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Purpose: To develop and evaluate an improved strategy for compensating concomi-
tant field effects in non-Cartesian MRI at the time of image reconstruction.
Theory: We present a higher-order reconstruction method, denoted as MaxGIRF,
for non-Cartesian imaging that simultaneously corrects off-resonance, concomi-
tant fields, and trajectory errors without requiring specialized hardware. Gradient
impulse response functions are used to predict actual gradient waveforms, which
are in turn used to estimate the spatiotemporally varying concomitant fields based
on analytic expressions. The result, in combination with a reference field map, is an
encoding matrix that incorporates a correction for all three effects.
Methods: The MaxGIRF reconstruction is applied to noiseless phantom simula-
tions, spiral gradient-echo imaging of an International Society for Magnetic Reso-
nance in Medicine/National Institute of Standards and Technology phantom, and
axial and sagittal multislice spiral spin-echo imaging of a healthy volunteer at 0.55 T.
The MaxGIRF reconstruction was compared against previously established con-
comitant field-compensation and image-correction methods. Reconstructed images
are evaluated qualitatively and quantitatively using normalized RMS error. Finally,
a low-rank approximation of MaxGIRF is used to reduce computational burden. The
accuracy of the low-rank approximation is studied as a function of minimum rank.
Results: The MaxGIRF reconstruction successfully mitigated blurring artifacts both
in phantoms and in vivo and was effective in regions where concomitant fields coun-
teract static off-resonance, superior to the comparator method. A minimum rank of
8 and 30 for axial and sagittal scans, respectively, gave less than 2% error compared
with the full-rank reconstruction.
Conclusions: The MaxGIRF reconstruction simultaneously corrects off-resonance,
trajectory errors, and concomitant field effects. The impact of this method is greatest
when imaging with longer readouts and/or at lower field strength.

K E Y W O R D S

concomitant fields, expanded signal model, gradient distortion, gradient impulse response
function, MRI reconstruction

A preliminary version of this work was presented at ISMRM 2021, Abstract #624. A.C.W. and K.S.N. contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Magn Reson Med. 2022;88:691–710. wileyonlinelibrary.com/journal/mrm 691

https://orcid.org/0000-0001-5462-1492
https://orcid.org/0000-0003-0070-0034
https://orcid.org/0000-0002-7169-5693
https://orcid.org/0000-0001-5735-3550
http://creativecommons.org/licenses/by/4.0/


692 LEE et al.

1 INTRODUCTION

Image quality from MRI that uses non-Cartesian sam-
pling, particularly spirals, has improved continuously over
the past 30 years. Current state-of-the-art spiral MRI pro-
vides quality that is comparable to its 2D/3D Cartesian
counterparts, and is appropriate for clinical use.1,2 Spiral
acquisitions are attractive because they provide high scan
and SNR efficiency, robustness to motion artifacts, and are
advantageous for fast imaging applications such as MR
fingerprinting3,4 and cardiac imaging.5

Spiral imaging requires overcoming unique challenges,
notably off-resonance, gradient distortion, and concomi-
tant field effects. The first two effects are well known in the
literature; static off-resonance leads to local blurring, and
gradient distortion results in trajectory errors that man-
ifest themselves as halo artifacts near edges. The effects
of concomitant fields are less widely recognized, but are
extremely important for long readouts, scan planes farther
from isocenter, and at low B0 field strengths. Concomi-
tant fields constitute an additional nonrotating magnetic
field (Bx, By) in the laboratory reference frame whenever
linear gradients are active.6 Spatial encoding in MRI is
achieved by the Larmor frequency, which is proportional
to the magnitude of the applied magnetic field. The applied
magnetic field is a superposition of the homogeneous
(Bo) main magnetic field and the transverse

(
Bx(t),By(t)

)

field and longitudinal field (dBz(t)) produced by a gradi-
ent coil. The dot product of three gradient fields G(t) =(

dBz(t)
dx

,

dBz(t)
dy

,

dBz(t)
dz

)T
with a spatial position causes a lin-

ear frequency offset. In contrast, the transverse component
contributes a nonlinear, higher-order frequency offset,
which is represented as a sum of products of quadratic gra-
dients with higher-order spatial terms (eg, Gy,i(t)Gz,i(t)xz).
Therefore, spiral imaging accrues a spatiotemporally vary-
ing phase due to concomitant fields in addition to static
off-resonance.7

Several previous works successfully mitigated con-
comitant field effects by means of image reconstruc-
tion method.7–9 King et al7 proposed a concomitant
field-correction method based on frequency-segmented
deblurring, referred to here as King’s method. This
approach uses approximations to separate the con-
comitant field phase into a time-dependent parame-
ter consisting of the time integral of common gradient
terms and the rest as a time-independent frequency off-
set. King’s method then performs frequency-segmented
deblurring. Two recent approaches by Chen et al8 and
Cheng et al9 achieved a more computationally effi-
cient reconstruction and simultaneously corrected static
off-resonance and concomitant fields based on King’s
approximations.

Wilm et al10 proposed a powerful general approach
using NMR field probes11,12 in conjunction with a
higher-order encoding model, which inspires this work.
This approach incorporates higher-order dynamic fields
to the encoding process and has demonstrated excel-
lent image quality for several applications, including
diffusion10,13 and structural imaging.14 A dynamic field
camera15,16 consisting of spatially distributed NMR field
probes is used to measure phase evolutions at various posi-
tions for high-order field expansions with globally smooth
functions.10,13,17 The NMR field probes provide real-time
monitoring of field evolutions from various sources; how-
ever, commercially available systems are fairly expensive,
and building an in-house system from scratch requires
expertise beyond most MRI labs.11,16,18–20 Therefore,
although very promising, the higher-order approach rely-
ing on field-camera measurements is not widely available.

The characterization of gradient distortions with gra-
dient impulse response functions (GIRFs)21,22 can be a
reasonable surrogate for NMR field probes. Assuming a
linear time invariant system model for the gradient chain,
GIRFs capture gradient delays, eddy current effects, and
mechanically induced field oscillations. For each gradi-
ent axis, an MR system is perturbed with a set of input
gradients, and field responses are measured with either
a dynamic field camera or phantom-based methods.
Field-camera measurements provide both self-responses
and cross-responses (eg, input gradient on the x-axis
and field response on the y-axis) in a single measure-
ment, thereby allowing the full characterization of a
multiple-input, multiple-output linear time invariant sys-
tem.22,23 On the other hand, phantom-based methods typi-
cally measure only self-term GIRFs24 and B0 cross-terms.25

Phantom-based GIRFs have proven to be effective in sev-
eral applications, including RF pulse design,26,27 eddy
current–induced artifact correction,28 and image recon-
struction.29–31 Therefore, the phantom-based method
appears to be a reasonable compromise to an accurate,
albeit expensive field monitoring device.

In this work, because concomitant fields are ana-
lytically expressed with gradients and spatial coordi-
nates, we hypothesize that gradients predicted with
phantom-based GIRFs can better estimate concomitant
fields than nominal gradients. Following this, we propose a
novel higher-order image reconstruction method, denoted
as MaxGIRF, which incorporates concomitant fields, static
off-resonance, and GIRF trajectory corrections. The “Max”
part of the MaxGIRF acronym reflects the fact that the con-
comitant fields are also known as “Maxwell fields” in the
literature, because they are based on the principles of elec-
tromagnetism described by Maxwell’s equations. This pro-
posed framework can be considered as a surrogate to NMR
field probes that require no special hardware but require
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a good analytic model of concomitant fields that depends
on coil geometry6,32 and severity of gradient nonlinear-
ity.33 Non-Cartesian imaging with long readouts generally
benefits from this method, but its impact will be great-
est at high-performance low-field systems,34,35 because the
effect of concomitant fields scales quadratically with the
maximum gradient amplitude and inversely to the main
magnetic field B0.

