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Abstract

The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and
in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional
gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled
using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for
the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained
using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and
confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was
modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a
function of the distance of the vesicle to the surface was determined both experimentally and from the computer
simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also
studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the
sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the
presence of charge in the membrane increases its rigidity.
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Introduction

Lipid vesicles in the same size range as cells are widely used to

investigate the physical properties of cell membranes, providing a

simplified model system to investigate the role that the membrane

plays in the mechanical deformation of cells. It is important to

consider lipid membrane mechanics in order to understand many

relevant processes involving cell deformation. For example, red

blood cells (RBCs) undergo large deformations in the microcircu-

lation [1] which appears to optimize gas exchange between blood

and the surrounding tissues [2,3]. Given that unilamellar lipid

vesicles share some features with RBCs, such as the ability to

generate equilibrium biconcave shapes and dynamics under shear

flow such as tank-threading and tumbling, the study of its behavior

under flow conditions can provide useful information in the

understanding of blood rheology [4–6].

Given the high stretching elastic modulus of lipid membranes,

these are generally assumed to be incompressible (constant area

per lipid molecule) [7–9]. As a consequence, the dynamics of

vesicles under flow are sensitive to the value of the reduced

volume, t~6
ffiffiffi
p
p

V=S3=2 (V is the volume of the vesicle and S its

surface area) [10], which quantifies the amount of area available

for the deformation of the vesicle. The maximum value t~1
corresponds to a sphere and values of tv1 correspond to shapes

with an initial excess of area (as compared to a sphere).

In order to enforce local incompressibility a local isotropic

tension, in the form of a Lagrange multiplier, can be added to the

force density acting on the membrane [11–16]. The value of the

Lagrange multiplier can be calculated approximately by consid-

ering a nearly incompressible elastic membrane and calculating

the tension due to deformation, or by enforcing that the resulting

flow field has zero divergence on the surface of the membrane.

Either method neglects the effect of thermal fluctuations which is

generally justified due to the relatively high stresses the hydrody-

namics impose on the deforming vesicles.

Lipid membrane deformability influences the movement of

vesicles close to a surface [17]. For example, it was shown that

deflated vesicles under shear flow at a critical shear rate are lifted

from the surface by means of a force of viscous origin. After lifting

from the surface, the vesicles acquire the shape of prolate ellipsoids

as they move in the direction of the flow. A direct numerical

simulation (DNS) using a spectral boundary integral equation

method was used to quantitatively determine the lift force acting

on deflated vesicles near a wall [16]. It was demonstrated that lift

velocity strongly depends on the vesicle’s reduced volume and the

viscosity ratio.

Despite the fact that the dynamic behavior of vesicles under

external flow fields has been widely studied experimentally [18–

20], computationally [13,16,21], and theoretically [12,22], sedi-

mentation of lipid vesicles had received little attention. Recently,

Boedec and coworkers studied the sedimentation of vesicles using
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computational [15] and theoretical [23] methods. In both cases

the contribution of thermal fluctuations is neglected and sedimen-

tation is studied in an infinite space. Experimental observations of

pear-like shapes and microtether extrusion of sedimenting vesicles

have also been reported [24].

Buoyancy-driven motion of drops has been widely studied in the

fluid mechanics literature both experimentally and numerically.

For example, the buoyancy-driven interaction of viscous drops was

studied experimentally and numerically using the boundary

integral method [25]. The effect of surfactants on buoyancy-

driven motion and interaction of viscous deformable drops was

also studied using the boundary-integral method [26–29]. In all

these works, the computational method has proven to be precise

and in good agreement with both theoretical predictions and

experimental data.

In this work we focus on the gravity induced sedimentation and

deformation of initially quasi-spherical vesicles as they approach a

flat horizontal no-slip surface. For this purpose we develop a

computational algorithm based on the boundary integral method

[30]. Our algorithm is mostly based on the method described by

Zinchenko and coworkers [31,32] which was developed to study

the interaction of deformable drops. More recently a similar

algorithm has been used to study the dynamics of a vesicle in shear

flow [10] and in a wall-bound shear flow [16].

The assumption of membrane incompressibility is based on the

fact that direct area expansion is expensive from an energy point of

view. Studies carried out by micropipette aspiration have shown

that vesicles can undergo strain at low tensions. For example 1-

stearoyl-2-oleoyl-phosphatidylcholine (SOPC) vesicles have shown

strains of up to 0.06 for applied tensions of 0.5 mN/m [33], this

strain is accounted for by considering the smoothing of suboptical

thermal fluctuations of the membrane in the low tension regime

[34]. Therefore, even though changes in the lipid surface density

are not expected to be significant, small membrane strain is likely

as a result of smoothing of thermal undulations, which are

accessible under low tension conditions. In other words, the

thermal undulations act as an area reservoir which allows the

membrane to deform under moderate forces.

In our model, membrane mechanics are dictated by the

traditional Helfrich Hamiltonian [35] and we take into account

the smoothing of thermal undulations by relating area strain to

tension by the constitutive function proposed by Evans and

Rawicz [34]. This equation considers area strain to be caused by

the superposition of the smoothing of thermal undulations plus a

direct expansion of the area per molecule. The latter requires

much higher energy and is not available at low tensions, such as

those exerted by gravity in our experiments.

