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Abstract

Motivation: Analysis of gene set (GS) enrichment is an essential part of functional omics studies.

Here, we complement the established evaluation metrics of GS enrichment algorithms with a novel

approach to assess the practical reproducibility of scientific results obtained from GS enrichment

tests when applied to related data from different studies.

Results: We evaluated eight established and one novel algorithm for reproducibility, sensitivity,

prioritization, false positive rate and computational time. In addition to eight established algo-

rithms, we also included Coincident Extreme Ranks in Numerical Observations (CERNO), a flexible

and fast algorithm based on modified Fisher P-value integration. Using real-world datasets, we

demonstrate that CERNO is robust to ranking metrics, as well as sample and GS size. CERNO had

the highest reproducibility while remaining sensitive, specific and fast. In the overall ranking

Pathway Analysis with Down-weighting of Overlapping Genes, CERNO and over-representation

analysis performed best, while CERNO and GeneSetTest scored high in terms of reproducibility.

Availability and implementation: tmod package implementing the CERNO algorithm is available

from CRAN (cran.r-project.org/web/packages/tmod/index.html) and an online implementation can

be found at http://tmod.online/. The datasets analyzed in this study are widely available in the

KEGGdzPathwaysGEO, KEGGandMetacoreDzPathwaysGEO R package and GEO repository.

Contact: january.weiner@mpiib-berlin.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most common applications of transcriptomic analyses is

the detection of differentially expressed genes (DEGs) that allows

characterizing transcriptomic profiles of investigated conditions.

However, the number of true discoveries depends on the power of

conducted studies. In extreme cases, e.g. when the experiment is

underpowered, no DEGs can be observed despite the existence of a

true effect. However, a large number of DEGs can hinder a

meaningful interpretation. Thus, instead of analyzing single genes, it

is often better to investigate co-expression and synergistic reactions

on the level of gene sets (GSs) (Mootha et al., 2003). Several collec-

tions of GSs and molecular interactions are established, including

the knowledge-based Gene Ontology (GO; Consortium, 2012),

Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al.,

2016), Molecular Signatures Database (Subramanian et al., 2005)

or REACTOME (Croft et al., 2014) as well as collection of GS
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related to particular stimulations, e.g. immune system stimulation

by vaccination or a disease (Chaussabel et al., 2008; Godec et al.,

2016; Li et al., 2014).

To transform information from expression of individual genes to

the level of a collection of GS, enrichment methods were introduced.

The first generation of enrichment methods is known as Over-

representation Analysis (ORA; Tavazoie et al., 1999). The main

concept of ORA methods is to divide the genes into DEGs and back-

ground, as well as into genes which are members of a particular GS

(or not) and test the contingency table between these two divisions

using an appropriate statistical test (such as hypergeometric, v2 or

Fisher’s exact test). The GSs are tested consecutively, and the result-

ing P-values are corrected for multiple testing. The first generation

methods have two serious drawbacks. First, only binary information

about statistically different expression between conditions is used.

Genes are divided into DEGs and background by setting arbitrary

log-fold change or P-value thresholds. However, the number of

genes over the threshold will strongly depend on sample size.

Second, the assumption of independence in the statistical tests

applied is not fulfilled in most of the cases (Efron and Tibshirani,

2007; Goeman et al., 2004; Tamayo et al., 2016).

The second generation of enrichment methods is the Functional

Class Sorting (FCS; Mootha et al., 2003) techniques. FCS techniques

use information about all analyzed genes in the form of a gene list

sorted according to certain metrics. Moreover, some methods

incorporate the information about the effect size of the difference in

gene expression between the groups (e.g. in form of a ranking value

or test statistic such as the t statistic from a t-test) into the informa-

tion transformation process from gene to pathway level. As in ORA,

each GS is analyzed independently. Several FCS methods have been

proposed, including Gene Set Enrichment Analysis (GSEA)

(Subramanian et al., 2005), Pathway Level Analysis of Gene

Expression (PLAGE) (Tomfohr et al., 2005), Pathway Analysis with

Down-weighting of Overlapping Genes (PADOG) (Tarca et al.,

2012), LEGO (Dong et al., 2016), singscore (Foroutan et al., 2018)

and hybrid approaches like EGSEA (Alhamdoosh et al., 2017). A

brief description of second generation GS enrichment algorithms

used in this study is found in ‘Materials and methods’.

Finally, Pathway Topology (PT)-based approaches

(Rahnenführer et al., 2004) comprise the third generation of enrich-

ment methods. PT-based approaches are similar to FCS, but they

incorporate the PT to compute gene-level statistics. This group

includes methods such as NetGSEA (Shojaie and Michailidis, 2010),

CePa (Gu et al., 2012) or hybrid approaches SPIA (Tarca et al.,

2009), EnrichmentBrowser (Geistlinger et al., 2016). While third

generation methods capture the complexity of molecular biology in

a convenient way, they still suffer from major drawbacks. First, PT

depends on cell type, cell cycle phase or specific environmental con-

ditions, an information that is rarely available (Khatri et al., 2012).