We first validate the proposed method using noise-
less simulations at various field strengths and off-center
positions. A guideline for selecting an optimal rank is
provided when a low-rank approximation is applied to
the MaxGIRF encoding model. The MaxGIRF reconstruc-
tions using nominal and GIRF-predicted gradients are
compared at 0.55 T using an International Society for Mag-
netic Resonance in Medicine (ISMRM)/National Institute
of Standards and Technology (NIST) system phantom.
Finally, MaxGIRF reconstructions are demonstrated in
vivo using axial and sagittal spiral spin-echo data of the
head and neck, and made available open source.

2 THEORY

In this work, we address sequences in which the net phase
of all isochromats within a voxel before the next RF pulse
can be ignored, such as any pulse sequences with spoiler
gradients at the end of each TR.

2.1 The MaxGIRF encoding

Figure 1 illustrates the overall steps to calculate MaxGIRF
encoding matrices. Let GL(t) and GP(t) be the gradients in
the logical coordinate system and physical coordinate sys-
tem, respectively. Unless clearly specified, we use the phys-
ical coordinate system exclusively and describe variables
without the subscript for clarity (eg, G(t) = GP(t)). Using
a modified version of the expanded signal model,10,23,36

the measured k-space data over the region-of-interest V is
expressed as

di,c(t) = ∫V
m(r)Sc(r) exp (−𝑗𝜙i(r, t)) dr + ni,c(t), (1)

where di,c denotes the ith interleaf, cth receive coil k-space
data of the target image m(r); Sc(r) is the receive coil
sensitivity at position r of the cth coil; 𝜙i(r, t) is the
time-varying phase of a voxel at position r in radians; and
ni,c denotes the measurement noise. The indices i and
c count the Ni interleaves and Nc receive coils, respec-
tively. The MaxGIRF approach models the magnitude of
the spatiotemporal magnetic field ‖Bi(r, t)‖𝓁2

as a sum of

gradients Gi(t) =
[
Gx,i(t),Gy,i(t),Gz,i(t)

]T in millitesla per
meter, static off-resonanceΔf (r) in hertz, and concomitant
fields in tesla6, as follows:

‖Bi(r, t)‖𝓁2
= B0 + Gi(t) ⋅ r + 2𝜋Δf (r)∕γ +

N𝓁∑

𝓁=4
h𝓁,i(t)p𝓁(r),

(2)
where 𝓁 counts the N𝓁 concomitant field terms; p𝓁 is the
𝓁th concomitant field basis function (in squared meters
or cubed meters); and h𝓁,i is the 𝓁th dynamic coefficient
(in Tesla squared meters or Tesla cubed meters), expressed
as a function of the ith gradient waveforms; and γ is
the gyromagnetic ratio (in radians per second per Tesla).
Analytic expressions of

{
h𝓁,i(t)

}N𝓁

𝓁=1 and {p𝓁(r)}
N𝓁

𝓁=1 for a
symmetric gradient system used in this study6 are given
in Table 1. The linear gradients are described as the first
three terms in the concomitant field basis functions. Note
that linear gradients Gi(t) can be either GIRF-predicted
gradients Gpred

i (t) or nominal gradients Gnom
i (t). Time inte-

gration of the magnetic field (after the demodulation of
its carrier frequency) multiplied by the gyromagnetic ratio
γ, γ∫ t

0 ‖Bi(r, 𝜏)‖𝓁2
d𝜏, then gives the phase evolution of a

voxel at position r as follows:

𝜙i(r, t) = ki(t) ⋅ r + 2𝜋Δf (r)t +
N𝓁∑

𝓁=4
k𝓁,i(t)p𝓁(r),

= ki(t) ⋅ r + ̃
𝜙i(r, t), (3)

where k𝓁,i(t) is the 𝓁th phase coefficient obtained by
k𝓁,i(t) = γ∫ t

0 h𝓁,i(𝜏)d𝜏; and ̃
𝜙i(r, t) denotes a phase term

consisting of static off-resonance and concomitant fields.
Note that the reference time point starts at the isodelay of
an RF pulse for gradient-echo pulse sequences and the TE
for spin-echo pulse sequences when spiral readouts start
at TE. Let Nk denote the number of k-space samples per
interleaf. Let RLtoP be a 3 × 3 orthogonal transformation
matrix from the logical coordinate system to the physical
coordinate system. Note that (RLtoP)T = (RLtoP)−1 = RPtoL.
Then we obtain

kP,i(t) = RLtoPkL,i(t) (4a)

rP = RLtoPrL + rP,offset (4b)

where rP,offset represents the offset of a scan plane from
isocenter in the physical coordinate system. With Eqs. 4a
and 4b, we can express the k-space phase ki(t) ⋅ r in terms
of variables in the logical coordinate system as follows:

kP,i(t) ⋅ rP = kP,i(t) ⋅
(
RLtoPrL + rP,offset

)

=
(
RLtoPkL,i(t)

)TRLtoPrL + kP,i(t) ⋅ rP,offset

= kL,i(t) ⋅ rL + kP,i(t) ⋅ rP,offset. (5)
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F I G U R E 1 MaxGIRF reconstruction flowchart. A, Computation of concomitant field model: Gradient waveforms in the logical
coordinate system are first transformed into the physical coordinate system. Distorted gradients in the physical coordinate system are
estimated by gradient impulse response functions (GIRFs). Analytic expressions of concomitant fields derived from the coil geometry,
presumed gradient nonlinearity, and GIRF-predicted gradients, are calculated for each spatial position in the physical coordinate system. B,
Encoding model: The MaxGIRF encoding model is an extension of the SENSE model that additionally includes phase terms due to static
off-resonance and concomitant fields. The phase evolution per voxel is represented as the sum of phase contributions from static
off-resonance (red) and spatial basis functions (blue) that include both linear gradients and concomitant field terms

The received signal can be expressed using variables
both in the logical and physical coordinate systems, as
follows:

di,c(t) = ∫V
m(r)Sc(r) exp

(
−𝑗kP,i(t) ⋅ rP

)

× exp
(
−𝑗 ̃𝜙i (rP, t)

)
dr + ni,c(t)

= exp
(
−𝑗kP,i(t) ⋅ rP,offset

)
× · · ·∫V

m(r)Sc(r)

× exp
(
−𝑗kL,i(t) ⋅ rL

)
exp

(
−𝑗 ̃𝜙i (rP, t)

)
dr + ni,c(t).