Many experiments with lipid vesicles are performed in glucose/

sucrose solutions on glass substrates, using fluorescent dyes to label

the membrane. These studies do not control for ionic conditions,

and usually ignore the influence of electrostatic interactions

between different components in their experimental setups. These

electrostatic interactions may affect the behavior of a suspended

vesicle, for instance in determining the sedimentation rate close to

the wall and the gap between the vesicle and the glass surface at

equilibrium. In our work electrostatic interaction between the

membrane and the planar surface are taken into account by using

the Derjaguin, Landay, Verwey, Overbeek (DLVO) theory of

colloidal stability [36–38], where the linear Derjaguin solution for

the Poisson-Boltzmann equation of the system was used to find the

interaction force between the vesicle and the substrate.

By using single plane imaging microscopy (SPIM) we study the

sedimentation dynamics of vesicles, this technique allows to follow

a vesicle as a function of time with a better time resolution than a

scanning technique such as confocal microscopy. We study the

shapes and the size of the gap between the vesicle and the surface

at equilibrium using confocal microscopy.

The objective of this work is to develop a robust computational

model, which is able to accurately predict the behavior of charged

vesicles sedimenting towards a charged flat surface. The model

should contain the basic physics in order to be able to predict

variables such as sedimentation rate as the vesicle approaches the

surface and the gap between the vesicle and the glass surface at

equilibrium.

Materials and Methods

Vesicle Preparation and Experimental Setup
1-Palmitoyl 2-oleoyl-phosphatidylcholine (POPC) was pur-

chased from Avanti Polar Lipids (Alabaster, AL). N-(7-nitrobenz-

2-oxa-1, 3 diazol-4-yl)-1, 2 dihexadecanoyl-sn-glycero-3-phos-

phoethanolamine, tiethylammonium salt (NBD-PE) was pur-

chased from Molecular Probes (Invitrogen, Copenhagen, Den-

mark). The sucrose and glucose as well as the calcein were

purchased from Sigma (Saint Louis, MS). All the aqueous solutions

were prepared in milliQ water.

Giant unilamellar vesicles were prepared via electroformation as

described in the literature [39]. First, platinum wire electrodes

inserted into Teflon wells are painted with POPC lipids dissolved

in chloroform at 2 mg/mL (2–4 mL) and labeled with 1 mol%

NBD-PE. The electrodes are then allowed to dry in vacuum

overnight. 1 mL of sucrose solution (1 Molar) is then added to the

wells and the electrodes are connected to an AC signal generator

producing a sinusoidal 2 V peak to peak signal at 10 Hz for

1.5 hrs. 100 mL of solution containing vesicles is taken from the

well, and the vesicles are then resuspended in 300 mL of a glucose

solution with the same osmolarity as the sucrose solution (1 Molar).

This sucrose-glucose system results in the precipitation of the

vesicles due to density differences between the glucose and sucrose

solutions.

The sedimentation of vesicles was studied through a homebuilt

SPIM (UMR5088 Universite Paul Sabatier, Toulouse III and

CNRS) [40]. First the glucose solution is placed into a quartz

cuvette, followed by careful injection of the sucrose solution

containing the vesicles. Once the sample is prepared, precipitating

vesicles are localized with a 20X objective in air and a series of

images are acquired through a CCD camera with a 15 seconds

interval between each image.

Confocal Microscopy and Image Analysis
Vesicles at equilibrium were studied using confocal microscopy

using an Olympus FV1000 (Tokio, Japan). Calcein was added to

the glucose solution at a 1 mM concentration in order to improve

contrast. The calcein provides the external solution with counter-

ions at an approximately 2 mM concentration.

In order to measure the deformation of the vesicles, the confocal

stacks were analyzed using an in-house algorithm by the following

method: in each image plane, a threshold was applied, and the

boundaries of the vesicle were detected using the function

cvFindContours of the OpenCV library [41,42]. The cvFitEllipse2

function from the same library was then used on the detected

contours to retrieve the dimensions and positions of the vesicles

found in the given plane. A KMean algorithm was applied on the

vesicle centers to track each vesicle from plane to plane throughout

the stack. After this automated detection, the contour of the vesicle

along the z axis is defined by its borders in each image plane. The

Nelder-Mead simplex algorithm [42] is then used to fit the z

contour of the vesicle with a function given by:

Sedimentation of Charged Lipid Vesicles
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r~ 1z sin2 h

2

� �a

1z cos2 h

2

� �b

ð1Þ

The center of the polar coordinates in the z axis corresponds to

the plane where the vesicle width is maximum. Best fit is obtained

by finding the best values of parameters a and b and minimizing

the least-square error. From this fit, area strain and curvature are

determined.

To measure the equilibrium distance we waited for 15 minutes

after putting the sample to start taking images of the vesicles. After

waiting for this period of time no significant movement of the

vesicles was observed. The whole experiment typically lasted for

an hour. We performed these experiments for unlabeled POPC

vesicles and for NBD-PE labeled POPC vesicles in solutions with

no added salt and in solutions with 3 mM NaCl concentration.

Fluid Mechanics Model
The system considered in this paper is a giant lipid vesicle

(diameter&20mm) immersed into a semi-infinite external fluid.

The vesicle is settling due to a gravitational force towards a no-slip,

infinite planar surface. A schematic of the system is shown in

Figure 1. Fluid 1, which is internal to the vesicle, and fluid 2, in

which the vesicle is suspended are both assumed to be Newtonian.

The fluids are separated by a phospholipid bilayer membrane

which introduces a jump in the stress field between both fluids.