Second, they are not applicable to many nonstandard applications,

making the third generation methods highly specialized tools avail-

able only for transcriptomic analyses in the most common model

organisms and humans. Third, they require computational capaci-

ties similar to FCS permutation methods or higher, which in terms

of large studies could require a computational cluster. Moreover,

the knowledge about molecular biology networks evolves rapidly

outdating the analyses performed using PT. Finally, a substantial

variation of results obtained using PT algorithms has

been demonstrated (Ihnatova et al., 2018). Other classifications of

enrichment methods exist (Goeman and Bühlmann, 2007; Huang

et al., 2009; Maciejewski, 2014).

Given the limitations of third generation algorithms, both first

and second generation methods are still widely used and no gold-

standard approach has been established yet. A recent comparison

(Tarca et al., 2013) showed that PLAGE (Tomfohr et al., 2005),

GLOBALTEST (Goeman et al., 2004) and PADOG (Tarca et al.,

2012) are all characterized by good overall sensitivity and relative

position of true positives in results. Nevertheless, in that study the

specificity of the algorithms was calculated only for methods classi-

fied as second generation and by using a permutation applied to

genes rather than samples. However, it has been shown before that

permutation of genes is problematic and results in an apparent

low performance of the algorithms due to breaking original gene

correlations (Maciejewski, 2014). Moreover, substantial variation

in specificity is known to exist (Dong et al., 2016). Other studies

were limited to empirical evaluation of only a few algorithms

(Abatangelo, 2009; Powers et al., 2018).

In the course of our own work in various applications of systems

biology, we have used several of these methods, and found (without

using a systematic approach) that one of the major issues is to obtain

high sensitivity and reproducibility of the findings produced by dif-

ferent methods in a dataset or by the same method in different data-

sets. Searching for a robust approach we and others (Domaszewska

et al., 2017; El-Chemaly et al., 2018; Kunnath-Velayudhan et al.,

2010; Loxton et al., 2016; Ritchie et al., 2018; Santoro et al., 2018;

Toro-Domı́nguez et al., 2018; Van Den Berg et al., 2018; Weiner

et al., 2018) have successfully applied a statistical approach called

Coincident Extreme Ranks in Numerical Observations (CERNO;

Yamaguchi et al., 2008), which is based on a modified Fisher’s com-

bined probability test. CERNO has several advantages; notably, as

it uses as input an ordered gene list, any metric can be used to sort

the features, resulting in impressive flexibility. CERNO, thus can be

combined with diverse approaches including data integration and

multidimensional scaling techniques. It produces a well-described

statistic (v2) and therefore does not require a randomization ap-

proach like GSEA (Subramanian et al., 2005), making its implemen-

tation fast and powerful even for small sample sizes. A limited

comparison with GSEA showed its superiority for small sample sizes

and a remarkable robustness (Weiner and Domaszewska, 2016).

Despite the apparent flexibility and robustness, it has never been sys-

tematically compared to other approaches. Moreover, the assump-

tion of independence of P-values which is underlying Fisher’s

method is not fulfilled. Thus, one of the goals of our work was to

test the false discovery rate for the CERNO algorithm.

Our main concern in comparing GS enrichment algorithms was

the reproducibility of results obtained in different studies. The issue

of scientific reproducibility has been the subject of an important

debate of the last decade (Baker, 2016; Munafò et al., 2017).

In particular, we wanted to know the extent to which the results of

GS enrichment analyses are reproducible when compared across

different scientific studies. Here we present a novel measure of en-

richment analysis performance aimed at gauging reproducibility.

The new metric is based on comparing enrichment results obtained

with a given algorithm across multiple studies of clear cell renal cell

carcinoma (ccRCC). The aim of this work was to compare second

generation enrichment tests, in particular CERNO, using both well-

known evaluation metrics as well as our novel measure of reproduci-

bility. Several previous studies using compared enrichment methods

using different approaches and metrics e.g. sensitivity, specificity

and prioritization (Tarca et al., 2013; Zyla et al., 2017b), discrimin-

ation (Yu et al., 2017), accuracy (Bayerlová et al., 2015), false dis-

covery rate (Jaakkola et al., 2018), power analysis via semisynthetic

simulation tool (Mathur et al., 2018) or comparative analysis via
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simulation study (Abatangelo, 2009). Here we focus on sensitivity,

specificity and prioritization (Tarca et al., 2013; Zyla et al., 2017b)

accompanied by a novel measure with the intention of assessing the

reproducibility of an algorithm. In addition, we tested the impact of

chosen ranking metric and sample size on the results of the CERNO

algorithm. All analyses were performed on publicly available bench-

mark datasets to ensure replicability of our study and to provide a

new standard of evaluation of GS enrichment methods.