(6)

Equation 6 indicates that measured k-space data are mod-
ulated by a time-varying phase term due to a slice offset.
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T A B L E 1 Concomitant field basis functions {p𝓁(r)}
N𝓁

𝓁=1 and dynamic coefficients
{

h𝓁,i(t)
}N𝓁

𝓁=1 for an MR system with symmetric
gradient coils and zero gradient nonlinearity

Concomitant field basis functions Dynamic coefficients Type

p1(r) = x h1,i(t) = Gx,i(t) Gradient

p2(r) = y h2,i(t) = Gy,i(t)

p3(r) = z h3,i(t) = Gz,i(t)

p4(r) = x2 h4,i(t) = G2
z,i(t)∕ (8Bo) Lowest order

p5(r) = y2 h5,i(t) = G2
z,i(t)∕ (8Bo)

p6(r) = z2 h6,i(t) =
(

G2
x,i(t) + G2

y,i(t)
)
∕ (2Bo)

p7(r) = xy h7,i(t) = 0

p8(r) = yz h8,i(t) = −Gy,i(t)Gz,i(t)∕ (2Bo)

p9(r) = xz h9,i(t) = −Gx,i(t)Gz,i(t)∕ (2Bo)

p10(r) = x3 h10,i(t) = −
(

Gx,i(t)G2
z,i(t)

)
∕
(
8B2

o
)

1∕B2
o order

p11(r) = y3 h11,i(t) = −
(

Gy,i(t)G2
z,i(t)

)
∕
(
8B2

o
)

p12(r) = z3 h12,i(t) = −
(

Gz,i(t)
(

G2
x,i(t) + G2

y,i(t)
))
∕
(
2B2

o
)

p13(r) = x2y h13,i(t) = −
(

Gy,i(t)G2
z,i(t)

)
∕
(
8B2

o
)

p14(r) = x2z h14,i(t) = −
(

G3
z,i(t)∕4 − G2

x,i(t)Gz,i(t)
)
∕
(
2B2

o
)

p15(r) = xy2 h15,i(t) = −
(

Gx,i(t)G2
z,i(t)

)
∕
(
8B2

o
)

p16(r) = y2z h16,i(t) = −
(

G3
z,i(t)∕4 − G2

y,i(t)Gz,i(t)
)
∕
(
2B2

o
)

p17(r) = xz2 h17,i(t) = −
(

Gx,i(t)
(

G2
x,i(t) + G2

y,i(t)
)
− Gx,i(t)G2

z,i(t)
)
∕
(
2B2

o
)

p18(r) = yz2 h18,i(t) = −
(

Gy,i(t)
(

G2
x,i(t) + G2

y,i(t)
)
− Gy,i(t)G2

z,i(t)
)
∕
(
2B2

o
)

p19(r) = xyz h19,i(t) =
(

Gx,i(t)Gy,i(t)Gz,i(t)
)
∕B2

o

If this time-varying phase term is not compensated dur-
ing data acquisition,37 then the received signal must be
demodulated first before further processing, because con-
comitant field correction would not be accurate when
voxels are displaced from their true locations. Note that
a Fourier matrix is computed with the gradients in the
logical coordinate system, as done in conventional fast
Fourier transforms (FFT)/nonuniform fast Fourier trans-
form (NUFFT), and a higher-order encoding matrix is
computed with k-space trajectories and spatial coordi-
nates in the physical coordinate system. See Supporting
Information Text S1 for details about the coordinate trans-
formations.

Suppose that an underlying object can be represented
as a weighted sum of N ideal voxel shapes defined on an
N1 × N2 Cartesian grid (ie, m(r) =

∑N
𝜌=1m

(
r
𝜌

)
𝛿

(
r − r

𝜌

)
).

Inserting this representation into Eq. 1 and discretizing in
time leads to

di,c = EiScm + ni,c, (7)

where di,c =
[
di,c (t1) , … , di,c

(
tNk

)]T ∈ CNk contains
the ith interleaf, cth coil (demodulated) k-space data;
Ei ∈ CNk×N denotes the ith encoding matrix; Sc ∈ CN×N

is a diagonal matrix containing the receive coil sensi-
tivities of the cth coil; m = [m (r1) , … ,m (rN)]T ∈ CN

is a vector of complex image values; and ni,c =[
ni,c (t1) , … ,ni,c

(
tNk

)]T ∈ CNk contains the ith interleaf,
cth coil measurement noise. The ith encoding matrix Ei is
expressed as the Hadamard product (element-wise mul-
tiplication, denoted as ⊙) of a Fourier matrix Fi ∈ CNk×N

containing only linear phase terms and a higher-order
encoding matrix Hi ∈ CNk×N containing other remaining
phase terms:

Ei = Fi ⊙Hi, (8)

where

Fi =
⎡
⎢
⎢
⎢
⎣

exp
(
−𝑗kL,i (t1) ⋅ rL,1

)
· · · exp

(
−𝑗kL,i (t1) ⋅ rL,N

)

⋮ ⋱ ⋮

exp
(
−𝑗kL,i

(
tNk

)
⋅ rL,1

)
· · · exp

(
−𝑗kL,i

(
tNk

)
⋅ rL,N

)

⎤
⎥
⎥
⎥
⎦

,

(9)
and

Hi =

⎡
⎢
⎢
⎢
⎢
⎣

exp
(
−𝑗 ̃𝜙i

(
rP,1, t1

))
· · · exp

(
−𝑗 ̃𝜙i

(
rP,N , t1

))

⋮ ⋱ ⋮

exp
(
−𝑗 ̃𝜙i

(
rP,1, tNk

))
· · · exp

(
−𝑗 ̃𝜙i

(
rP,N , tNk

))

⎤
⎥
⎥
⎥
⎥
⎦

.

(10)
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It is important to note that the forward signal model in
Eq. 1 is described with the forward Fourier transform as
commonly done in standard textbooks, but the choice of
FFT versus inverse FFT for transforming k-space data to an
image that is vendor-specific, and critical for a successful
implementation.7,38

2.2 Image reconstruction

Image reconstruction for MaxGIRF encoding can be for-
mulated as a linear least-squares problem similar to Refs
10,13,and 36. Specifically, the MaxGIRF approach uses a
multishot extension of Ref 10, as follows:

m̂ = argmin
m

Ni∑

i=1

Nc∑

c=1

‖‖di,c − EiScm‖‖
2
𝓁2
. (11)

Equation 11 often needs to be expressed in the form
of A(m) = b to be solved with iterative algorithms (eg,
LSQR39). Such a form is obtained by taking the derivative
of a cost function with respect to m and setting it equal to
zero, as follows:

Ni∑

i=1

Nc∑

c=1

(
AH

i,cAi,c

)
m =

Ni∑

i=1

Nc∑

c=1
AH

i,c
(
di,c

)
, (12)

where Ai,c(x) = EiScx ∶ CN → CNk denotes the linear for-
ward operator that maps a length-N vector of image values
to a length-Nk vector of k-space samples of the ith inter-
leaf and cth coil; and AH

i,c(y) = SH
c EH

i y ∶ CNk → CN denotes
its adjoint. The superscript (⋅)H denotes the transposed
complex conjugate.