Gravitational acceleration g is assumed to act along the z-axis,

normal to the planar surface. R0, is the radius of the quasi-

spherical undeformed vesicle. ri (i~1,2) is the density of each

fluid. The viscosities of fluids 1 and 2 are lm and m, respectively,

where l is the viscosity contrast between the internal and external

fluids.

All equations are presented in dimensionless form unless

otherwise noted. Distances are scaled using R0. The characteristic

time and traction are, respectively,

t0~
m(1zl)

DrgR0
, and f0~

kb

R3
0

ð2Þ

where Dr~r1{r2 and kb is the bending rigidity modulus of the

membrane.

The analysis presented in this work is based upon the creeping

motion approximation in which the inertial terms in the equation

of motion are neglected entirely for vanishing small Reynolds

numbers. In this limit the Stokes equations can be used to model

the flow of fluids 1 and 2. During sedimentation the membrane of

the vesicle is a moving interface, whose position is unknown a

priori. The fluid–structure interaction problem, the Stokes equa-

tions coupled to the membrane mechanics equations, can be

solved using the boundary integral formalism [31,43] which yields

in non-dimensional form.

uj~
2

g0

ð
s

DfiGijdSz2~kk

ð
s

uiTijknkdS ð3Þ

where u is the velocity at each node over the membrane,

~kk~(l{1)=(lz1) and g0~DrgR4
0=kb [44] is analogous to the

Bond number. Experiments performed on pure POPC mem-

branes have determined that kb ranges from 10 kBT to 40 kBT
[44,45] where kB is the Boltzmann constant and T is absolute

temperature. We have chosen the value of 40 kBT as the

characteristic value to scale the experimental data and as a

parameter in the computer simulations. The traction jump

Df:(s(1){s(2)):n̂n, where n̂n is the unit vector normal to the

surface, is determined from the configuration of the membrane.

This term will be further discussed in the following section.

The Green’s function kernels G and T for a wall bounded semi-

infinite space were derived by Blake [46] and can be viewed as the

fundamental solution to Stokes equations plus additional terms to

account for the presence of the planar wall.

Membrane Mechanics
The traction jump Df introduced in Eq. 3 must include all

external forces acting on the vesicle. For the problem under

consideration Df~DfmemzDfgravzDfelec, where the terms on the

right refer to the contribution of the membrane elasticity, the

gravitational pull and the electrostatic interactions, respectively.

Vesicle deformation at equilibrium results from the balance of all

these terms.

There has been extensive theoretical research on lipid

membrane deformation that involves the minimization of the free

energy functional first proposed by Helfrich [7]. In general, it has

been observed that the shape of a vesicle in suspension is limited

by its resistance to bending, which is governed by the bending

rigidity modulus of the membrane. The shape of the vesicle is

determined by minimization of the shape energy which may be

written as

HH~
kb

2

þ
(C1zC2)2dSzs

þ
dS, ð4Þ

where C1 and C2 are the principal curvatures of the membrane.

Both integrals are over the surface area of the membrane. The last

term in Eq. 4 takes into account the constraint of constant area

[35].

It is customary to assume membrane incompressibility based on

the high energy cost of surface area dilation of the lipid membrane

as compared to other modes of deformation. Most authors rely on

approximations based on the calculation of membrane tensions

that are proportional to membrane strain [10,14] which limit

deformability of the membrane. Incompressibility can be imposed

exactly by explicitly calculating the tension corresponding to the

Lagrange multiplier by enforcing a divergence free velocity field

on the membrane surface. This has been done for vesicles

undergoing small deformations [23,47,48] and for vesicles in a

wall-bound shear flow [16]. An algorithm for the simulation of

three dimensional vesicle dynamics was developed by Boedec and

coworkers [15].

Micropipette aspiration experiments have shown that vesicle

strain can occur at low tensions [34]. It has been hypothesized that

this strain in the low-tension regime results from the smoothing of

thermal membrane fluctuations occurring in the suboptical range,

which act as an area reservoir. Area dilation as a function of

tension is thus given by [34]

a~
kBT

8pkb

ln 1zcSAð Þz S

Kext

: ð5Þ

where c is a coefficient that depends on the topology of the vesicle,

S~sR2
0=kb is the effective reduced tension [44] and

Kext~KAR2
0=kb is the dimensionless membrane’s modulus for

direct area expansion. The variable A is the dimensionless surface

area of the membrane. Given the relatively large values of the

membrane dilation modulus KA compared to kb, Kext is a large

number of order 108.

Sedimentation of Charged Lipid Vesicles
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At low tensions, stretching of the membrane is ruled by the

thermal energy (logarithmic term in Eq. 5) which is characterized

by the bending coefficient, while at high tensions membrane strain

involves surface dilation and is dominated by Kext (linear term in

Eq. 5). While membrane strain due to direct surface dilation is

difficult to achieve under normal flow conditions due to the

relatively high magnitude of Kext, smoothing of thermal undula-

tions are easily accessible at the low tensions that arise during

gravity induced sedimentation.

In the present work we use Eq. 5 to calculate the tension on the

membrane for a given area strain. Although we are modeling a

dynamic process, the sedimentation is slow and will be regarded as

a quasi-equilibrium process for which a uniform membrane

tension can be assumed. We have performed simulations which

have included the calculation of local tensions to enforce local

incompressibility and have found the tangential stresses due to

tension gradients to be at least two orders of magnitude smaller

than the other forces acting on the membrane at any given time

for the conditions being considered.

