV genomic DNA detection was also reported in wastewater 
samples from the Rome airport in Italy [77]. 

In the Netherlands, the detection of MPXV in wastewater influent samples collected from five districts of Amsterdam showed the 
presence of MPXV DNA in 43 out of 108 (42 %) samples [113]. These findings also suggest that the concentration in (bio)solids could 

Table 4 
Implementation of wastewater-based epidemiology for monitoring MPXV worldwide.  

Location Primers # of 
samples 

Detection/ 
Total (%) 

Sample 
source 

Concentration method Detection method Reference 

Netherlands G2R_WA e 
G2R_G 

108 43/108 (42 
%) 

solid fraction – qPCR [113] 

Italy N3R, F3L e 
G2R_G 

20 02/20 (10 %) liquid 
fraction 

Precipitation (PEG/NaCl) qPCR and nested 
PCR 

[77] 

Spain G2R_WA e 
G2R_G 

312 63/312 (20 
%) 

– Aluminum-based adsorption- 
precipitation 

RT‒qPCR [196] 

United States G2R_WA e 
G2R_G 

287 76/287 (26 
%) 

solid fraction – RT‒PCR [76] 

– 18 13/18 (72 %) raw sewage Adsorption–elution (AE) and 
polyethylene glycol (PEG) precipitation 

qPCR [197] 

Czech 
Republic 

G2R_WA e 
G2R_G 

24 9/24 (37.5 %) raw 
wastewater  

Sequencing and 
seminested PCR 

[198]  

Table 3 
Wastewater-based epidemiology (WBE) as a surveillance tool for SARS-CoV-2 RNA detection in sewage.  

Sampling Virus detection method Detection results Reference 

Country State/City Sample type Method Target gene Positive rate 

Bangladesh Dhaka, Sylhet, Chittagong, Mymensingh, 
Rajshahi, Khulna, Barisal, Rangpur, 
Habigang, Kishorgonj, Brahmanbaria, 
Gaibandha e Cox’s Bazar, Cumilla. 

Untreated 
wastewater 

RT‒qPCR ORF1ab e N 
protein 

98 % (165/168) [112] 

Brazil Salvador, Bahia Untreated and 
treated wastewater 

RT‒qPCR N1 and N2 – [78] 

Nitéroi, Rio de Janeiro Untreated 
wastewater 

RT‒qPCR N2 84,3 % (188/223) [166] 

ABC Region, São Paulo Untreated 
wastewater 

RT‒qPCR N1 and N2 N1_53 % (116/220) N2_34 % (74/ 
220) 

[164] 

Japan Ishikawa and Toyama prefectures Untreated 
wastewater 

RT‒qPCR N2, N3 and 
N protein 

47 % (21/45) [167] 

Yamanashi Prefecture Untreated 
wastewater 

RT‒qPCR N1 and N2 67 % (88/132) [168] 

The  
Netherlands 

Amsterdam, Den Haag, Utrecht, 
Apeldoorn, Amersfoort, Schiphol and 
Tilburg 

Untreated 
wastewater 

RT‒qPCR N1, N2, N3 
and E 
protein 

14/24 (58 %) [111] 

Mexico Queretaro State, Santiago de Queretaro Ativacted sludge, 
Untreated and 
treated wastewater 

RT‒qPCR RdRP, S and 
N protein 

– [169] 

Australia Brisbane, Queensland Untreated 
wastewater 

RT‒qPCR N protein 22 % (2/9) [170] 

Spain Region of Murcia Untreated and 
secondary and 
tertiary treated 
wastewater 

RT‒qPCR N1–N3 Untreated wastewater_83 % (35/ 
42)/Secondary treated 
wastewater_11 % (2/18)/Tertiary 
treated wastewater_0 %(0/12) 

[171] 

Italy Castiglione Torinese, Chieri, Cuneo, 
Govone, Serravalle Sesia, Vercelli, Cerano, 
Novara, Asti, Domodossola, Omegna, 
Cossato and Massazza 

Untreated 
wastewater 

RT‒qPCR N1 and N2; 
E protein 

– [172] 

Portugal Amadora, Lisbon, Oeiras, Loures, Cascais, 
Sintra, Vila Nova de Gaia, Guimarães, 
Póvoa do Lanhoso and Vila Nova de 
Famalicão 

Untreated 
wastewater 

RT‒qPCR E protein, 
RdRP e N 
protein 

48 % (193/404) [173] 

USA Charlotte, North Carolina Untreated 
wastewater 

RT‒ 
qPCR/RT- 
ddPCR 

N1 and N2 – [174]  
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provide an opportunity for the detection of the virus genetic material. In another study, Wolfe et al. (2022) detected MPXV DNA in 
settled solid samples from 8 out of 9 monitored WWTPs in San Francisco, California, USA. Notably, the viral concentration was 103 

higher in the solid fraction of wastewater than in the liquid fraction [76]. 
Prague’s wastewater tested positive for MPXV, with a total of 9 positive samples during periods featuring 1 to 9 new cases per week, 

aligning with a weekly incidence ranging from 0.07 to 0.64 per 100,000 inhabitants [198]. Scherchan et al. (2023) detected MPXV in 
untreated wastewater samples from two WWTPs in Baltimore. The findings underscore the potential use of wastewater surveillance as 
a supplementary early warning tool for monitoring future Monkeypox outbreaks [197]. 