2.3 Low-rank approximation
to higher-order encoding matrices

To reduce the computational burden of explicit
matrix–vector multiplications and reduce memory
requirements, we introduce a low-rank approximation to
higher-order encoding matrices following the previous
approaches.40,41 Suppose the singular value decompo-
sition (SVD) of the ith higher-order encoding matrix
Hi ∈ CNk×N is given by

Hi =
Lmax∑

𝓁=1
u𝓁,iσ𝓁,iṽH

𝓁,i =
Lmax∑

𝓁=1
u𝓁,ivH

𝓁,i, (13)

where u𝓁,i ∈ CNk denotes the 𝓁th left singular vector;
σ𝓁,i ∈ R is the 𝓁th singular value; ṽ𝓁,i ∈ CN is the 𝓁th right
singular vector; and Lmax denotes the true rank of the

higher-order encoding matrix Hi. A singular value and the
corresponding right singular vector can be combined to
yield v𝓁,i ∈ CN . The vectors u𝓁,i ∈ CNk and v𝓁,i ∈ CN are
hereafter referred to as temporal and spatial basis vectors
for the ith higher-order encoding matrix Hi, respectively.
Note that the relation in Eq. 13 is exact (no loss in accu-
racy), and Lmax is large (> 50) in general. According to
the Eckart-Young theorem,42 the rank-L SVD truncation
̃Hi =

∑L
𝓁=1u𝓁,ivH

𝓁,i provides the best rank-L approximation
to Hi in a least-squares sense, as follows:

‖‖‖Hi − ̃Hi
‖‖‖F
= argmin

rank(B)≤L
‖Hi − B‖F =

√
𝜎

2
L+1 + · · · + 𝜎

2
L max.

(14)
We select only one L and apply it to all higher-order encod-
ing matrices. Substituting ̃Hi =

∑L
𝓁=1u𝓁,ivH

𝓁,i into Eq. 8
yields

Ei ≈ Fi ⊙

( L∑

𝓁=1
u𝓁,ivH

𝓁,i

)

≈
L∑

𝓁=1
Fi ⊙

(
u𝓁,ivH

𝓁,i

)

≈
L∑

𝓁=1
diag

(
u𝓁,i

)
Fidiag

(
v∗𝓁,i

)
, (15)

where diag
(
u𝓁,i

)
∈ CNk×Nk and diag

(
v∗𝓁,i

)
∈ CN×N are

diagonal matrices containing the elements of the vec-
tors u𝓁,i and v∗𝓁,i (the complex conjugate of v𝓁,i) in the
main diagonal, respectively. The last expression is obtained
using the special property of the Hadamard product of a
dense matrix Fi with a rank-1 matrix u𝓁,ivH

𝓁,i. Using Eq. 15,
the forward and adjoint operators can be expressed as

Ai,c(x) = EiScx ≈
L∑

𝓁=1
diag

(
u𝓁,i

)
Fidiag

(
v∗𝓁,i

)
Scx, (16a)

AH
i,c(y) = SH

c EH
i y ≈ SH

c

L∑

𝓁=1
diag

(
v𝓁,i

)
FH

i diag
(

u∗𝓁,i
)

y.

(16b)
Equation 16indicates that an expensive, explicit
matrix–vector multiplication with an encoding matrix Ei
(and EH

i ) can be replaced by L summations of a fast rou-
tine for Fi, such as FFT followed by inverse gridding43 or
NUFFT.44

2.4 Static off-resonance map estimation

The MaxGIRF reconstruction requires an accurate and
spatially smooth static off-resonance map. For this pur-
pose, we acquire a series of Cartesian gradient-echo
data sets at different TEs. Because the MaxGIRF encod-
ing model does not separate water/fat components, we
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consider the image content 𝛒 = [𝜌 (r1) , … , 𝜌 (rN)]T ∈ CN

as a sum of water/fat, and model static off-resonance
𝚫f =

[
Δf (r1) , … ,Δf (rN)

]T ∈ RN (in Hertz) as a sum of
B0 inhomogeneity and the water/fat chemical shift (eg,
−3.8 ppm, −88 Hz at 0.55 T). We perform image-based
parameter estimation using nonlinear inversion optimiza-
tion, inspired by a recent work on water/fat separation and
B0 inhomogeneity mapping.45,46 Specifically, the forward
signal model is defined as

Fm(x) = 𝛒⊙ exp (𝑗2π𝚫fTEm)

=
⎡
⎢
⎢
⎢
⎣

𝜌 (r1)
⋮

𝜌 (rN)

⎤
⎥
⎥
⎥
⎦

⊙

⎡
⎢
⎢
⎢
⎣

exp (𝑗2𝜋Δf (r1)TEm)
⋮

exp (𝑗2𝜋Δf (rN)TEm)

⎤
⎥
⎥
⎥
⎦

= diag (exp (𝑗2π𝚫fTEm)) 𝛒
= diag(𝛒) exp (𝑗2π𝚫fTEm)

with unknown x =
[
𝛒T
,𝚫fT]T

and m = 1, … Ne, (17)

where Fm(x) ∈ CN is a length-N vector of the estimated
mth TE image; Ne denotes the number of TEs; TEm is
the mth TE in seconds; and the symbol ⊙ denotes the
Hadamard product. Equation 17 is solved with the a slight
modification of the iteratively regularized Gauss-Newton
method, as described by Tan et al.45 The modified cost
function is given as

Φ(x̂) = argmin
x̂

|| y − G(x̂)||2𝓁2
+ 𝛼 ||x̂ − x̂0||2𝓁2

with x = Wx̂ and G(x̂) = F(Wx̂), (18)

where y ∈ CNeN×1 is a length-NeN vector of the con-
catenation of all noisy reconstructed echo images F(x) =[
F1(x)T , … ,FNe (x)

T]T ∈ CNeN×1; 𝛼 is the regularization
parameter; and x̂0 is a starting initial guess. A precondi-
tioning matrix W ∈ C2N×2N contains a Sobolev norm that
enforces spatial smoothness on the static off-resonance
map as follows:

[
𝛒
𝚫f

]

=
⎡
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⎢
⎣

IN 0

0 
−1
(
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×
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⎢
⎢
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⎥
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⎦

,

(19)

where IN ∈ RN×N is an identity matrix; −1 ∈ CN×N is
a unitary 2D inverse Fourier transform matrix; ⃗k ∈
R2×1 is normalized Cartesian k-space coordinates defined
in [−0.5, 0.5] × [−0.5, 0.5]; and w, h ∈ R are constants
set to 32 and 16, respectively. Equation 18 is solved
with the iteratively regularized Gauss-Newton method
(see Appendix).

3 METHODS

3.1 Reconstruction and image
processing

Cartesian and spiral-image reconstructions and postpro-
cessing were performed in MATLAB R2020b (MathWorks,
Natick, MA) on a PC equipped with one 1.60-GHz
4-core Intel i5-8250U CPU and 20 GB of RAM. A ven-
dor proprietary raw data format was converted into the
ISMRMRD format47 and read in MATLAB.48 For both
Cartesian and spiral reconstructions, FFT was applied to
transform from k-space to image space. Coil sensitivity
maps were estimated using the Walsh method49 from the
32× 32 Hanning-windowed center of k-space data (grid-
ded k-space data for spiral acquisitions). Neither intensity
normalization nor gradient nonlinearity correction were
applied. Spiral trajectories were generated with Ref 50. A
sample density compensation function51 was computed
with Ref 52. The NUFFT code was downloaded from Ref
53. The MaxGIRF reconstructions were performed with
the LSQR algorithm with maximum number of itera-
tions = 15 and tolerance = 1e−5. For static off-resonance
map calculation, a coil sensitivity map from the first echo
image was used to reconstruct coil-combined images of the
other echoes. A smooth static off-resonance map was esti-
mated by the iteratively regularized Gauss-Newton (GN)
method with 𝛼min = 1e−6,54 GN iterations = 35, maxi-
mum number of LSQR iterations = 250, and tolerance of
LSQR = 1e−10.