The contribution of the membrane elasticity to the force density

can be obtained through the functional derivative of Eq. 4 as given

by [35]. In non-dimensional form the Helfrich force can be

expressed as

Dfmem~{ 4H3z2+2
s H{4KGH

� �
z2SH

� �
n̂n: ð6Þ

Here, H~(C1zC2)=2 is the mean curvature, KG~C1C2 is the

Gaussian curvature and +2
s is the Laplace-Beltrami operator over

the surface of the membrane. Since the contribution of the

curvature term to the total energy will depend on the bending

modulus, membrane deformation will depend on factors that

influence this parameter such as lipid composition [45].

The gravitational pull is incorporated into the calculations

through [30]

Dfgrav~{g0z, ð7Þ

where z is the vertical position of each differential element of the

membrane with respect to a reference plane, in this case the glass

surface, which has been made dimensionless by scaling with

respect to R0.

The calculation of the electrostatic contribution Dfelec is

explained in the following section.

Electrostatic Interactions
Experiments performed in the absence of salt result in long

screening lengths. For this reason the electrostatic interaction of

the vesicle with the surface will play an important role in

determining the sedimentation dynamics of the vesicle and the

equilibrium state. Microscope glass slides were used as substrates

in the experiments. The glass, unless treated using methods such as

silanization [49], will present a surface charge, where the main

mechanism by which the glass surface acquires charge while in

contact with water is by dissociation of the silanol groups [50]. The

glass surface charge density is negative and has a value around

sglass~{0:2 mC/m2 for glass in water at pH 7.5 [51,52].

Vesicles are labeled with 1 mol% NBD-PE fluorescent probe,

which has a negative charge and gives the membrane a negative

surface charge density [53]. Hence, the electrostatic interaction

Figure 1. Schematic of vesicle subjected to gravity induced sedimentation. Sedimentation is driven by the density difference Dr~r1{r2 .
doi:10.1371/journal.pone.0068309.g001
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between the vesicle and the glass will be repulsive. We can obtain

an expression for the interaction force between the membrane and

the glass surface from the linearized Poisson-Boltzmann (P-B)

equation [36,37]

+2Y~k2Y: ð8Þ

Y is the electric potential and k{1 is the Debye length:

k~
2e2C

ewkBT

� �1
2

, ð9Þ

where e is the fundamental charge, C is the ion concentration and

ew is the dielectric constant of water. Equation 8 is valid for

potentials less than 40 mV (about twice the thermal potential,

kbT=e) [37]. In our first set of experiments no salts are added to

the solutions, resulting in a Debye length of about 300 nm due to

the presence of hydroniums and residual salts. When calcein is

added to the solution the Debye length is lowered to 214 nm.The

interaction between the vesicle and the glass surface can be

modeled using the linear Derjaguin approximation which

expresses that the interaction force between a small plane segment

of the membrane and the plane surface of the glass is given by [36]

f (h)~
ew

8p

k2YvesYglass

cosh(kh=2)
ð10Þ

where h is the distance between the two surfaces and the

potentials, for the glass and the vesicle are given, respectively, by:

Yglass~
sglass

ewk
ð11Þ

and

Yves~
svesR0

(1zkR0)ew

: ð12Þ

The surface charge density of the vesicle can be estimated to be

around sves*{2:9 mC/m2 and its size ranges from 1 mm to 50

mm in radius. Thus, the potential generated by the vesicle is high

enough that the linearized P-B Eq. 8 cannot accurately model its

behavior. However, for distances greater than the Debye length

the behavior of the solutions of the linear and non-linear forms are

very similar, provided the surface potential, Yves, is replaced by a

renormalized surface potential given by [54,55]

Y�ves~
4kBT

e
: ð13Þ

which is independent of sves and has a value of around 100 mV in

our experimental setup. Substituting Eq. 13 into 10 for the vesicle

potential, the expression to calculate the electrostatic repulsion

becomes

f (h)~
kBT

2pe

Yglassk
2ew

cosh(kh=2)
ð14Þ

Combining Eqs. 11 and 14 and expressing in terms of non-

dimensional parameters, the contribution of the electrostatic

interaction yields:

Dfelec~
yie

cosh(kie
~hh=2)

ẑz ð15Þ

Where we have introduced the dimensionless parameters

kie~R0k and

yie~
R2

0kiesglasskBT

2pekb

ð16Þ

Note that in Eq. 15 the distance ~hh~h=R0 is expressed in

dimensionless form dividing the distance by the characteristic

length R0.

A total of six dimensionless parameters have been introduced,

two from the fluid dynamics model, ~kk and g0, two from the

electrostatic model, kie and yie, and two from the membrane

mechanics model, Kext and the reduced effective tension S. The

latter depends on the instantaneous configuration of the

membrane and is recalculated at each time step.

When both the external and internal fluids have the same

viscosity, ~kk~0 which simplifies Eq. 3 by canceling the second

integral in the right hand side. Given that we found a very small

difference between the viscosities of the sucrose and glucose

solutions, we used this simplifying assumption in the solution of the

model.

The remaining four dimensionless parameters are calculated in

order to match the experimental conditions. The radius R0 of the

vesicle together with all other physical parameters determine the

values of kie, yie, Kext and g0. A range of vesicle radii was chosen

to match experimental condition.

Numerical Method
The general boundary integral method has been widely used to

model the dynamic behavior of drops, capsules, vesicles and cells

suspended in general flows. We refer to [31,43,56] for the general

description of the method. However, in the following paragraphs

we discuss particular considerations for the simulation of gravity-

induced sedimentation.