2 Materials and methods

2.1 CERNO algorithm
GS enrichment with CERNO (Yamaguchi et al., 2008) is performed

on a list of genes sorted by a given ranking metric. The null hypoth-

esis assumes a random distribution of genes belonging to individual

GS. The proposed test is a modification of Fisher’s method for inte-

grating probabilities (Fisher, 1992). For each GS the test statistic F is

calculated as:

F ¼ �2
XN
i¼1

ln
ri

Ntot

� �
� v2

2N ; (1)

where N is the total number of genes in a given GS, Ntot is the total

number of investigated genes and ri is the rank of gene i (in a given

GS) in the sorted gene list. The final F statistics can be approximated

as v2 distribution with 2*N degrees of freedom. The CERNO algo-

rithm has been implemented in our R package, tmod. We extended

the approach by adding effect size estimation, support for

randomization-based testing, adjustment for multiple testing, a pos-

sibility of testing different gene collections and novel ranking met-

rics, minimum significant difference (MSD) (Zyla et al., 2017b).

Several other enrichment methods are also implemented (i.e. ORA,

PLAGE, GeneSetTest, Wilcoxon GST) in tmod, which makes our

package versatile in terms of enrichment analysis. Furthermore, we

developed new visualization methods (Fig. 1), including charts dedi-

cated to visualize numerous conditions and dependencies between

P-value and effect size (Fig. 1A), word cloud visualizations of en-

richment (Fig. 1B), detailed efficiency of selected pathway (Fig. 1C)

as well as multidimensional functional annotations of components

e.g. from principal component analysis (PCA) (Fig. 1D).

Compared to other second generation enrichment methods the

CERNO method implemented in tmod offers several advantages: (i)

short evaluation time as a randomization-based test (performed e.g.

in GSEA) is not required; (ii) simple input dataset in the form of a

sorted list of genes; (iii) ranking method depends on the user, which

enables sorting of genes according to any suitable metric; (iv) the R

implementation is not limited for analysis of default GSs (any GS

can be tested); (v) CERNO weighs the low-ranking genes more than

intermediate one thereby decreasing the influence of the GS size on

the enrichment result. Despite above mentioned advantages,

CERNO algorithm does not account for correlation of expression

between genes, which can potentially result in an increased number

of false positive results. This issue of correlation between genes has

not been resolved for a few of all the second generation algorithms.

tmod package is available from CRAN (cran.r-project.org/web/

packages/tmod/index.html) while an online implementation can be

found at http://tmod.online/.

2.2 Further algorithms used in the evaluation
CERNO was compared to eight other popular algorithms. ORA,

implemented in GOstat package (Falcon and Gentleman, 2007),

constructs contingency tables for each GS containing the number of

DEGs and non-DEGs. DEGs and non-DEGS were established

according to P-values from t-test for unequal variances (a ¼ 0.05).

Next, hypergeometric test is performed to get significance of each

GS. In the group of tested algorithms, it is the only representing first

generation of enrichment methods.

Furthermore, we used the top three algorithm presented in Tarca

et al. (2013), i.e. GLOBALTEST (Goeman et al., 2004), PADOG

(Tarca et al., 2012), PLAGE (Tomfohr et al., 2005), with addition

of GSVA (Gene Set Variation Analysis; Hänzelmann et al., 2013),

GSEA (Subramanian et al., 2005) and two algorithms implemented

in the limma R package: GeneSetTest and Wilcoxon GST (Wilcoxon

GeneSetTest; Smyth, 2005).

In the following, we briefly describe the second generation algo-

rithms included in our comparison. GLOBALTEST uses a logistic

regression model to assess significance of a given GS (Goeman et al.,

2004). More precisely, it tests whether the regression coefficients for

all genes in individual GS equal zero. PADOG calculates pathway

scores as the weighted sum of absolute moderated gene t-scores,

with gene weights being lower for genes that are common across the

collection of GSs being analyzed. This allows to account for genes

which appear in many GSs. Next, the gene-level information is

transformed to pathway-level significance. PLAGE first standardizes

expressions by calculating z-scores and then performs a singular

value decomposition. The first right singular vector of coefficients

(analogous to the first component in PCA) is used as GS score

(Tomfohr et al., 2005) and significance is obtained from a t-test

comparing the scores between groups. GSVA (Hänzelmann et al.,

2013) estimates the gene expression distribution over the samples by

nonparametric kernel distribution, which puts expression profiles

on a common scale. Then, the Kolmogorov–Smirnov-like statistic is

calculated to obtain a summary GS score. GSEA (Subramanian

et al., 2005) is one of the most commonly used algorithms in enrich-

ment analysis. Using a permutation-based approach on a weighted

Kolmogorov–Smirnov statistic, GSEA tests whether the distribution

of the gene ranks in the GS differs significantly from a uniform

Fig. 1. Examples of tmod package graphical illustrations of enrichment

results. (A) A panel plot which allows presentation of large number of com-

parisons; (B) a tag cloud for enriched GS; (C) evidence plot for a selected GS,

where the AUC corresponds to effect size; (D) principle component analysis

combined with enrichment allows to functionally annotate the components
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distribution. Finally, we used GeneSetTest and Wilcoxon GST, the

latter being a modification of GeneSetTest known as mean-rank GS

enrichment. Both algorithms test genes selected as DEGs in one

dataset and determine whether a given GS tends to be highly ranked

in the training dataset. The computed test statistic is the mean rank

of the GS in the test dataset.