3.2 Selection of an optimal rank L

We chose an optimal L that gives less than 2%
error in normalized RMS error (NRMSE) between
complex-valued full-rank and low-rank reconstructions:
NRMSE = ‖mfull −mlow‖𝓁2

∕ ‖mfull‖𝓁2
. In vivo multislice

spiral spin-echo axial and slightly oblique sagittal data sets
were used for evaluation. A randomized SVD algorithm as
described in Supporting Information Text S2 was used to
compute the SVD of a higher-order encoding matrix. Sin-
gular values up to 50/80 (axial/sagittal) were calculated
and considered as full rank. Image reconstructions were
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performed with a conjugate phase reconstruction (ie, the
right side of Eq. 12).

3.3 Numerical simulation

To validate the proposed MaxGIRF approach, noiseless
simulations on brain images with simulated eight-channel
coil sensitivity maps, 256× 256 matrix, were performed. A
sagittal slice was obtained from a 3D MIDA (multimodal
imaging–based detailed anatomical) brain phantom,55 and
coil sensitivity maps were obtained from Ref 56. The
116 tissue types of a MIDA phantom were categorized
into 13 tissue labels used in a Brainweb phantom57 by
visual matching. The MR parameters (T1∕T2∕T∗2∕M0) were
obtained from a Brainweb phantom acquired at 1.5 T,
and the dependence of relaxation parameters on the
main magnetic field strength was ignored. A 20-interleaf,
variable-density spiral acquisition (9.2-ms readout) was
simulated with Gmax= 24 mT/m, Smax = 144 T/m/s, ADC
dwell time= 2.5 μs, resolution= 0.9375× 0.9375 mm2, and
FOV decreasing from 240× 240 mm2 to 180× 180 mm2.
The base spiral interleaf was similar to that used in 3D
brain MR fingerprinting.58 Direct matrix–vector multipli-
cations using Eqs. 7 and 8 were used to generate noise-
less k-space data. System imperfections such as static
off-resonance and eddy currents were not simulated. The
B0 dependence (0.55 T, 1.5 T, 3 T, and 7 T) and off-isocenter
dependence (z = 0, 50, 100, 150, and 200 mm) of con-
comitant fields were simulated. The MaxGIRF recon-
structions were performed with a low-rank approxima-
tion (L∕Lmax=50/80) and NUFFT. The NRMSE between a
Cartesian reference and spiral reconstructions was calcu-
lated. A time-averaged concomitant field map for the first
interleaf (in Hertz), fc,1(r), over the spiral readout duration
(T) was calculated to demonstrate its relative magnitude
compared with a static off-resonance map59 as follows:

fc,1(r) =
1

2𝜋T

N𝓁∑

𝓁=4
∫

T

0
h𝓁,1(𝜏)d𝜏 p𝓁(r)

= 1
2𝜋T

N𝓁∑

𝓁=4
k𝓁,1(T) p𝓁(r). (21)

3.4 Imaging system

All imaging experiments were performed on a
high-performance 0.55T scanner (prototype MAGNETOM
Aera; Siemens Healthcare, Erlangen, Germany) with gra-
dients capable of 45 mT/m amplitude and 200 T/m/s slew
rate.34,35 A 16-channel head/neck receive coil was used for
phantom and in vivo experiments.

3.5 The GIRF measurements

The GIRF measurements were obtained using a set of
triangular input functions and a spherical phantom as
described by Campbell-Washburn et al.29 A body coil
was used for both RF transmission and signal recep-
tion. The Brodsky method25 was used to estimate both B0
cross-terms and first-order self-term GIRFs as described by
Robinson et al.31 Only self-term GIRFs were used in this
study.

3.6 Phantom experiments

Spiral scans (axial and sagittal) of an ISMRM/NIST system
phantom were acquired with a 2D gradient-echo pulse
sequence. An 8-interleaf, uniform-density, spiral-out
trajectory was designed to have 11.8-ms readout dura-
tion. A target axial slice was imaged at isocenter and
75-mm off-isocenter in the z-direction. A sagittal slice
was imaged at isocenter. Imaging parameters were
FOV = 224× 224 mm2, resolution = 1.4× 1.4 mm2,
slice thickness = 8 mm, flip angle = 20◦, TR = 100 ms,
TE = 1 ms, and number of signal averages = 1. Ten
repetitions were performed to reach steady state. For
a static off-resonance map, a single-echo 2D Cartesian
gradient-echo sequence was repeated to acquire data sets
at different TEs (2.5, 3.7, 4.7, 5.7, 6.7, and 7.7 ms).

3.7 Human experiments

All volunteers were scanned under a protocol approved
by our local institutional review board (clinicaltrials.
gov NCT03331380) and provided written informed con-
sent. In vivo human brain scans (axial and sagittal)
were acquired with a 2D interleaved multislice spiral
spin-echo pulse sequence. A slice-rephasing gradient and
the left crusher of a refocusing pulse were combined
with a waveform reshaping technique60 to minimize the
concomitant-field phase. Spoiler gradients were applied on
all three axes at the end of a readout. Imaging parameters
were FOV = 240× 240 mm2, resolution= 0.75× 0.75 mm2,
slice thickness= 5 mm, slice gap= 15 mm, flip angle= 90◦,
TR = 745/500 (spiral/Cartesian) ms, TE = 15 ms, ADC
dwell time = 2.5 μs, readout duration = 11.89 ms, number
of readout samples = 4756, number of interleaves = 24,
and number of signal averages = 14. For comparison,
King’s method was used for both axial and sagittal scans.
Additionally, a modified King’s method including static
off-resonance correction was performed for axial scans.
Specifically, after correcting a time-varying global fre-
quency offset (through-plane correction of concomitant

http://clinicaltrials.gov
http://clinicaltrials.gov
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field-induced phase), frequency-segmented deblurring
was performed for in-plane blurring correction, using an
ordinary time parameter and a static off-resonance map for
Eqs. 26 and 30 in King et al,7 respectively.

4 RESULTS

Figure 2 shows the NRMSEs between full-rank and
low-rank reconstructions from in vivo multislice spi-
ral spin-echo axial and sagittal data sets. The NRM-
SEs are provided as a function of rank L when only
static off-resonance is included (A,D), when only con-
comitant fields are included (B,E), and when both static
off-resonance and concomitant fields are included (C,F)
in the higher-order encoding matrices. For axial ori-
entation, because the effect of concomitant fields is a
time-dependent receive frequency shift, its contribution
to the rank is minimal (Figure 2B); thus, the static
off-resonance contributes mostly to the rank (Figure 2A).
For nonaxial orientations, because the effect of concomi-
tant fields is spatiotemporal blurring, a large rank is
required compared with that in axial orientation. The

rank of static off-resonance is less than 8 like axial
orientation and smaller than the rank of concomitant
fields in absolute sense (Figure 2D vs 2E). The low-rank
(L∕Lmax=8/50) reconstruction in Figure 2C gives almost
perfect reconstruction for all axial slices, and the low-rank
(L∕Lmax=30/80) reconstruction in Figure 2F gives < 2%
error for all sagittal slices. The signal-intensity attenuation
is primarily in regions with high off-resonance. The max-
imum deviation within the brain cortex of the difference
between full-rank and low-rank (L = 30) reconstructions
is < 2% for all sagittal slices (only a slice at x = 50.0 mm
is shown). The reconstruction time for the noniterative,
conjugate phase-based MaxGIRF (also iterative MaxGIRF)
is linearly scaled by the rank (ie, number of singular val-
ues). The reconstruction times per singular value for axial
and sagittal orientations were 5 s and 8 s, respectively.
Thus, the reconstruction times (low-rank/full-rank) for
axial and sagittal orientations were 40/250 s (8/50 rank)
and 240/640 s (30/80 rank), respectively.