To obtain the computational domain we use the method of

uniform triangulation to discretize the initially spherical mem-

brane into a uniform triangulated mesh. As it has been described

by other authors [31] we begin with a regular icosahedron

inscribed into the sphere. Each face of the icosahedron is divided

into four smaller triangles by dividing each edge at its midpoint,

the new vertices are projected radially onto the sphere and the

process is applied recursively as many times as necessary to obtain

the desired refinement. In the current work we do three

refinements to obtain 642 vertices and 1280 triangular elements.

An example of the computational mesh is shown in Fig. 2.

Integration of the right hand side terms in Eq. 3 are

approximated by a simple surface trapezoidal rule that requires

the integrands only at the triangle vertices [31]. This rule can be

written, for any function g(x), in the following form, by reassigning

the contribution of each triangular element to the vertex:

ð
g(x)&

X
i

g(x)DSi, ð17Þ

Sedimentation of Charged Lipid Vesicles
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DSi~
1

3

X
S, ð18Þ

where the summation in (18) is over all flat triangular areas DS

with vertex xi.

One of the greatest challenges in the numerical algorithm is the

calculation of the curvatures and the Laplace-Beltrami operator in

Eq. 6 over the discrete triangulated surface. A common algorithm

used to calculate the mean and Gaussian curvature is to fit via

least-squares a quadratic surface to each node and its neighbors

and calculate the curvature from this function. From our tests we

have determined that this method introduces sufficient error in the

calculation of the curvature to be problematic during the

calculation of the Laplace-Beltrami operator. For this reason we

have decided to use the discrete differential-geometry operators as

presented in [57].

The mean curvature estimate is derived from a discretization of

the Laplace-Beltrami operator applied to the 1-ring neighborhood.

Given a patch of triangles surrounding point xi as shown in Fig. 3,

the estimates for the Gaussian curvature, Ki and mean curvature

Hi, at xi, given by Meyer et al. [57] are:

Ki~
1

AVoronoi

2p{
X

j

hj

 !
ð19Þ

2Hin̂ni~
1

AVoronoi

X
i

cotaijzcotbij

� �
xi{xj

� �
ð20Þ

where xj , hj , aij and bij are shown in the figure. The area AVoronoi

corresponds to the ‘‘Voronoi area’’, defined in each triangle by the

point xi, the midpoints of the triangle edges, and the circumcenter

of the triangle, summed over all the triangles. Meyer et al.

demonstrated that the error in the computation of the curvature is

minimized by using this area, as opposed to other alternatives. The

Voronoi area can be calculated by:

AVoronoi~
1

8

X
j

cotaijzcotbij

� �
Exi{xjE2 ð21Þ

Finally the Laplace-Beltrami operator of the mean curvature H
can be estimated as [57]

+2
s H~

1

AVoronoi

X
j[N1(i)

cotaijzcotbij

� �
Hj{Hi

� �
ð22Þ

A similar method was recently used by Boedec and coworkers

[15] for the calculation of the curvatures and Laplace-Beltrami

operator.

The numerical algorithm advances in a relatively simple fashion

and can be described as follows: from the shape of the vesicle the

traction Df on the membrane is computed, the boundary-integral

Eq. 3 can then be solved for the velocity at the nodes, finally nodes

are advected via integration in time using a second order Runge-

Kutta method. The algorithm continues until an equilibrium state

is achieved.

An important difficulty in the boundary-integral calculations is

efficient mesh control. Namely, if the nodes are simply advected

with the flow, an initially regular mesh of triangles covering the

surface becomes highly irregular after a short simulation time, thus

invalidating the calculation. Mesh degeneration is especially

problematic in gravity-induced motion given the large displace-

ments of the vesicles. A mesh stabilization method can be

developed by, instead of advecting the membrane nodes with

the interfacial velocity u from Eq. 3, using the normal velocity

(u:n̂n)n̂n plus an artificial tangential velocity field which can be

constructed to maintain certain uniformity of the mesh. In the

Figure 2. Example of the mesh used in the initial configuration.
The mesh is constructed by refining the triangular faces of an
icosahedron inscribed into a sphere by dividing recursively each
triangle into four smaller triangles and projecting the resulting nodes to
the surface of the sphere. The mesh used in the current work is the
result of four refinements in order to obtain a total of 642 nodes and
1280 triangular elements.
doi:10.1371/journal.pone.0068309.g002

Figure 3. 1-ring neighborhood of vertex indicating the sub-
area used for computation using the method of Meyer et al.
doi:10.1371/journal.pone.0068309.g003
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current work we construct the tangential velocity field using the

passive mesh stabilization algorithm first introduced by Zinchenko

and coworkers [31]. The algorithm is based on the global

minimization of the rate of change of the distances between

neighboring nodes. To achieve this one must solve an optimization

problem over the whole surface of the membrane. We found that

by using such algorithm long simulations of gravity-induced

sedimentation of vesicles were possible with reasonable time steps.

Results and Discussion

In this section the results from the computer simulations are

presented and compared to the experimental data. First, the

sedimentation dynamics are studied, then the equilibrium state of

the vesicle is analyzed.