Recent studies have demonstrated the potential for monitoring MPXV in wastewater. However, the levels of MPXV, in comparison 
to SARS-CoV-2, are lower in wastewater, potentially contributing to reduced sensitivity in detection [12]. Thus, the choice of the best 
approach, from sample collection to molecular detection, which could enhance sensitivity and reduce false-negative results, appears to 
be the current challenge. Another crucial aspect to consider is whether the lower MPXV titers are due to a difference in the number of 
clinical cases or if MPXV is shed in wastewater less abundantly than other viruses, such as SARS-CoV-2 [199]. 

5. Viral identification methodology in wastewater 

Viral surveillance in wastewater entails a series of systematic procedures, commencing with the sampling of a specific site within a 
wastewater collection system and subsequently proceeding to the steps of viral concentration, extraction, and detection [200] (Fig. 1). 
This multifaceted process is imperative owing to the intricate nature of the sample matrix, which encompasses various compounds that 
could yield inaccurate outcomes, thereby reducing the sensitivity of detecting and quantifying genetic fragments [201]. 

5.1. Sampling 

Wastewater cannot be regarded as a uniformly mixed combination of all materials discharged into the sewer system throughout the 
day, despite its dilution and blending. Sewers function as dynamic flow systems, leading to constant changes in the composition of 
wastewater reaching wastewater treatment plants due to fluctuations in flow rates and substances introduced into the system [202]. 
Therefore, effective wastewater sampling emerges as a crucial tool to address the uncertainties associated with analyzing the spread of 
the virus [203]. (Fig. 1a). Poorly designed sampling techniques can yield unrepresentative samples, leading to potential false-negative 
errors [204]. 

Twenty-four-hour composite capture sampling is a preferred method for monitoring wastewater, as it involves collecting multiple 

Fig. 1. An illustrative representation of the analytical workflow for viral surveillance in wastewater. (a) The process initiates with targeted sam-
pling from a designated location within the wastewater collection system; (b) subsequently, viral concentration is carried out (showing the three 
methods most widely used); (c) this is followed by nucleic acids isolation, and (d) the last step involves the detection of viral presence in the 
samples. Created with BioRender.com (accessed on November 07, 2023). 
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samples throughout the day and consolidating them into a single volume [205]. This strategy is believed to offer a more comprehensive 
representation of viral content and is less susceptible to the inherent variations of seasonal and diurnal changes [204]. However, the 
implementation of this approach can be costly and challenging. It requires the installation of automated equipment ($2300 to $7500 
USD per unit) and personnel to conduct sampling at fixed locations, which can be difficult to access (e.g., sewer manholes, rivers), 
along with ongoing maintenance and security costs [205–208]. 

Alternatively, some studies have utilized the individual capture method for monitoring purposes [170,209–212]. This approach 
involves collecting a single sample at a specific point in time [204]. However, the representativeness of the results may be compro-
mised, as it overlooks the influence of factors such as flow rate, total wastewater volume, temperature, and variations in viral excretion 
profiles [200]. Additionally, small sample volumes combined with low recovery rates could lead to false-negative outcomes [213]. 
Nevertheless, random samples can be employed to monitor various locations within a region, including pumping stations or hospitals, 
which can serve as potential infection sentinels, along with the option of sampling small communities or communities without a 
sanitary sewage system [208,214]. 

Another cost-effective option is passive sampling (trap sampling), which entails the deployment of an adsorbent device (e.g., gauze, 
pads, and macroporous glass) for a predetermined duration that is capable of interacting with significant wastewater volumes [207, 
208]. This method is advantageous, particularly for poor countries, due to its simplicity and safety, and has proven to be effective in 
monitoring enteric viruses and enveloped viruses [215,216]. However, unlike random sampling, trap sampling limits the ability to 
quantify the amount of virus present in wastewater, hindering a comprehensive understanding of method sensitivity (the ability to 
detect low levels of virus) and efficiency (the ability to recover the virus from the sample) [208]. 

5.2. Viral concentration 

Viral pathogens are typically diluted in wastewater, often leading to low or undetectable concentrations in small volume samples (i. 
e., <1 L) [175]. To address this issue, the concentration step, preceding the extraction of genetic material (DNA/RNA), is utilized to 
increase method’s sensitivity and yield detectable levels of viral nucleic acid [217]. In this step, intrinsic wastewater factors such as 
turbidity, volume, and quality must be considered, as they can significantly affect virus concentration efficiency and downstream 
detection techniques [218]. However, no method can uniformly concentrate all viruses, given the significant structural differences 
between enveloped and nonenveloped viruses, even when using the same sample type [170]. 

Several techniques have been employed for the concentration of viral particles in wastewater samples. Among these, three primary 
concentration methods (Fig. 1b) have emerged as the most widely used: vacuum filtration utilizing an electronegative membrane; a 

Table 5 
Viral concentration methodologies in wastewater samples.  

Method principle Concentration method Advantages Drawbacks References 

Size-exclusion based on 
particle 

Ultrafiltration (dead-end and 
tangential flow)  

- Simultaneous concentration of 
viruses and other pathogens;  

- Inexpensive filters.  