Figure 3 demonstrates noiseless numerical simulations
of MaxGIRF reconstruction, using a low-rank approxi-
mation (L∕Lmax = 50/80). The NRMSEs for MaxGIRF at
x = 0 mm decreased gradually from 8.6% to 8.0% as the

F I G U R E 2 Low-rank approximations of the MaxGIRF higher-order encoding matrix are effective. Normalized RMS errors (NRMSEs)
are measured between full-rank image reconstructions and low-rank approximations from in vivo multislice spiral spin-echo axial and
sagittal datasets. A–F, The NRMSEs when only static off-resonance is included (A,D), only concomitant fields are included (B,E), both static
off-resonance and concomitant fields are included (C,F) in the higher-order encoding matrices. The inset images show the difference
between full-rank (50/80 for axial/sagittal) and L-rank reconstructions. Note that a different range of the x-axis is used for clarity
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F I G U R E 3 Evaluation of concomitant field correction using MaxGIRF reconstruction of noiseless numerical simulations. A,
Dependence of concomitant fields on B0, using field strengths (0.55 T, 1.5 T, 3 T, and 7 T) at a slice position of 0 mm from isocenter. A
reference image used to simulate non-Cartesian k-space data is shown along with the physical coordinate system. The NRMSE between the
ground truth and spiral reconstruction is shown (green), with 8.6% (neglecting small changes at higher field strengths) being the minimum
achievable error from the difference between Cartesian and spiral image reconstructions. B, Dependence of concomitant fields on
off-isocenter distance is demonstrated for sagittal prescription. A time-averaged concomitant field map indicates the relative strength of
concomitant fields at various B0 and distances from isocenter. Nonuniform fast Fourier transform (NUFFT) reconstruction shows increased
spatial blurring as the field strength decreases and the distance from isocenter increases
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F I G U R E 4 Spiral axial imaging of an International Society for Magnetic Resonance in Medicine/National Institute of Standards and
Technology (ISMRM/NIST) phantom at 0.55 T. Top row: Isocenter. Bottom row: Off-isocenter with z = 75 mm. A 2D Cartesian gradient-echo
(GRE) reference is also shown (TE and SNR are not matched). Conjugate gradient–based SENSE (CG-SENSE; first column) clearly shows
spatial blurring caused by both concomitant fields and static off-resonance. The MaxGIRF reconstruction can be applied without (second
column) and with (third column) a separately acquired static off-resonance map. The MaxGIRF approach without a static off-resonance map
dramatically improves the image quality from CG-SENSE, and further improvements are achieved with a static off-resonance map (one
exemplary region shown in the orange box)

field strength increases. This small decrease in NRMSEs
is attributed to weaker concomitant fields at higher field
strengths and did not make any noticeable difference in
image quality. This minimum error (8.6%) is primarily
caused by the difference between Cartesian and spiral
image reconstructions. Application of MaxGIRF recon-
struction on off-isocenter acquisitions achieved this min-
imum error, indicating perfect correction of the concomi-
tant fields.

Figure 4 shows MaxGIRF reconstruction (L = 8) on
axial spiral scans of an ISMRM/NIST phantom at 0.55 T.
The blurring caused by the static off-resonance and
concomitant fields is successfully removed as compared
with the conventional conjugate gradient–based iterative
SENSE (CG-SENSE) reconstruction. The inclusion of a

static off-resonance map in MaxGIRF reconstruction fur-
ther improves the sharpness of features in regions with
nonzero off-resonance.

Figures 5 and 6 compare images reconstructed by
MaxGIRF reconstruction (L = 8), King’s method without
static off-resonance correction, and King’s method with
static off-resonance correction for a slice at z = 17.5 mm
and z = 105.0 mm, respectively, from multislice axial spi-
ral spin-echo imaging of a healthy volunteer at 0.55 T.
For nonoblique axial spiral scans, the concomitant fields
generate a time-varying global frequency offset; thus.
King’s method removed most spatial blurring. King’s
method with static off-resonance correction achieved
further improvements in regions with slowly varying
off-resonance (Figure 6E), and the sharpness in such
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F I G U R E 5 Axial spiral spin-echo (SE)
imaging of a healthy volunteer at 0.55 T close
to isocenter (z = 17.5 mm). Comparison of
image reconstructions using comparator
Cartesian spin-echo image (A), MaxGIRF
reconstruction with static off-resonance
correction (Low-rank approximation L = 8)
(B), King’s method without static
off-resonance correction (C), and King’s
method with static off-resonance correction
(D). E, Zoomed-in image of a region with
large static off-resonance (orange box). F,
Static off-resonance map. King’s method with
static off-resonance correction shows minor
improvements compared to without static
off-resonance correction in regions with
strong, sharply varying static off-resonance. In
contrast to both King’s methods, MaxGIRF
reconstruction successfully resolves local
blurring due to strong off-resonance and
provides features comparable to the Cartesian
spin-echo image (eg, orange box)

regions is comparable with MaxGIRF reconstruction.
However, it achieved only minor improvements in regions
with sharply varying static off-resonance (Figure 5E).
Because most noniterative off-resonance methods61,62

assume that the static off-resonance map varies slowly in
space, iterative MaxGIRF reconstruction achieved supe-
rior performance compared with King’s method with
static off-resonance correction, in line with Makhijani and
Nayak.63 The MaxGIRF reconstruction time was 20 min
per slice with a reconstruction matrix size of 320× 320.

Figures 7 and 8 compare images reconstructed by
NUFFT, King’s method (without B0 correction), and Max-
GIRF (L = 30) for a sagittal slice at x = 0.0 mm and
z = 50.0 mm, respectively, from multislice spiral spin-echo
imaging of a healthy volunteer at 0.55 T. Because the
spine region in Figure 7E is reconstructed without static
off-resonance, the improvements by MaxGIRF are solely
attributed to the methodological difference between King’s
method and MaxGIRF. A green box in Figure 8 shows
an exemplary region where King’s method adversely
increases blurring artifacts (compared with NUFFT) when
concomitant fields counteract static off-resonance. In con-
trast, MaxGIRF with static off-resonance correction cor-
rectly handles such complex situations. The MaxGIRF
reconstruction provides “sharper” delineation of brain
tissue boundaries in Figure 8E compared with King’s
method, and its reconstruction time was 3 h per slice with
a reconstruction matrix size of 640× 640.