Starting parameters for each algorithm are presented in

Supplementary File S1. In general, we used the parameters recommended

by the authors of each package. For paired design datasets the absolute

value of t-statistic for paired samples was used for all algorithms.

2.3 Datasets
All algorithms were tested using two publicly available micro-

array dataset collections. Both collections are available as R packages,

KEGGdzPathwaysGEO (Tarca et al., 2012) and

KEGGandMetacoreDzPathwaysGEO (Tarca et al., 2013). From se-

cond collection, we removed datasets which are associated with a tar-

get pathway from the Metacore database to keep the analysis

dependent only on open access sources. In addition, we used ccRCC

(Jaakkola and Elo, 2016) datasets from Gene Expression Omnibus

(IDs: GSE6344, GSE15641, GSE14994, GSE11024; Edgar et al.,

2002). In total, the collection of comprised 38 benchmark microarray

datasets with 32 samples in average; the smallest dataset consisted of

8 samples, and the largest 153 samples. Duplicates of probeset assign-

ments to genes were removed according to the following procedures:

(i) in KEGGdzPathwaysGEO datasets the probe set with the smallest

P-value was kept; (ii) in KEGGandMetacoreDzPathwaysGEO and

ccRCC datasets the probe set with the highest average expression

across all samples was kept (Tarca et al., 2013). For each dataset and

the corresponding disease, the target pathway (true positive) from

KEGGs (Kanehisa et al., 2016) was matched for measuring efficiency

of tested algorithms (Tarca et al., 2013). The used dataset collection is

characterized by not strongly skewed distributions of gene expression

(see Additional file 2 in Zyla et al., 2017b). KEGG pathways were

downloaded as a collection of GS via KEGGREST package resulting

in 299 different pathways. Detailed description of the 38 datasets and

their target pathways is presented in Supplementary File S2.

2.4 Algorithm evaluation measures
The testing procedure included five measures: sensitivity, false posi-

tive rate (FPR), computational time, prioritization and reproducibil-

ity. We used the first four surrogate measures previously introduced

by Tarca et al. (2013) and further defined in Zyla et al. (2017b).

Sensitivity was determined by analyzing the distribution of GS P-val-

ues of target pathway and by introducing the conservative estimator

ðp̂0 Þ from Storey’s method for multiple testing, where ð1� p̂0 Þ
shows the proportion of truly alternative tests (Storey, 2002). FPR

measure was obtained by permutation procedure as follows. The

original phenotypes were permuted 50 times in each dataset. Next,

each enrichment algorithm was applied and mean value of GSs with

P-value <5% was calculated. Finally, we computed the absolute de-

viation of mean FPR (observed level) from 5% (expected level).

Computational time was collected during sensitivity analyses on the

same PC for each algorithm. Surrogate prioritization is position of

dataset target pathway in result list standardized to total number of

analyzed pathways. The median value from analyzed datasets in

each algorithm represents prioritization.

We introduce a fifth evaluation measure aimed at gauging the re-

producibility of the tested algorithms (Fig. 2). The rationale here

was to assign a high score to algorithms that showed consistent

results in different datasets corresponding to the same physiological

condition. For this, we used six ccRCC datasets (GSE14762,

GSE781, GSE6344, GSE15641, GSE14994, GSE11024). Since the

same disease was investigated in each dataset, we aimed at identify-

ing the algorithm which highlights similar pathways in every dataset

to give the most reproducible results. We have chosen these datasets

with the following assumptions in mind. First, we wanted to com-

pare biological reproducibility of the methods when a similar experi-

ment is performed in different clinical settings and by different

scientists, i.e. whether a tool is able to extract biological information

common to all heterologous datasets. Second, we did not want to

focus on a comparison of how the technical platform influences the

results of GS enrichment. Thus, we decided to select a collection of

datasets which were described by various authors in diverse clinical

studies, but which were all performed on a similar (although not

identical) technical platforms (Affymetrix technology).

Next to ccRCC datasets, we used 189 KEGG pathways tested by

all algorithms after algorithm-specific filtering (Supplementary File

S1). Previous attempts to estimate consistency of results (Jaakkola

and Elo, 2016) were hampered by confounding the replicability

with sensitivity. That is, an algorithm which reports no significantly

enriched pathways in any of the analyzed datasets at P < 5% (due

to low sensitivity) may appear consistent (even though it is useless).