- Filter clogging in samples with high 
turbidity (except tangential flow);  

- It can require filter conditioning;  
- Slow filtration rate 

[219–222] 

Centrifugation-based Ultracentrifugation  - No preconditioning;  
- One step method;  
- Concentrate solid and liquid 

phase viruses  

- Requires expensive equipment 
(ultracentrifugation);  

- Can’t be used for large volume sample 

[170,222] 

Precipitation Precipitation with PEG  - Greater efficiency in 
concentrating RNA viruses;  

- Large volume water processing;  
- Concentrate viruses from both 

solid and liquid phases;  
- Relatively cheap  

- Coprecipitation of PCR inhibitors;  
- Time consuming;  
- Require centrifugation 

[85,222] 

Flocculation Skim milk flocculation  - One-step method;  
- Simultaneous concentration of 

several samples;  
- Field deployable;  
- Large volume water processing 

(Up to 40 L samples) 

Time consuming [85,222] 

Membrane Adsorption Negative filters adsorption  - Extraction can be done directly 
from the membrane;  

- Low cost;  

- No useful for turbid samples;  
- Requires conditioning;  
- No useful for large volume samples 

[219,220, 
222] 

Positive filters adsorption  - N o require preconditioning;  
- Capable of concentrating viruses 

over a wider pH range;  
- Useful for large volumes;  
- Field deployable 

No useful for turbid samples 

Size-exclusion based on 
particle/Centrifugation- 
based 

Centrifugal ultrafiltration  - Simple and quick method;  
- Reduces the amount of PCR 

inhibitors;  
- Multiple sample processing  

- Filter clogging;  
- Requires preconditioning at high 

turbidity (prefiltration) 

[85,224]  
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precipitation method employing PEG 8000; and ultrafiltration [90]. 
In response to the need for a reliable concentration methodology for viral markers, various concentration procedures are currently 

employed across different wastewater volumes (15 mL–40 L). These methods rely on techniques such as size exclusion based on 
particles, centrifugation, precipitation, flocculation, membrane adsorption, or a combination of these principles [170,219–224] 
(Table 5). While most of these techniques were originally developed for enteric virus surveillance [202], several have proven appli-
cable for concentrating other viruses in wastewater, including SARS-CoV-2 and Monkeypox virus [76,112,113,225]. 

The variability in inactivation rates among different viruses, coupled with the differential stability exhibited by infectious viruses 
and their nucleic acids, underscores the intricate dynamics at play within wastewater systems [226]. These differences are likely 
influenced by variations in the microbiological composition of different water sources and the distinct mechanisms governing virus 
inactivation [227]. Viral nucleic acids, unlike viral capsids, can persist and remain detectable even after the virus loses infectivity, 
which means they can be found in the environment for longer durations [228]. [44,229,229,230]. 

5.3. Nucleic acid isolation 

In PCR (polymerase chain reaction)-based detection methods, the viral genome’s target sequence is amplified. However, this 
necessitates the isolation of genetic material (DNA/RNA), typically involving stages of lysis, purification, and recovery [231], a process 
commonly performed on human specimens for diagnostic purposes. In the investigation of viruses in wastewater samples (Fig. 1c), 
commercially available kits have found wide application in concentrated isolates from wastewater samples [200]. Nonetheless, 
caution is warranted regarding the indiscriminate use of these kits, given the variability in efficiency and consistency in isolating the 
viral genome and removing PCR inhibitors, even when sourced from the same supplier [232,233]. Consequently, automated extractors 
have been employed to isolate virus nucleic acids from influent and effluent wastewater samples [78,234,235], as they can bind 
nucleic acids, while minimizing the co-extraction of various other materials commonly found in wastewater, such as organic matter, 
humic substances, and microbial debris, which reduces variability in analytical results and improves sample purity [85]. 

5.4. Viral detection 

For many years, cell culture-based methods have served as the gold standard for detecting infectious viruses in environmental 
samples [236]. However, these techniques are limited to the ability to cultivate viruses of interest in vitro. Consequently, PCR and qPCR 
(Fig. 1d) methods have become crucial for identifying viruses in water samples due to their rapid detection, high sensitivity, and 
specificity, enabling test adaptation based on the desired specificity, whether to cover broad viral groups such as enteroviruses or 
target more specific viral strains based on selected target DNA/RNA sequences [218]. 

Genome sequencing has emerged as a pivotal tool for the discovery and characterization of viral variants in wastewater-based 
epidemiology [237]. Studies have underscored the significance of employing virome sequencing and next-generation sequencing 
approaches to unveil insights into viral evolution, dynamics between different viral species or variants, and the prevalence of emerging 
variants within communities [238]. WBE, leveraging virome sequencing, offers a unique perspective on aggregate community loads of 
specific pathogens and their genomic diversity, complementing clinical reporting biases [239]. Monitoring viral genome sequences in 
wastewater improves estimates of community prevalence and makes it easier to identify new variations early on [240]. Recent ad-
vancements in genomic sequencing technologies enable comprehensive scanning of the entire viral genome, enabling the detection of 
unique and functionally important mutations and VOC-defining clusters [241,242]. Innovative computer techniques improve the 
parsing of several viral lineages in wastewater samples even further [243]. In general, viral pathogens in wastewater may be sequenced 
using whole genome sequencing, which is a versatile and effective method for determining the frequency of circulating viral variations 
and assisting in the prompt identification of newly emerging variants in populations [244,245]. 