Figure 9 provides a further analysis on MaxGIRF
reconstructions including (1) lowest-order (L) versus

full-order (F) concomitant field compensation; and
(2) iterative reconstruction versus noniterative conju-
gate phase reconstruction (CP). The difference between
CP-based MaxGIRF (F) and CP-based MaxGIRF (L) was
negligible; thus, compensating only lowest-order terms
is sufficient in this case. Given the system’s gradient
strength and field strength, it is not surprising that the
higher-order terms have a negligible effect. The differ-
ence between conjugate gradient–based MaxGIRF (L)
and CP-based MaxGIRF (L) shows primarily aliasing
artifacts. The difference between CP-based MaxGIRF (L)
and King’s method (King) (both noniterative methods)
showed negligible structured artifacts that resemble the
shape of concomitant fields at this slice, even in the areas
with aliasing artifacts (eg, face). This indicates that both
methods perform robustly under the influence of alias-
ing, and the methodological difference is manifested as
the negligible structured artifacts. However, the CP-based
MaxGIRF (L) was only able to compensate strong con-
comitant fields (> 150 Hz; Figure 7H) near the spine
(orange box), whereas King’s method showed residual
blurring. To further characterize the structured artifacts,
noiseless spiral numerical simulations were performed
at 0.55 T and 3 T using the same geometry as the human
midsagittal scan but with a larger spiral FOV to remove
any potential effects of aliasing on the performance of
King’s method (Supporting Information Figures S1 and
S2). The difference image shows that structured artifacts
are of identical shape (oval shape centered at isocenter),
regardless of field strength (not shown) and distance from
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F I G U R E 6 Axial spiral spin-echo imaging of a healthy volunteer at 0.55 T far from isocenter (z = 105.0 mm). Comparison of image
reconstructions using comparator Cartesian spin-echo image (A), MaxGIRF reconstruction with static off-resonance correction (Low-rank
approximation L = 8) (B), King’s method without static off-resonance correction (C), and King’s method with static off-resonance correction
(D). E, Zoomed-in image (orange box). F, Static off-resonance map. For an axial slice without angulation, the effect of concomitant fields is
merely a time-varying global frequency offset; thus, all three methods successfully resolve spatial blurring due to concomitant fields when
compared with NUFFT (not shown). In contrast to its performance in Figure 5, King’s method with static off-resonance correction performs
well particularly in this slice, because a static off-resonance map varies slowly in space, which is required for successful application of most
noniterative off-resonance correction methods. The MaxGIRF reconstruction based on iterative conjugate gradient (CG) shows improved
delineation of tissue boundaries compared with King’s method without static off-resonance correction, regardless of characteristics (slowly
varying or sharply varying) in a static off-resonance map

isocenter. This simulation indicates that King’s method
performs well within the boundary of the oval shape but
gradually deteriorates beyond this boundary. The size of
this oval shape is fixed and not a function of either imag-
ing parameters nor spiral trajectories. The reconstruction
times (axial/sagittal) for noniterative MaxGIRF methods
and King’s method were 40/240 s and 10/20 s, respectively.

5 DISCUSSION

We have demonstrated that the MaxGIRF higher-order
encoding matrix approach can be used to simultane-
ously correct concomitant fields and off-resonance for spi-
ral acquisitions at 0.55 T. This method uses GIRF-based

gradient waveform corrections to accurately calculate spa-
tiotemporally varying concomitant field estimates and
static off-resonance maps to generate a hybrid signal
equation with variables in the physical and logical coor-
dinate system for image reconstruction. We characterized
the accuracy of a low-rank approximation of higher-order
encoding matrices to improve reconstruction times with
NRMSEs, and implement a randomized SVD to miti-
gate memory requirements. The MaxGIRF approach pro-
vides improved sharpness in regions with large concomi-
tant fields (including off-isocenter) and/or nonzero static
off-resonance, compared with King’s method. The effec-
tiveness of the proposed method has been demonstrated
with numerical simulations, phantom, and in vivo human
spiral acquisitions.
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F I G U R E 7 Sagittal spiral spin-echo imaging of a healthy volunteer at 0.55 T at isocenter (x = 0.0 mm). Comparison of image
reconstructions using comparator Cartesian spin-echo image (A), NUFFT reconstruction (B), King’s method without static off-resonance
correction (C), and MaxGIRF reconstruction with static off-resonance correction (Low-rank approximation L = 30) (D). E, Zoomed-in image
of a brain region (blue box). F, Zoomed-in image of a neck region (orange box). G, Static off-resonance map. H, Time-averaged concomitant
fields map. I, Sum of the static off-resonance map and time-averaged concomitant fields map. Although MaxGIRF using static off-resonance
is shown in (F), MaxGIRF without static off-resonance (not shown) is of comparable quality. Thus, this indicates that the improvements in
the spine region by MaxGIRF are largely attributed to the methodological difference between King’s method and MaxGIRF

Here, we applied MaxGIRF to spiral imaging using
a lower field strength (0.55 T) MRI system. Concomitant
field effects are increased at lower field strength, higher
gradient amplitudes, longer readouts, and distance from
isocenter. Therefore, this method is generalizable for sev-
eral other MRI applications including systems with gra-
dient inserts, permitting higher peak gradient amplitude,
large FOV imaging, and all field strengths.

The phantom-based GIRF measurements used by the
MaxGIRF approach can be a viable alternative to NMR
field probes when gradient nonlinearity is not too severe,
gradient systems are approximately linear time-invariant
over the duration of a scan, and models of concomitant
fields are well-matched to real measurements. We pre-
sumed zero gradient nonlinearity but noticed image dis-
tortions both in Cartesian and spiral reconstructions (eg,
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F I G U R E 8 Sagittal spiral spin-echo imaging of a healthy volunteer at 0.55 T off-isocenter (x = 50.0 mm). Comparison of image
reconstructions using comparator Cartesian spin-echo image (A), NUFFT reconstruction (B), King’s method without static off-resonance
correction (C), and MaxGIRF reconstruction with static off-resonance correction (Low-rank approximation L = 30) (D). E, Zoomed-in image
of a brain region (orange box). F, Zoomed-in image (blue box). G, Static off-resonance map. H, Time-averaged concomitant fields map. I, Sum
of the static off-resonance map and time-averaged concomitant fields map. King’s method may adversely increase blurring artifacts (eg, blue
box) compared with NUFFT reconstruction when the static off-resonance in a region counteracts the concomitant fields. However, MaxGIRF
with static off-resonance correction correctly handles such regions as shown in (F) and provides “sharper” delineation of brain tissue
boundaries in (E) compared with King’s method

sagittal slice of the NIST phantom). The concomitant fields
derived without gradient nonlinearity may be sufficient for
FOVs used in the current study, but a further investigation
is required for large FOV spiral acquisitions (eg, cardiac,
abdominal, or fetal imaging), especially in large-bore MR
systems or MR systems with a high-performance gradi-
ent insert.33,64–66 Because gradient nonlinearity along each

gradient direction can be modeled by a product of spher-
ical harmonics67,68 and a linear gradient normalized by a
reference gradient,69,70 concomitant field terms incorpo-
rating the spherical harmonics expansion (possibly up to
ninth order)71 of gradient nonlinearity could be derived
following the approach described in Testud et al.17 Because
gradient nonlinearity and a new set of concomitant fields
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F I G U R E 9 Comparison of reconstruction methods compensating a different number of concomitant field terms. Midsagittal spiral
imaging of a healthy volunteer at isocenter at 0.55 T. First column: NUFFT. Second column: King’s method without static off-resonance
correction. Third column: Conjugate phase reconstruction–based MaxGIRF using only lowest-order terms in the concomitant fields. Fourth
column: Conjugate phase reconstruction–based MaxGIRF using entire terms in the concomitant fields (full order). Fifth column: Conjugate
gradient (CG)–based MaxGIRF using full-order terms (absolute difference images between reconstructions at the bottom). The
GIRF-predicted gradients were used in all reconstructions. Static off-resonance correction was not performed, to isolate the difference due to
concomitant field correction. The spiral trajectory was designed for 224× 224 mm2 FOV and reconstructed at twice the FOV with the same
spatial resolution, which causes the aliasing at the back of the neck

under gradient nonlinearity are a function of linear gra-
dients, both could be predicted by phantom-based GIRFs
with high accuracy and incorporated within the MaxGIRF
framework.