We sought to alleviate this problem by integrating the outcome over

all possible thresholds. Other propositions of reproducibility investi-

gation can be found in Tarca et al. (2009), Maleki et al. (2018) and

Zyla et al. (2017a).

To measure reproducibility, we performed the following proced-

ure for each tested algorithm. First, for each dataset (Fig. 2, first

panel) we applied the given algorithm and obtained a P-value for

each pathway (Fig. 2, second panel). Next, for each dataset the

obtained P-values were ranked (ascending order; tied ranks applied;

Fig. 2, third panel). Specifically, for each dataset, and each of the

189 pathways, we assigned a rank ri,d where i ¼ 1 . . . 189 is a given

pathway and d ¼ 1 . . . 6 is a given dataset. We used ranks rather

than P-values to decouple robustness from sensitivity and specificity.

Thus, for a given value of cutoff threshold t (1 . . . 189) and each

pathway i, we calculated the number ni,t of datasets in which path-

way i had a rank below or equal the threshold t, that is:

ni; t ¼
X6

d¼1

½ri; d � t�: (2)

For example, if a pathway has the ranks 3, 5, 19, 2, 4 and 7 in

the six datasets, then for a given threshold t ¼ 3, the number ni,3 of

Fig. 2. Scheme of reproducibility analysis performed for all tested algorithms
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datasets in which this pathway was detected is equal to 2 (Fig. 2,

fourth panel, white part of table). Given the threshold t, we then

asked how many pathways were detected in at least five datasets.

The selection of pathways detected only in five or six datasets is a

key point for obtaining information about high reproducibility. This

number, standardized by the number of pathways, gives the surro-

gate reproducibility score, calculated as follows:

s tð Þ ¼
P189

i¼1 ½ni; t � 5�
189

: (3)

The rationale behind calculating s(t) is as follows. A robust algo-

rithm detects the target pathway in all datasets (allowing for a single

mistake, hence condition ni,t � 5) for small values of t. By relaxing

(increasing) the threshold, any algorithm will eventually detect the

pathway in all datasets, but we are interested in algorithms which

have a high value of s(t) at low values of t (Fig. 2, fourth panel, gray

part of table). Hence, we consider the dependency between the aver-

age number of pathways detected above a certain rank threshold,

and the rank threshold used to define the detected pathways—that

is, between the s(t) and t (Fig. 2, rightmost panel). Note that s(t) is

monotonic; we define the measure of reproducibility as the area

under curve (AUC) of the s(t) function. The higher the value of

AUC, the more reproducible algorithm is.

The above described procedure was performed on all tested algo-

rithms. In addition, for CERNO algorithm the impact to sensitivity

and FPR of applied gene ranking metric was tested by using four dif-

ferent ranking metrics that were most suitable for the GSEA algo-

rithm (Zyla et al., 2017b) i.e. Baumgartner–Weiss–Schindler test

statistic (BWS; Baumgartner et al., 1998); absolute value from

Moderated Welch Test statistics (jMWTj; Demissie et al., 2008); ab-

solute value from signal-to-noise ratio (jS2Nj; Subramanian et al.,

2005); MSD (Zyla et al., 2017b). Notably, the BWS metric makes

no assumptions about data distribution. The jS2Nj and jMWTj are

recommended for normally distributed signals, while MSD can be

implemented in a parametric and nonparametric way (in presented

study the parametric implementation was used). In addition, the im-

pact of sample size according to different gene ranking metric was

performed as in Zyla et al. (2017b).

Finally, due to limitation of GLOBALTEST algorithm in terms

of paired design and poor performance of GSEA when t-test statistic

is used as a ranking metric (Zyla et al., 2017b), here we used only

these 28 benchmark datasets which were suitable for an unpaired

study design. Evaluation of GS algorithms on all datasets (including

these with paired design) can be found in Supplementary Materials.

3 Results

3.1 Evaluation of different ranking metrics for the

CERNO algorithm
First, we evaluated how ranking metric influences the behavior of

the CERNO algorithm. Surrogate sensitivity remained similar across

all tested ranking metrics (Fig. 3A).

The same measure has been applied previously for the GSEA al-

gorithm (Zyla et al., 2017b) and showed a higher variation.

Moreover, the number of detected target pathways at P-value <5%

remained stable for the metrics BWS, jMWTj and jS2Nj (21–22 out

of 28; Supplementary Fig. S1A). Slightly lower outcomes in terms of

target pathway detection were observed for MSD. Estimated mean

FPR was also stable and varied between 8.5% and 10%. The FPR

closest to the expected threshold of 5% was observed for MSD

metric while the worst outcomes were found for jMWTj (Fig. 3B),

consistent with previous observations (Zyla et al., 2017b). Given

that the MSD metrics showed the best FPR estimation with accept-

able surrogate sensitivity, the impact of sample size for two evalu-

ation statistics was investigated only for this metric (Fig. 3C and D).