Urban wastewater is a complex mixture that extends beyond fecal waste, encompassing pharmaceutical products, personal hygiene 
items, rainwater, sediments, household detergents, industrial effluents, metals, and other substances [202]. However, some of these 
compounds can partially or completely prevent PCR amplification, resulting in false negatives. These compounds, known as PCR 
inhibitors, comprise a variety of substances, such as humic acids, polysaccharides, fats, proteins, metal ions, RNases, and others that 
are recognized to interfere with PCR-based methods [219,220,246]. Given this, processing controls, such as viruses with similar 
structures, have been recommended in the analysis of environmental samples, particularly in wastewater, since controls serve as an 
internal verification of the extraction and detection process [218,247]. If the control virus exhibits a significant decrease in recovery 
compared to expected yields, it may indicate the presence of inhibitors in the sample. 

WBE holds promise for tracking the spread of viral lineages (variants) within communities, yet it presents inherent challenges due 
to the vast diversity of genetic material present wastewater samples [44,229]. The presence of genetic material from viruses with 
diverse evolutionary backgrounds can complicate the precise identification and phasing of specific circulating lineages [230]. To 
address these challenges, the field of WBE is actively developing and refining bioinformatic tools. These tools employ various ap-
proaches, such as identifying mutations specific to variant lineages within sequencing data, utilizing sample deconvolution techniques, 
and comparing lineage-specific mutations [229]. While advancements are being made, the application of standard metagenomic 
methods, like ordination analysis, remains relatively new in WBE research. 

6. Epidemiological insights through wastewater surveillance 

WBE has found extensive applications beyond infectious disease surveillance, extending its utility to diverse realms of public 
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health. It has been instrumental in the evaluation of food safety measures [48], monitoring drug misuse trends [248], evaluating the 
effects of temperature on health [249], assessing population exposure to various environmental toxins such as pesticides and heavy 
metals [250], and contributing to overall environmental health management [98]. By providing insights into the prevalence and 
distribution of various contaminants and substances within communities, WBE has emerged as a versatile and robust tool in the 
broader context of public health management and policy formulation [251]. 

The unpredictability of infectious outbreaks, regional epidemics, and pandemics poses a formidable challenge for public health 
preparedness. This vulnerability is highlighted by the difficulty in timely responses, which stems from the limitations of traditional 
epidemiological approaches [236,252]. These methods rely primarily on specific clinical symptoms to identify the onset of a disease 
epidemic, leaving a critical gap in the ability to foresee and proactively address emerging health threats [236]. 

Epidemiological insights derived from wastewater monitoring have become increasingly instrumental in tracking the emergence 
and spread of infectious diseases, particularly in the context of the ongoing COVID-19 pandemic [253,254]. Numerous studies and 
scientific reports have emphasized the efficacy and cost-effectiveness of wastewater surveillance in providing early warnings of disease 
burden to policymakers and health officials, thereby facilitating evidence-based decision-making for disease control and preparedness 
[254–256]. Moreover, the diverse applications of wastewater monitoring extend beyond tracking SARS-CoV-2, encompassing the 
potential for monitoring other emerging pathogens and disease prevalence within communities [257–259]. WBE demonstrates its 
utility in detecting infection and transmission in the general community, regardless of the presence of clinical symptoms or socio-
economic biases related to case reporting [260]. This emphasizes the inclusive nature of wastewater surveillance, capturing a more 
comprehensive picture of disease prevalence, including cases that might otherwise go undetected through traditional clinical sur-
veillance alone. 

The pivotal role of wastewater monitoring as an essential component of global disease surveillance systems has gained recognition, 
emphasizing the need for comprehensive frameworks to unify monitoring programs worldwide [256,261,262]. While the current 
wastewater research landscape remains fragmented due to its grassroots origins, there is a pressing need for global and country-level 
leadership, financial investments, and adaptable implementation frameworks to maximize the potential of wastewater surveillance 
[256]. Establishing wastewater-based surveillance (WBS) initiatives and integrating collected data would be extremely beneficial to 
public health experts, local authorities, and decision makers, enabling a more integrated approach to disease monitoring and response 
[260]. This comprehensive integration would facilitate informed decision-making, policy development, and targeted interventions, 
contributing to improved public health outcomes. 

Environmental surveillance can play an essential role in supplementing clinical surveillance efforts or prompting more extensive 
monitoring in regions with limited or underdeveloped epidemiological data [263]. People who live in these areas, which often 
encompass densely populated regions, resource-limited informal settlements, or marginalized communities facing socioenvironmental 
vulnerabilities, may encounter restricted access to healthcare facilities, decreased care-seeking tendencies, insufficient testing capa-
bilities, and overwhelmed clinical surveillance capacities [11]. 

Wastewater surveillance’s utility for infectious diseases is evident through its historical applications in tracking water-borne 
pathogens and its recent proactive role in monitoring SARS-CoV-2 during the COVID-19 pandemic [44,254,262]. Wastewater 
monitoring serves as a valuable complementary surveillance technique, offering insights into the presence of various pathogens and 
aiding in disease outbreak monitoring [44]. WBE has the potential to demonstrate its efficacy in COVID-19 surveillance, enabling the 
prediction of the broader pandemic landscape [264]. By pinpointing the hotspots and refining public health interventions, WBE can 
offer regulatory bodies the necessary lead time to effectively manage challenging circumstances [265]. Moreover, WBE could serve as 
an early indicator of potential outbreaks and seasonal upsurges in the times ahead [17,265]. Implementing this technique enables the 
nearly real-time detection of specific targets across the community [266]. In the case of infectious diseases such as COVID-19, real-time 
monitoring is crucial for effectively addressing their transmission and minimizing their impact [267]. 