Sedimentation of Vesicles Towards a Flat Surface
The sedimentation of vesicles in isotonic conditions was studied

using SPIM. The sedimentation process is driven by the density

difference between the sucrose and glucose solutions (&35 kg/

m3). The best six image series were analyzed. The criterion for this

selection was to ensure that the vesicle did not present significant

lateral displacement during sedimentation. Fig. 4 shows sample

images from one of the series that were analyzed. The

sedimentation rate from the images is calculated by a simple two

point backwards finite difference scheme for the position of the

centroid between successive images. All experimental results have

a time lapse between images of 15 seconds.

Due to the optical configuration of the SPIM, an interference

pattern results in an image artifact where some regions of the

membrane appear to be brighter. This could be interpreted as

these regions having a higher concentration of fluorescente probe.

Nevertheless, given the preparation technique and the experi-

mental configuration we do not expect this to be the case. We

consider the assumption of uniformly distributed probe to be more

accurate.

The figure also shows the sedimentation sequence as predicted

by our computer simulations under similar conditions. Computa-

tionally, we calculate the sedimentation rate with a method similar

to the one used experimentally, but the time between data points is

much smaller. The simulations are initialized with the vesicle at a

certain distance from the surface (between 6–8 radii). The position

of the centroid of the vesicle is calculated at each time step and the

sedimentation rate is calculated.

Sedimentation rates calculated experimentally and computa-

tionally are shown in Fig. 5. In the figure the distance to the

surface is set to non-dimensional units by dividing by R0 and

velocity is also given in non-dimensional form. Far away from the

surface, the simulations match the experimental results accurately.

The sedimentation velocity decreases as the vesicle approaches the

flat surface and the rate of change is well predicted by the

simulations. At distances larger than 0:2 the electrostatic

interactions are negligible and the whole process is dominated

by the hydrodynamics.

As the vesicle approaches the wall, it decelerates. For uncharged

vesicles (dark solid line in the figure) the velocity decreases

exponentially approaching zero. This behavior is a result of the

slow draining of the fluid that separates the vesicle and the surface,

which corresponds to a lubrication regime [29]. When the

electrostatic interaction is taken into account (light solid line in

the figure) the sedimentation velocity decreases rapidly to zero

further away from the surface avoiding this regime entirely. Close

to the wall the electrostatic interactions become increasingly

important causing a rapid deceleration, as the gravity-induced

force is balanced by the electrostatic interactions.

Closer to the surface there appears to be a larger discrepancy

between the experimental and computational results. Experimen-

tal data lies between the simulations with and without electrostatic

interactions. We attribute this to the method used in determining

the distance between the vesicle and the surface in the SPIM

experiments, in which the gap between the vesicle and the surface

is determined by calculating the distance between the centroids of

the vesicle and its reflection (see Fig. 4) divided by two, minus the

radius of the vesicle. This method does not take into account the

deformation of the lower part of the vesicle, which induces an

underestimation of the size of the gap at equilibrium.

One could also look for an explanation to this discrepancy in the

assumptions made when developing our model. The most

important simplification affecting the sedimentation rate is the

assumption of having a uniform tension on the membrane. Given

the symmetry of the problem, during the sedimentation process

the membrane will become immobile and flow inside of the vesicle

will be restricted. With a uniform tension, the membrane is mobile

and there is the possibility of flow inside of the vesicle, as it

happens in sedimenting droplets. This phenomenon will directly

affect sedimentation rate. We have performed simulations, and

compared the velocity of particles with mobile and immobilized

interfaces under the same conditions and have found differences of

less than 0.1 percent under these conditions. This difference is well

below our experimental uncertainty. Also, this effect would be

more important far away from the wall where the sedimentation

rate is higher, opposite to our observations. Finally, in the

following section we show that our model accurately predicts the

equilibrium position of the vesicle as measured by the more precise

confocal microscopy.

Once the forces acting on the vesicle balance out, the vesicle

reaches equilibrium and the sedimentation rate approaches zero.

At this point the vesicle acquires a shape determined by the

equilibrium of the electrostatic and gravitational forces with the

membrane resistance to deform.

Gap between the Vesicle and the Glass Surface at
Equilibrium

The gap between the vesicle and the surface at equilibrium was

further studied using confocal microscopy images. Confocal

images and the corresponding frame from the computer simula-

tion for similar conditions are shown in Fig. 6. The small gap

between the vesicle and the surface is seen for both the confocal

image and the computer simulation.

The gap at equilibrium measured experimentally and in the

computer simulations are shown in Fig. 7 as a function of g0. The

Debye length for NBD-PE labeled vesicles was calculated to be

214 nm when the ionic concentration of the calcein is accounted

for. Computed simulations using that value for the Debye length

show good agreement with the experimental results. The confocal

microscopy combined with our image analysis algorithm provides

a more accurate way of measuring the gap than the SPIM images.

The distance to the surface decreases as g0 increases due to the

increase in the effective weight of the membrane as compared to

the electrostatic force.

Experimentally, the addition of a small amount of salt results in

the screening of the electrostatic forces and a decrease of the

Debye length. By adding 3 mM of NaCl the Debye length is

decreased to 5.5 nm. This condition can be used as a control, to

verify that our observations are due to the electrostatic interac-

tions. The experimental data and computer simulations under

these conditions are also shown in Fig. 7. Overall, under these
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conditions, we observe a decrease of the equilibrium distance

between the vesicle and the surface. The computer simulations

predict a smaller gap distance than those measured experimen-

tally, especially for smaller vesicles. Before commenting on the

possible explanations for this behavior we note in passing that for

larger vesicles the gap distance seems to converge for both Debye

lengths being considered. This indicates that for heavier vesicles,

which can reach closer to the wall, sedimentation is limited by the

viscous draining of the fluid between the vesicle and the wall rather

than the electrostatic interactions.