Surrogate sensitivity increased with sample size (Fig. 3C) while

FPR remained stable for sample sizes >10. This confirms previous

observations, where high level of correlation between the small

and large sample sizes was observed for CERNO (Weiner and

Domaszewska, 2016).

3.2 Comparison of CERNO to other methods
We compared the CERNO method to other well-known GSEA

methods. For all tested algorithms, we obtained sensitivity ð1� p̂0 Þ
from surrogate sensitivity. Mean FPR was subtracted from expected

5% (jFPRobs–5%j), computational time was calculated as average

evaluation time across all 28 datasets in each algorithm, prioritiza-

tion was defined as median value from rankings of target pathway

Fig. 3. Comparison of the impact of different gene ranking metric (top row)

and sample sizes (bottom row) on the surrogate sensitivity (lower is better)

and FPR (closer to 5% is better) for the CERNO algorithm. Panels (A) and (B)

represent impact of different ranking metrics in terms of surrogate sensitivity

and FPR at various sample size, respectively. Panels C and D represent impact

of sample size to surrogate sensitivity and FPR for MSD metric only. Red line

on panels (B) and (D) represents the expected FPR level

Table 1. Sensitivity, FPR, prioritization, computational time and re-

producibility of tested algorithms

Algorithm Sensitivity FPR Time [s] Prioritization Reproducibility

CERNO 0.949 3.602 5.987 18.73 41.39

GeneSetTest 0.979 4.215 132.557 14.88 40.84

GLOBAL-

TEST

0.994 0.486 2.844 28.38 35.34

GSEA 0.900 2.696 289.216 19.35 38.60

GSVA 0.496 3.124 6.335 40.11 37.65

ORA 0.896 0.067 11.058 27.07 36.96

PADOG 0.996 0.082 71.682 13.86 39.25

PLAGE 1.000 3.309 4.508 23.49 33.84

Wilcoxon GST 0.995 4.601 132.557 17.06 36.83

Note: Higher values of sensitivity and reproducibility are better; lower val-

ues of FPR, prioritization and time are better. For each column, the best value

is shown in bold.
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in results list and reproducibility was evaluated as detection of com-

mon pathways across five and six datasets. This experimental pro-

cedure provides one value per each measure and each tested

algorithm (Table 1, detailed results for each dataset are induced in

Supplementary File S3 and Fig. S2). The higher value of sensitivity

and reproducibility and lower values of FPR, prioritization and

computational time indicate better performance.

The highest sensitivity was obtained for PLAGE, and most of the

other algorithms showed similar results. The lowest sensitivity was

observed for GSVA. This confirms previous findings (Tarca et al.,

2013), where PLAGE was found superior to GSVA. However,

PLAGE was shown to overestimate results by lowering GS P-values

and can mark >70% of pathways as significant even after strict

Bonferroni correction (Zyla et al., 2017a). Indeed, we found this to

be the case in our analysis, as well (Fig. 4).

In addition, after Bonferroni correction ORA and PADOG

showed very few overall results (on average, respectively 2.44% and

0.91% of all 189 pathways). A number of significant target path-

ways (at P-value <5%) for each tested algorithm are presented in

Supplementary Figure S1B. GSVA show the lowest number of statis-

tically significant target pathways, confirming its low sensitivity,

without a tendency to underestimate results (Fig. 4). ORA and

PADOG both detect <40% of target pathways as significant.

PLAGE and GLOBALTEST, despite overestimation of results

(Fig. 4), do not detect all target pathways. We next investigated

whether observed loss of detection in target pathways are caused by

a specific dataset (Supplementary Fig. S1C). Even though PLAGE

did not detect six of the target pathways, only two of these pathways

were detected by another algorithm (target pathway for datasets

GSE20153 and GSE3585). Similarly, for GLOBALTEST, five target

pathways were not detected, and only one of them was identified by

another algorithm (dataset GSE20153). Remaining target pathways

were successfully observed in other algorithms. These results are

consistent with previous comparisons (Zyla et al., 2017a). In sum,

both PLAGE and GLOBALTEST identified several pathways as pos-

itives, while the majority of them of cases could be noise rather than

specific for the disease. Assuming that differential gene expression

between healthy donors and cancer patients occurs in �10% to

20% of genes (Anand et al., 2008), both, the low number of statis-

tically significant pathways in PADOG and ORA and high level of

detected pathways in PLAGE and GLOBALTEST are questionable

for ccRCC dataset (Fig. 4). Moreover, it was shown that the PLAGE

algorithm has low power and F1 score compared to other single

sample methods (Foroutan et al., 2018).