The undeniable benefits of wastewater surveillance for infectious disease monitoring are tempered by challenges in equity, 
timeliness, and data utilization, which highlight the need for its integration and mainstreaming [259,261]. Promoting responsible and 
ethical monitoring practices, ensuring data representativeness, and enhancing the spatial resolution of surveillance systems emerge as 
crucial factors in advancing the efficacy of wastewater monitoring for public health [257,261,262]. 

7. Unveiling the impacts of wastewater-based epidemiology on public health 

The exploration of WBE has unveiled significant implications for public health, particularly in the context of disease surveillance, 
outbreak detection, and monitoring of population health indicators [10]. Historical milestones, including John Snow’s seminal work in 
1854, highlighted the association between contaminated water sources and disease transmission, laying the foundation for modern 
wastewater analysis [268]. The subsequent use of wastewater surveillance for tracking the spread of poliomyelitis [269] and moni-
toring cocaine usage [53] in specific populations further underscored the versatility of this approach in understanding diverse health 
phenomena [268]. 

Professor Masaaki Kitajima emphasized that WBE holds significant potential as a valuable tool in healthcare research, supported by 
various researchers [270]. First, through wastewater analysis, early warning signs of disease outbreaks can be detected, aiding in 
timely interventions, particularly in the case of infectious diseases such as COVID-19 [271]. Second, WBE enables a comprehensive 
understanding of infectious disease prevalence by examining various pathogens in wastewater, offering insights crucial for public 
health planning and policymaking [272]. Finally, WBE complements traditional healthcare surveillance methods, providing a 
population-level perspective that covers a broader segment of the population, including asymptomatic individuals, thereby enhancing 
the overall understanding of public health [273]. 
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In Brazil, wastewater-based epidemiology (WBE) projects conducted throughout the COVID-19 pandemic were primarily spear-
headed by universities, research institutes, and regulatory agencies [89]. These initiatives benefitted from collaborative efforts 
involving water and sanitation companies as well as health authorities at municipal or state levels [15]. By leveraging the collective 
expertise and resources of these institutions, comprehensive WBE data on SARS-CoV-2 were systematically collected and disseminated 
to the public. This information was made accessible through various channels, including publicly available online dashboards, weekly 
or monthly bulletins, and warning alerts issued during periods of heightened transmission [274]. Such proactive measures not only 
facilitated real-time monitoring of viral prevalence in communities but also served to inform public health interventions and miti-
gation strategies in response to evolving pandemic dynamics. 

[271,275]However, it is crucial to acknowledge that WBE cannot be used in isolation in epidemiology studies. It requires a 
comprehensive approach that integrates multiple surveillance methods to enable proactive interventions and effective disease control 
[275]. 

Since 2018, China has implemented wastewater monitoring programs at local, provincial, and national levels, serving as a 
cornerstone for evaluating the efficacy of drug control efforts [276]. The utilization WBE data has been instrumental in aiding law 
enforcement agencies in cracking down on drug-related crimes [277]. According to Li et al. (2023), routine monitoring at sewage 
plants has enabled the identification of suspect manufacturing activities, prompting further investigations at upstream pump stations 
and sewer networks to pinpoint specific areas of interest. Police raids that followed, directed by monitoring data, were effective in 
taking down many covert labs [15]. Concurrently, in Europe, the Sewage Analysis CORe group Europe (SCORE) collaboration has been 
pivotal in providing annual data on the population’s use of psychoactive drugs to the European Monitoring Centre for Drugs and Drug 
Addiction (EMCDDA) and the United Nations Office of Drugs and Crime (UNODC) [278]. Moreover, in Australia, the Australian 
Criminal Intelligence Commission (ACIC) established the Australian National Wastewater Drug Monitoring Program in 2016 [279]. 
This approach has since been commercialized by Biobot Analytics in the United States, showcasing the global adoption and 
commercialization of wastewater-based drug monitoring initiatives [15]. 

The utilization of human biomarkers present in sewage offers a valuable early warning system for disease outbreaks, allowing for 
timely policy interventions and governance strategies [98]. However, careful consideration of community practices and beliefs is 
essential in selecting appropriate monitoring sites, ensuring accurate representation and the effective utilization of resources without 
compromising WASH initiatives aimed at improving overall public health [280]. 

Furthermore, the significance of wastewater treatment facilities as critical venues for epidemiological investigations of emerging 
diseases has been underscored, particularly in vulnerable populations that are disproportionately affected by regional epidemics and 
pandemics [275]. Studies conducted in various regions, such as Israel and Brazil, have further emphasized the utility of WBE in 
detecting community-level disease prevalence, highlighting its role in supporting targeted public health interventions and informing 
municipal policies [166,281]. 

Looking ahead, experts recognize the potential of WBE to contribute to the attainment of various United Nations (UN) Sustainable 
Development Goals. These goals include ensuring healthy lives, promoting sustainable economic growth, and building resilient 
infrastructure [47]. Its role in monitoring infectious diseases and assessing the efficacy of vaccination campaigns has positioned WBE 
as a complementary method for evaluating the spread of infections, particularly in areas with limited diagnostic resources [172]. 

A recent study illustrates that WBE could effectively monitor progress toward achieving more than half of these goals, set for 2030. 
These encompass a broad spectrum, including ending hunger, promoting healthy living, sustainable economic growth, resilient 
infrastructure development, and fostering inclusive and sustainable societies [47]. 