The gap size is determined through image analysis using a

custom ImageJ [58] algorithm. The process consists in plotting the

intensity profile along a line that crosses the water gap between the

vesicle and the glass surface. From the plot, the gap size is defined

as the distance between points with an intensity corresponding to

70 percent of the highest measured value. Several distances

measured for the same vesicle (between 3 and 5) are then

averaged. The error bars shown in figures 7 and 8 are obtained

from a combination of the deviation from the mean of the

measured values with a confidence interval of 95%, together with

the bias error due to the resolution of the microscope configuration

used (around 0.29 microns).

Our scaling normalizes the weight of all vesicles. It can be

observed in Fig. 5 that sedimentation rate is independent of the

size of the vesicle in non-dimensional terms. Physically, sedimen-

tation rate does depend on the size of the vesicle, as heavier

vesicles sediment faster. From the characteristic length R0 and the

characteristic time defined in Eq. 2 it can be seen that physical

velocity varies with R2
0. That is, vesicles with radius of order one

are sedimenting a hundred times slower that those of radius 10!

Due to the stability of the vesicles, experiments are limited to one

hour. With this in mind, a better explanation to the observed

behavior is that smaller vesicles have not yet reached equilibrium

Figure 4. Image sequence for the sedimentation of a vesicle. The time interval between images is 15 s. A. Images obtained through SPIM for
g0~3. B. Images from computer simulation depicting sedimentation of a vesicle under similar conditions.
doi:10.1371/journal.pone.0068309.g004

Figure 5. Sedimentation rate as a function of the distance to
the surface. Experimental data (symbols) and computer simulations
(lines) are shown. The light solid line corresponds to a simulation which
incorporates the electrostatic interaction between the vesicle and the
surface, the dark solid line corresponds to a simulation which does not
take into account this interaction.
doi:10.1371/journal.pone.0068309.g005
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and are sedimenting very slowly when the measurement is

performed. Computationally, we are allowing the vesicles to reach

equilibrium defined as the state when displacements are below the

numerical resolution of our algorithm, thus the measured gap is

smaller.

Overall, the computational model is able to predict in an

accurate fashion the size of the gap at equilibrium for a wide

variety of conditions. The agreement in the results also indicates

an appropriate selection of the values of some important

parameters that were not measured in our experiments but relied

on calculated values and theoretical predictions, such as the glass

surface charge density and the counterions concentration in the

solutions.

So far we have presented results corresponding to charged

vesicles labeled with NBD-PE in solution. We have considered

solutions with no added salt where electrostatic interactions are

important (relatively large Debye length) and with salt added to

screen the effect of electrostatic interactions. The addition of a

small amount of salt (3 mM) generates a slightly hypertonic

condition which causes the vesicle to deflate. In order to

investigate the effect of this on the measured gap we perform

additional experiments with unlabeled vesicles (no charge). The

gap distance for charged vesicles in a solution with added salt

compared to unlabeled vesicles is shown in Fig. 8. It can be seen

that there is no difference in the behavior of both groups and that

the same behavior discussed above is observed in unlabeled

vesicles. In the following section we investigate the deformation of

both charged and uncharged vesicles.

The thorough understanding of the role played by the

electrostatic interactions on the sedimentation process, as well as

on determining its position at equilibrium might be important in

understanding the formation and stability of certain colloidal

systems. The results presented in this section will play an

important role in this understanding.

Vesicle Deformation at Equilibrium
When the vesicle reaches equilibrium, the sedimentation

process stops and the vesicle adopts an equilibrium shape

determined by the balance of the forces acting on it. The shape

of the vesicle at equilibrium was studied through confocal

microscopy and image analysis as explained in the Materials and

Methods section. The analysis was applied to images similar to

that shown in Fig. 6 (A). Contrast was improved by staining the

glucose solution with low concentrations of calcein (1 mM). At

these low concentrations, it should not influence the osmotic

conditions of the solution.

Figure 6. Images of vesicles at equilibrium A. and C. show confocal images of giant unillamellar vesicle at equilibrium for solutions
with 3 mM of NaCl and no salt, respectively. Staining the outer solution with calcein (1.0 mM) allows to visualize the gap between the vesicle
and the glass surface. B. and D. show computer simulation of a vesicle at equilibrium under similar conditions as in A. and C., respectively.
doi:10.1371/journal.pone.0068309.g006
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It has been shown [34] that membrane deformation is caused by

the superposition of two modes: smoothing of thermal undulations

and direct stretching of the membrane. At low external forces,

such as those in the present experiments, it is expected that strain

be due to the former mode only. Tension on the membrane at

equilibrium is proportional to the value of g0. By plotting the area

strain as a function of g0 in a semi-log plot (Fig. 9) it is evident that

the logarithmic term in Eq. 5 is the dominating term in defining

the shape of the membrane at equilibrium as expected.

In Fig. 6 experimental images of deformed vesicles at

equilibrium were shown together with the computational predic-

tion at similar conditions. It is interesting to note that those

relatively large deformations are achieve with very small area

strains (less than 0.01 in all cases), which can be explained due to

the smoothing of thermal undulations [33]. Hence, it becomes

apparent that considerations of thermal undulations is important

in the study of vesicle sedimentation.