Finally, we investigated impact of GS size and of sample size on

the obtained P-values of target pathways (surrogate sensitivity).

GLOBALTEST, PLAGE were not robust to GS size (Supplementary

Fig. S3, test for Spearman rank correlation equality to zero P-value

<5%). All above mentioned algorithms tended to show lower P-val-

ues for smaller GS. Stability to sample size (Supplementary Fig. S4)

confirmed the observation that CERNO algorithm is robust to sam-

ple size in terms of surrogate sensitivity (Fig. 3) while

GLOBALTEST and PLAGE showed lower P-values for large data-

sets (test for Spearman correlation equality to zero with P-value

<5%).

The lowest overall FPRs (highest specificity) were observed for

ORA and PADOG, which may explain their somewhat lower sensi-

tivity (Fig. 4). This is in line with a previously published comparison

(Dong et al., 2016). The least accurate results in terms of FPR testing

were observed for the two algorithms from limma package

(GeneSetTest and Wilcoxon GST). For all algorithms, the robustness

for GS size and sample size in terms of FPR was observed

(Supplementary Figs S5 and S6).

The best outcome for prioritization metric was achieved by the

PADOG algorithm. PADOG, despite failing to detect 61% of target

pathways at a ¼ 5% (Supplementary Fig. S1B) placed the target

pathways at the top of its result list. This contrasts with ORA, which

not only failed to detect most of the target pathways at a ¼ 5%, but

in addition, prioritized the target pathways incorrectly. The poorest

performance was observed for GSVA with a likewise low number of

detected target pathways (29%, Supplementary Fig. S1B). CERNO

provides an above average result, correctly prioritizing the target

pathways even though, as in the case of PADOG, only 57% of them

were statistically significant under the set a ¼ 5% (Supplementary

Fig. S1B).

CERNO had the highest reproducibility, closely followed by

GeneSetTest. Both algorithms reached the reproducibility level

(AUC) above 40%, returning similar results for the same physio-

logical condition. Furthermore, high level of reproducibility was

obtained by PADOG, GSVA and commonly used GSEA method.

The poorest outcomes were for PLAGE and GLOBALTEST. This

suggests that due to overestimation, PLAGE and GLOBALTEST as-

sign significant P-values for a large set of pathways, but these results

are inconsistent between different datasets describing the same

condition.

Fig. 4. Percent of significant pathways by average for each algorithm under

various P-value thresholds across six datasets of ccRCC. The black, dashed,

vertical line represents Bonferroni correction for multiple testing

Fig. 5. Cluster heatmap of normalized evaluation statistics on 28 datasets

with unpaired design. Blue color represents good, gray medium and red poor

evaluation. Numbers next to the algorithms name represent the overall rank

from the best (1) to the worst (9) performance. Dendrogram corresponds to

hierarchical clustering based on Euclidian distance
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For visualization purposes, we standardized the values presented in

Table 1, with 1 being the preferred result (high sensitivity and reprodu-

cibility, low FPR, prioritization and CPU time) and 0 the least desirable

outcome (Fig. 5). Based on the obtained normalized scores we calcu-

lated the sum from all evaluation measures for each algorithm.

In summary, all tested algorithms except GSVA were sensitive.

However, only three algorithms showed a low deviation from

expected FPR (PADOG, ORA and GLOBALTEST). The longest cal-

culation times were obtained for the GSEA algorithm due to the per-

mutation test used to assess GS P-values. The other algorithms

revealed similar computational times. The poorest prioritization

was observed for GSVA, GLOBALTEST and medium for ORA,

while the remaining algorithms showed acceptable results. Finally,

the best reproducibility was observed for CERNO and GeneSetTest,

and good for PADOG, GSEA and GSVA. Including all evaluation

measures, the best results could be attributed to PADOG (all metrics

on acceptable level), CERNO (with a higher than expected FPR)

and ORA (with low reproducibility and medium prioritization).

Results for all 38 datasets with paired and unpaired design are pre-

sented in Supplementary Figure S7. The addition of paired designed

datasets does not change top three best algorithms i.e. PADOG,

ORA and CERNO.

Finally, we assessed similarity between algorithm results. To

this, we calculated correlation coefficients between pathway P-val-

ues for each pair of algorithms, separately for the target pathway

analysis and for the ccRCC dataset with 189 pathways

(Supplementary Fig. S8), GSVA did not correlate with any of the

tested algorithms. The results of PLAGE correlated with the results

of GLOBALTEST and results of GeneSetTest correlated with those

of Wilcoxon GST. CERNO algorithm applied to the ccRCC collec-

tion (Supplementary Fig. S8A) correlated with PADOG and

GeneSetTest, but the correlation to PADOG was weaker in case of

target pathways (Supplementary Fig. S8B). In conclusion, the results

of PLAGE, GLOBALTEST and GSVA are least similar to results

obtained from the other algorithms.