Through the analysis of various markers, including dietary patterns, pharmaceutical consumption, and stress hormones, WBE 
enables the identification of health disparities across different communities, facilitating targeted interventions and policy planning 
[282]. [10,15,44]. 

8. Policy and regulatory aspects 

Policy and regulatory aspects play an essential role in the successful implementation and management of WBE programs for in-
fectious disease surveillance. The establishment of the National Wastewater Surveillance System (NWSS) by the U.S. The Centers for 
Disease Control and Prevention (CDC) is a significant milestone, signifying the growing recognition of the importance of wastewater 
monitoring as a surveillance tool [258,283]. However, challenges persist, particularly concerning the coordination of protocols and 
policies, as highlighted by Wolfe (2022). To ensure the effective deployment of these programs, it is crucial to consider ethical 
guidelines, especially in smaller community sites [284]. 

Furthermore, the legal frameworks governing wastewater governance and monitoring vary across states and territories, with 
historical regulations often stemming from public health acts [284]. The roles of key stakeholders in WBE programs, including research 
laboratories, utilities, health authorities, and nongovernmental organizations (NGOs), need to be well defined and coordinated [280]. 

The application of WBE in the pandemic context, as seen through the NWSS initiative in the U.S., emphasizes the importance of 
collaboration between federal agencies and their role in establishing a formalized approach to WBE [283]. Moreover, global col-
laborations such as the Surveillance of Wastewater for Early Epidemic Prediction (SWEEP), proposed by Tiwari et al. (2021), hold 
promise in enhancing the resilience of future generations to viral outbreaks [28]. 

Diverse countries, including Finland, Hungary, Luxembourg, the Netherlands, Spain, and Turkey, have integrated WBE as a 
comprehensive approach to monitor the transmission of SARS-CoV-2 nationwide [89]. In contrast, the United States, Canada, 
Australia, France, Switzerland, and the United Kingdom have adopted regional monitoring strategies [89]. 

Between 2021 and 2022, the MCTI (Ministry of Science, Technology, and Innovation) established a COVID-19 wastewater- 
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monitoring network in several Brazilian states. The monitoring initiative, documented at http://redevirus.mcti.gov.br/novidades/ 
monitoramento-de-covid-19-em-aguas-residuais-2022/, has been active since the early months of 2021 in key cities, including Belo 
Horizonte, Curitiba, Distrito Federal, Fortaleza, Recife, and Rio de Janeiro. Epidemiological bulletins released up to March 2022 
displayed a notable correlation between fluctuations in the levels of SARS-CoV-2 genetic material detected in sewage and the in-
cidences of suspected and confirmed COVID-19 cases in each evaluated city [78]. 

While the applications of wastewater research hold promise, there is currently a lack of well-developed ethical guidelines gov-
erning its use under specific conditions [285]. Various subfields of applied ethics offer perspectives to address the ethical dilemmas 
posed by wastewater research, as highlighted by Doorn et al. (2022):  

• Collected data remain untraceable to individuals, requiring a balance between disease surveillance and privacy protection;  
• The specificity of wastewater sources impacts their effectiveness and privacy. It is crucial to consider the data in conjunction with 

other sources and handle it with care to avoid excessive datafication of society;  
• Wastewater surveillance offers a valuable complement to conventional diagnostic testing methods for infectious diseases; WBE can 

influence the choice of treatment methods to enhance the ecological health of water systems. 

9. Challenges and future directions 

Wastewater-based epidemiology has gained acceptance in several countries as an effective method for preventing, intervening in, 
and controlling new and reemerging infectious diseases [44,166]. Its potential for understanding population behavior and its con-
sequences for public health has also been emphasized [286]. 

This approach has the advantage of being a practical model with minimal resource requirements, capable of gathering compre-
hensive data with broad geographic and population coverage [287]. Moreover, data collection can occur in real time, independent of 
clinical data, thereby reducing the potential for bias and under detection [45]. However, despite the potential benefits, researchers 
need to address the remaining limitations and challenges through additional studies, research, and development. 

The complexity of the wastewater matrix, which includes challenges such as the dilute nature of biomarker concentrations 
compared to urine and the intricate composition of the wastewater substrate, hinders the analysis and extraction of biomarkers and 
pathogens, and accurately determining the population size covered by WWTPs poses a significant challenge [17]. According to Mao 
et al. (2020), to address this, a thorough understanding of the metabolic process associated with biomarkers is crucial, ensuring that 
the biomarkers identified in wastewater originate exclusively from human sources and not external sources. 

A national wastewater monitoring study in Australia linked sampling with the Australian Census, demonstrating the effectiveness 
of synchronizing wastewater sampling with a national census. This enabled an estimation of the population size and the acquisition of 
more reliable data on per capita consumption, exposure, and chemical release [286]. 

Despite its undeniable potential as a public health tool for detecting and effectively combating prevalent infectious diseases at a 
lower cost, further studies and research are necessary to solidify WBE as an internationally accepted tool. 

Notably, numerous microorganisms, including viruses, bacteria, and protozoa, have been identified in water matrices, especially in 
wastewater, some of which are pathogenic to humans. Although they hold significant potential, the universal establishment of 
monitoring for certain viruses, such as enteric viruses, SARS-CoV-2, and the reemerging Monkeypox virus, has not yet occurred. This 
lack of universal monitoring is compounded by the need for major changes in water management and the design of water infrastructure 
[47]. These changes are crucial to effectively address challenges arising from climate change, alterations in the water cycle, the 
evolution of digitalization, infrastructure improvements, and the protection of privacy [288]. 