The tension–strain relationship (Eq. 5) suggests that strain at a

certain tension depends on the membrane bending rigidity. It has

been suggested previously [59–61] that electrostatic interactions

between neighboring NBD-PE molecules should provide a

contribution to the bending rigidity. In order to verify this

observation we compare the strain of charged and uncharged

vesicles.

As mentioned above, salt produces a slightly hypertonic

condition which causes the vesicle to deflate, this will certainly

affect the deformability of the particles. For this reason in the

following we report the deformation of both labeled and unlabeled

vesicles suspended in the same solution with no salt added. In the

previous section it was shown that not labeling the vesicles had the

same effect on the measured gap as adding a small amount of salt

to screen the electrostatic interactions.

Fig. 9 shows the measured area strain for both NBD-PE labeled

and unlabeled vesicles. The simulation results for vesicles with a

bending rigidity modulus kb~40kBT is also shown in the figure.

For the majority of the unlabeled vesicles the measured strain is in

line with the prediction of the computational model. For a smaller

fraction of the data points, mostly lighter vesicles, a much smaller

strain is measured. All data points correspond to the same sample,

hence tonicity effects should be ruled out. The most probable

cause for this observation is, as explained above, that this vesicles

have not yet reached an equilibrium state and have not yet fully

deform to balance the gravitational force.

Figure 7. Equilibrium distance to the surface. Gap at equilibrium
as a function of g0 obtained from simulations (dashed lines) and
experimental data (symbols) for two different Debye lengths (k{1). In
the simulations k{1 is an input parameter, experimentally it depends
on the ionic concentration which can be changed by the addition of
salt.
doi:10.1371/journal.pone.0068309.g007

Figure 8. Comparison between the effect of significantly screening the electrostatic interaction and absence of charge on the
membrane. Open circles represent experimental data for the equilibrium distance between the vesicle and the surface for non-charged vesicles,
while filled triangles show the distance to the surface at which charged vesicles reach equilibrium when 3 mM of salt is added.
doi:10.1371/journal.pone.0068309.g008
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Charged vesicles undergo a smaller strain at equilibrium. Solid

triangular data points in Figs. 7 and 9 correspond to the same

vesicles. Based on the comparison between the experimental data

and the computer simulations, we consider that these vesicles have

reached equilibrium, and electrostatic forces are balanced with the

gravitational force. These results suggest that the presence of

charged fluorescent probes does have the effect of increasing the

bending rigidity as has been reported previously [59].

Measurement of the mechanical properties of vesicles represents

one of the possibilities presented by the current computational

model. By comparing good experimental data with the computer

simulations, one might be able to determine the mechanical

properties of membranes which could complement techniques

such as micropipette aspiration.

Conclusions
We have reported the implementation of a computational

algorithm for the simulation of lipid vesicles in suspension.

Experiments using SPIM and confocal microscopy were per-

formed to verify the performance of the algorithm. The algorithm

is used to simulate the sedimentation of vesicles due to gravity,

taking into consideration the electrostatic interactions between the

membrane and a glass surface towards which it is sedimenting. We

have shown that our simulations are able to predict, with

reasonable accuracy, the rate at which the vesicles sediment and

the velocity variations as the vesicle approach the glass surface.

The algorithm also predicts the equilibrium gap between the

vesicle and the surface at equilibrium. It was shown that the

consideration of the electrostatic contribution to surface interac-

tions is essential in order to accurately predict the sedimentation

rate, especially at close range from the surface, and the fluid gap

between the vesicle and the surface at equilibrium.

We have shown that by modeling the mechanical behavior of

the membrane with Eq. 5, which superposes the deformation due

to the smoothing of thermal undulations and direct membrane

stretch, area strains are reasonably small and in line with those

observed experimentally. The model used in our simulations also

takes into account the intrinsic mechanical properties of the

membrane through the membrane bending modulus, which can

be modulated in cells through membrane composition. For

example, by adding 30% cholesterol the bending rigidity of the

membrane can be doubled [62]. It is also suggested that charged

fluorescent probes on the membrane have the effect of increasing

its bending rigidity.

Our vesicle model has considered the basic physical contribu-

tions: Stokes flow, bending rigidity, membrane deformation

through smoothing of thermal undulations but limited by the

high energy cost of direct membrane deformation and electrostatic

interactions between the vesicle and the glass surface. In its current

form the algorithm can be used to study the effect that the different

physical parameters discussed have on the sedimentation rate,

distance to the surface at equilibrium and membrane strain. It can

also be extended in order to study important phenomena such as

colloidal stability, and biofilm formation.

Finally, regarding future work, we consider our current model

to be robust and accurate enough to allow us to investigate the roll

that the physics described and studied in the current paper play in

the slow motion of a suspended vesicle. Nevertheless, the dynamics

and motion of vesicles under shear or general flow pose increasing

challenges as the calculation of local tensions becomes mandatory.

The method proposed by Boedec et al. is a very good starting

point, but the inclusion of viscosity contrasts different than one and

other physics, such as those investigated in the current paper,

could prove challenging and to the best of our knowledge remain

unsolved.

Figure 9. Membrane strain at equilibrium measured from experiments and simulations as a function of g0. Open circles and filled
triangles show the measured strain for non-charged and charged vesicles, respectively. Computer simulation results are shows as filled squares and
dashed line. The presence of charge in the membrane appears to stiffen the membrane resulting on smaller measured strains.
doi:10.1371/journal.pone.0068309.g009
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