4 Discussion

We have compared the performance of CERNO algorithm imple-

mented in the R package tmod with the of several other second gen-

eration enrichment algorithms and ORA. We evaluated the

algorithms for sensitivity, specificity, prioritization and computa-

tional time and introduced a novel measure of result reproducibility.

Our testing approach can be easily implemented in future

applications.

We found that CERNO provides stable results in terms of sensi-

tivity and FPR under various gene ranking metrics (Fig. 3A and B).

In addition, it is robust to different sample sizes, except for the

smallest sample size tested (10 samples, Fig. 3C and D). This can be

explained by poor estimation of SEM in MSD when the number of

samples is small. Given that most of the datasets used for evaluation

have small sample size (median sample size was 21), this is consist-

ent with a relatively high FPR. Nevertheless, regardless of the gene

ranking metric used, the CERNO algorithm produced sensitive

results with constant FPR on the level of 8.5–10.5%. A notable fea-

ture of the CERNO algorithm is its high reproducibility: findings

are consistent across different datasets corresponding to the same

physiological state. In addition, it shows above average sensitivity,

prioritization and low computational time. Finally, CERNO method

use Fisher’s method for probabilities integration which assumes the

independence of P-values tested. This assumption is likely not to be

fully met, as gene expression is not independent for many genes,

which may result in overstated P-values. Our analysis indicates that

the FDR for CERNO, while not as good as in case of ORA or

PADOG, is better than the one for GeneSetTest or Wilcoxon GST.

This confirms that the unmet assumption of independence is, indeed,

a problem for CERNO, but it also shows that the impact of this is

limited. Implementation of the proposed algorithm along with some

visualization tools is publicly available from CRAN (cran.r-projec-

t.org/web/packages/tmod/index.html). Several studies successfully

used visualization tools included in the tmod package in their studies

(El-Chemaly et al., 2018; Loxton et al., 2016; Santoro et al., 2018;

Van Den Berg et al., 2018; Weiner et al., 2018).

Furthermore, we compared CERNO to several widely used GS en-

richment algorithms. PADOG proved the best results under the all

tested condition, followed by CERNO and ORA. However, both

PADOG and ORA showed a tendency to underestimate results (Fig. 4).

In contrast, PLAGE and GLOBALTEST showed an opposite trend.

Both PLAGE and GLOBALTEST marked most of the pathways

as significantly enriched (74.86% and 76.13% respectively) even

after a Bonferroni correction for multiple testing, which in conse-

quence hampers correct conclusions. While both algorithms were

previously shown to perform well (Goeman and Bühlmann, 2007),

we show that they have serious drawbacks not realized before,

which may be the reason for the observed low reproducibility be-

tween different studies. For PLAGE, PADOG and GLOBALTEST

significance level must be chosen carefully to obtain reliable results.

This merits further investigation. Moreover, GLOBALTEST and

PLAGE are not robust to GS size in terms of results sensitivity.

Simple first generation GS enrichment approaches based on hyper-

geometric tests or similar statistical tests of class association (ORA)

are still in widespread use. However, ORA requires a cutoff level for

division of genes to DEGs and non-DEGs, and consequently in some

analyses it is impossible to perform ORA due to lack of DEGs under

the selected cutoff. In addition, ORA does not include strength of dif-

ferentiation or gene position in the ranking list as it is in a functional-

class sorting method. In terms of reproducibility, ORA showed an

average performance. Though ORA scored relatively high in our com-

parison due to low FPR, average sensitivity and low computational

time, it cannot be recommended for most applications.

A guide across all results and flexibility of the algorithms can be

found in Table 2. In contrast to PADOG and most of other methods,

CERNO, GeneSetTest and Wilcoxon GST (all implemented in

tmod) allows a choice of gene ranking metric, thus greatly expand-

ing the range of applications. Arbitrary gene metrics include princi-

pal component scores, allowing to combine GS enrichment with

PCA (implemented in tmod) and correlation coefficients, e.g. for the

analysis of top clinical correlates of gene expression or for combin-

ing gene expression data with other high throughput data types

(Esterhuyse et al., 2015). CERNO and GeneSetTest show an overall

similar performance, with CERNO achieving a better replicability

between studies and lower deviation from the expected FPR. Thus,

if reproducibility between studies is the main desired criterion, one

of these two algorithms is recommended.

In conclusion, we evaluated the CERNO enrichment algorithm

implemented in tmod package in the context of other popular en-

richment tools. We showed that CERNO algorithm is robust to dif-

ferent gene ranking lists and sample size. CERNO had the highest

reproducibility, good sensitivity, prioritization and low computa-

tional time. However, the FPR was average. We introduced a new

metric, reproducibility, aimed at measuring the consistency of an al-

gorithm across different studies. Our results provide a useful road-

map for choosing the optimal tool for enrichment analysis.
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