Enteric viruses represent a notable example of microorganisms with the potential for infectious spread through water, leading to 
food-related outbreaks, particularly prevalent in developed countries and significantly challenging in emerging nations due to inad-
equate sanitation, notably affecting children. Although monitoring initiatives for these viruses in wastewater have yet to be globally 
established, their significant potential has been recognized. For instance, Bisseux et al. (2018) in France developed a method for real- 
time monitoring of the circulation of a wide range of human enteric viruses in urban wastewater during environmental surveillance, 
indicating pollution derived from wastewater and assessing global water quality risk [150]. 

The COVID-19 pandemic underscored the necessity of effective strategies to monitor the behavior of the SARS-CoV-2 virus. In-
fectious disease surveillance involves techniques such as sentinel surveillance, clinical-based surveillance, surveys, hospital admission 
data, and mortality rates [289,290], yet it faces obstacles such as biases, long execution time, insensitivity to resource limitations, 
ethical concerns, and high costs [291]. Consequently, wastewater-based epidemiological surveillance proved valuable in addressing 
the pandemic by facilitating the identification of SARS-CoV-2 and enabling the implementation of monitoring initiatives that issue 
predictive alerts in a noninvasive and cost-effective manner, making it advantageous even for poor regions [112,292]. 

Apart from the benefits, obstacles continue to arise in the broad implementation of WBE, mostly because of the complex structure of 
the wastewater matrix. Efficient sample processing and viral DNA and RNA extraction techniques are necessary to ensure the 
dependability of WBE by removing matrix interferences and improving detection sensitivity. To scale up and increase the accuracy of 
WBE, further research is needed to produce a “gold standard” analytical approach for the complex wastewater matrix [293]. 

The surveillance of the reemerging Monkeypox virus in the USA and Europe now efficiently utilizes the established frameworks 
initially designed for testing SARS-CoV-2 [76]. Thus, wastewater monitoring programs can swiftly adapt to the screening of new 
targets, establishing them as flexible tools in epidemiological surveillance. 
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10. Conclusion 

In conclusion, we highlight the promise and effectiveness of Wastewater-Based Epidemiology (WBE) as a crucial tool for moni-
toring and predicting the spread of infectious diseases, especially during the COVID-19 pandemic. This study emphasizes that despite 
the challenges associated with the collection, concentration, and detection of viruses in wastewater samples, PCR and qPCR techniques 
emerge as essential methods for viral pathogen detection, offering robust sensitivity and specificity. With the continued development 
and implementation of wastewater surveillance strategies worldwide, these innovative approaches are expected to continue playing a 
crucial role in protecting public health and preventing infectious disease outbreaks. 
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[139] L. Maunula, A. Kaupke, P. Vasickova, K. Söderberg, I. Kozyra, S. Lazic, W.H.M. van der Poel, M. Bouwknegt, S. Rutjes, K.A. Willems, et al., Tracing enteric 

viruses in the European berry fruit supply chain, Int. J. Food Microbiol. 167 (2013) 177–185, https://doi.org/10.1016/j.ijfoodmicro.2013.09.003. 
[140] T.-T. Fong, E.K. Lipp, Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools, 

Microbiol. Mol. Biol. Rev. 69 (2005) 357–371, https://doi.org/10.1128/mmbr.69.2.357-371.2005. 
[141] H. Wang, P. Sikora, C. Rutgersson, M. Lindh, T. Brodin, B. Björlenius, D.G.J. Larsson, H. Norder, Differential removal of human pathogenic viruses from sewage 

by conventional and ozone treatments, Int. J. Hyg Environ. Health 221 (2018) 479–488, https://doi.org/10.1016/j.ijheh.2018.01.012. 
[142] A.M. Motlagh, Z. Yang, Detection and occurrence of indicator organisms and pathogens, Water Environ. Res. 91 (2019) 1402–1408. 
[143] C. García-Aljaro, A.R. Blanch, C. Campos, J. Jofre, F. Lucena, Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage, 

J. Appl. Microbiol. 126 (2019) 701–717. 
[144] V.V. Mabasa, K.D. Meno, M.B. Taylor, J. Mans, Environmental surveillance for noroviruses in selected South African wastewaters 2015–2016: emergence of the 

novel GII.17, Food Environ Virol 10 (2018) 16–28, https://doi.org/10.1007/s12560-017-9316-2. 
[145] S. Jalali Milani, G. Nabi Bidhendi, A review on the potential of common disinfection processes for the removal of virus from wastewater, Int. J. Environ. Res. 16 

(2022). 
[146] J. Kong, Y. Lu, Y. Ren, Z. Chen, M. Chen, The virus removal in UV irradiation, ozonation and chlorination, Water Cycle 2 (2021) 23–31. 
[147] V. Moresco, D.M. Oliver, M. Weidmann, S. Matallana-Surget, R.S. Quilliam, Survival of human enteric and respiratory viruses on plastics in soil, freshwater, 

and marine environments, Environ. Res. 199 (2021), https://doi.org/10.1016/j.envres.2021.111367. 
[148] S.M. Goyal, S.A. Schaub, F.M. Wellings, D. Berman, J.S. Glass, C.J. Hurst, D.A. Brashear, C.A. Sorber, B.E. Moore, G. Bitton, et al., Round Robin Investigation of 

Methods for Recovering Human Enteric Viruses from Sludge, vol. 48, 1984. 
[149] G. La Rosa, P. Mancini, G.B. Ferraro, M. Iaconelli, C. Veneri, R. Paradiso, D. De Medici, T. Vicenza, Y.T.R. Proroga, O. Di Maro, et al., Hepatitis A virus strains 

circulating in the Campania region (2015–2018) assessed through bivalve biomonitoring and environmental surveillance, Viruses 13 (2021), https://doi.org/ 
10.3390/v13010016. 

[150] M. Bisseux, J. Colombet, A. Mirand, A.-M. Roque-Afonso, F. Abravanel, J. Izopet, C. Archimbaud, H. Peigue-Lafeuille, D. Debroas, J.-L. Bailly, et al., Monitoring 
Human Enteric Viruses in Wastewater and Relevance to Infections Encountered in the Clinical Setting: A One-Year Experiment in Central France, vol. 23, 2014. 

[151] C.M. Maida, F. Tramuto, G.M. Giammanco, R. Palermo, W. Priano, S. De Grazia, G. Purpari, G. La Rosa, E. Suffredini, L. Lucentini, et al., Wastewater-based 
epidemiology as a tool to detect SARS-CoV-2 circulation at the community level: findings from a one-year wastewater investigation conducted in sicily, Italy, 
Pathogens 12 (2023), https://doi.org/10.3390/pathogens12060748. 

[152] S. Maryam, I. Ul Haq, G. Yahya, M. Ul Haq, A.M. Algammal, S. Saber, S. Cavalu, COVID-19 surveillance in wastewater: an epidemiological tool for the 
monitoring of SARS-CoV-2, Front. Cell. Infect. Microbiol. 12 (2023). 

[153] A. Sharma, S. Tiwari, M.K. Deb, J.L. Marty, Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies, Int. J. 
Antimicrob. Agents 56 (2020), https://doi.org/10.1016/j.ijantimicag.2020.106054. 

[154] M. Sharan, D. Vijay, J.P. Yadav, J.S. Bedi, P. Dhaka, Surveillance and response strategies for zoonotic diseases: a comprehensive review, Science in One Health 
(2023) 100050, https://doi.org/10.1016/j.soh.2023.100050. 

[155] D. Yesudhas, A. Srivastava, M.M. Gromiha, COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics, Infection 49 (2021) 
199–213. 

[156] W. Ni, X. Yang, D. Yang, J. Bao, R. Li, Y. Xiao, C. Hou, H. Wang, J. Liu, D. Yang, et al., Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19, Crit. Care 
24 (2020). 

[157] A.R. Bourgonje, A.E. Abdulle, W. Timens, J.L. Hillebrands, G.J. Navis, S.J. Gordijn, M.C. Bolling, G. Dijkstra, A.A. Voors, A.D.M.E. Osterhaus, et al., 
Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19), J. Pathol. 251 (2020) 228–248. 

[158] R. Wölfel, V.M. Corman, W. Guggemos, M. Seilmaier, S. Zange, M.A. Müller, D. Niemeyer, T.C. Jones, P. Vollmar, C. Rothe, et al., Virological assessment of 
hospitalized patients with COVID-2019, Nature 581 (2020) 465–469, https://doi.org/10.1038/s41586-020-2196-x. 

[159] I. Hamming, W. Timens, M.L.C. Bulthuis, A.T. Lely, G.J. Navis, H. van Goor, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. 
A first step in understanding SARS pathogenesis, J. Pathol. 203 (2004) 631–637, https://doi.org/10.1002/path.1570. 

[160] Y. Wu, C. Guo, L. Tang, Z. Hong, J. Zhou, X. Dong, H. Yin, Q. Xiao, Y. Tang, X. Qu, et al., Prolonged presence of SARS-CoV-2 viral RNA in faecal samples, Lancet 
Gastroenterol Hepatol 5 (2020) 434–435. 

[161] S. Zheng, J. Fan, F. Yu, B. Feng, B. Lou, Q. Zou, G. Xie, S. Lin, R. Wang, X. Yang, et al., Viral load dynamics and disease severity in patients infected with SARS- 
CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study, BMJ 369 (2020), https://doi.org/10.1136/bmj.m1443. 

[162] F. Jiang, L. Deng, L. Zhang, Y. Cai, C.W. Cheung, Z. Xia, Review of the clinical characteristics of coronavirus disease 2019 (COVID-19), J. Gen. Intern. Med. 35 
(2020) 1545–1549. 

[163] S. Mohapatra, S. Bhatia, K.Y.K. Senaratna, M.C. Jong, C.M.B. Lim, G.R. Gangesh, J.X. Lee, G.S. Giek, C. Cheung, L. Yutao, et al., Wastewater surveillance of 
SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID − 19 pandemic, J. Hazard Mater. 446 (2023), https://doi.org/10.1016/j. 
jhazmat.2022.130690. 

[164] I.C.M. Claro, A.D. Cabral, M.R. Augusto, A.F.A. Duran, M.C.P. Graciosa, F.L.A. Fonseca, M.A. Speranca, R. de F. Bueno, Long-term monitoring of SARS-COV-2 
RNA in wastewater in Brazil: a more responsive and economical approach, Water Res. 203 (2021), https://doi.org/10.1016/j.watres.2021.117534. 
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