An optimal rank criterion should depend on the spe-
cific MR application. In this study, we choose an optimal
rank that gives less than 2% error in both magnitude and
phase NRMSEs. This stringent requirement can be relaxed
when signal intensity in regions with high off-resonance
(eg, fat regions) may not be of interest. In the case of
water–fat-separated imaging or when fat suppression is
used, the static off-resonance map may become smoother
because the discrete water/fat chemical shift is removed.
In this case, the optimal rank may be lower because singu-
lar values of smoother images decay more rapidly.72

One notable advantage of the MaxGIRF approach is
that it can be easily adapted to many clinical sites without

NMR field probes. The MaxGIRF approach only requires
good analytic models of concomitant fields and GIRFs
measured with a simple pulse sequence and a spheri-
cal phantom. Because analytic expressions of concomi-
tant fields for asymmetric gradient coils can be derived,32

the MaxGIRF approach would be applicable to clini-
cal systems with asymmetric gradient coils that have
well-documented analytic expressions. Pulse sequences
for GIRF measurements can be developed and shared
via a vendor-independent pulse sequence framework (eg,
Pulseq and TOPPE).73,74 This would enable clinical sites
without expertise in sequence programming to obtain
GIRF measurements on their own scanners. Note that a
pulse sequence for GIRF measurements described in Van-
nesjo et al22 is provided by TOPPE.75 Because of its sim-
ple reconstruction procedure, the MaxGIRF approach can
be easily integrated into any existing gridding or NUFFT
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based non-Cartesian reconstruction routines provided in
open-source reconstruction platforms such as BART,76

Gadgetron,77 and GPI.78 Therefore, reconstruction soft-
ware can potentially be shared among sites without diffi-
culty.

This work has several limitations. We did not consider
acquisitions in which an accumulated concomitant phase
affects the net phase of spin isochromats after following
excitation or refocusing pulses. This specifically includes
balanced SSFP and fast spin-echo sequences, each of
which may require additional assumptions (eg, a per-
fect 180 refocusing pulse for fast spin echo) or additional
pulse-sequence modifications to formulate a tractable for-
ward model that can be solved with an extension of the
MaxGIRF framework.

Another drawback is reconstruction time. The SVD
needs to be computed for each subject with a unique
static off-resonance map and whenever a slice prescrip-
tion is changed. The SVD computation time was 1 min
and 6 min for axial and sagittal scans, respectively, using
a non-parallelized implementation. However, this long
computation time could be reduced by switching from a
CPU-based randomized SVD implementation (used in this
study) to one implemented in parallel architectures such as
GPUs. The other computation bottleneck is L repetitions
of NUFFTs. Because the current MATLAB implementation
does not use parallel computing via multicore CPUs, Max-
GIRF reconstruction is relatively slow (L times longer than
conjugate gradient–based SENSE). This limitation could
be partially overcome with simultaneous computations of
L × Ni NUFFTs using multiple GPUs. This may be partic-
ularly beneficial for 3D spiral and/or very high resolution
spiral scans.

6 CONCLUSIONS

We demonstrate a higher-order image reconstruction
method, called MaxGIRF, that incorporates concomitant
fields and GIRF-based gradient waveform prediction for
spoiled gradient-echo and spin-echo spiral imaging. Simu-
lations indicate that MaxGIRF successfully mitigates local
blurring caused by concomitant fields at various field
strengths and distances from isocenter. The MaxGIRF
reconstruction was able to mitigate concomitant fields
both in phantom and in vivo brain spiral imaging at 0.55 T,
superior to the most notable existing solution. Including
an accurate static off-resonance map further improves its
performance in regions with large static off-resonance.
The impact of this method is greatest when imaging with
longer readouts, high gradient amplitudes, and/or at lower
field strength.
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Text S1. Coordinate transformations.
Text S2. Randomized SVD.
Figure S1. Comparison between MaxGIRF and-
King’s method for sagittal orientation using noiseless
numerical simulations.(1st column) Conjugate phase
reconstruction-based MaxGIRF using onlylowest-order
terms in the concomitant fields. (2nd column)
King’smethod without static off-resonance correction.
(3rd column) Theabsolute difference between MaxGIRF
(L) and King’s method. (4th column) Time averaged con-
comitant fields map. Noiseless numerical simulationswere
performed using a slice (1st row) at isocenter and (2nd
row) 100-mm distance from isocenter. The FOV of spiral
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waveforms was set to 30cm and the image was recon-
structed at twice the FOV. The reconstruction matrixwas
512 x 512 and the matrix size of a displayed image was
320 x 320, givingrise to 30 cm * 2 / 512 * 320 = 37.5 cm
displayed FOV.
Figure S2. Comparison between MaxGIRF and King’s
method for coronal orientation using noiseless numeri-
cal simulations.The simulations were identical to those in
Supporting Information Figure S1 except that the slice off-
setdirection was the y-axis instead of x-axis. See Supporting
Information Figure S1 for details.
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APPENDIX A

The nonlinear signal model G(x̂) is first linearized with
the Taylor expansion around the current estimate x̂n as
follows:

G
(
x̂n + dx̂

)
≈ G

(
x̂n
)
+ ̂DG

(
x̂n
)

dx̂, (A1)

where ̂DG
(
x̂n
)
=
[
𝜕G
𝜕𝛒̂

𝜕G
𝜕
̂𝚫f

]
is the Fréchet derivative of G

evaluated at x̂n. Substituting x̂ with x̂n + dx̂ in Eq. 18 leads
to the cost function that provides the update dx̂ for the nth
Gauss-Newton iteration x̂n+1 = x̂n + dx̂ as follows:

Φ(dx̂) = argmin
dx̂

‖‖‖y − G
(
x̂n
)
− ̂DG

(
x̂n
)

dx̂‖‖‖
2

𝓁2

+ 𝛼n‖‖x̂n + dx̂ − x̂0‖‖
2
𝓁2
. (A2)

Equation A2 can be simplified to

([
̂DG

(
x̂n
)]H

̂DG
(
x̂n
)
+ 𝛼nI2N

)
dx̂

=
[
̂DG

(
x̂n
)]H (

y − G
(
x̂n
))
+ 𝛼n

(
x̂n − x̂0

)
. (A3)

Because ̂DG(x̂) ≜ d
dx̂

G(x̂) = d
dx̂

F(x) = d
dx

F(x) dx
dx̂
=

DF(x)W, Eq. A3 can be expressed in terms of DF (xn) and
solved with LSQR as follows:

(
WH[DF (xn)]HDF (xn)W + 𝛼nI2N

)
dx̂

= WH[DF (xn)]H (y − F (xn)) + 𝛼n
(
x̂n − x̂0

)
. (A4)

The regularization parameter is set to decrease per itera-
tion as 𝛼n = 𝛼0qn, where q = 2∕3, until it reaches a mini-
mum regularization parameter 𝛼min. The data vector y ∈
CNeN×1 is scaled to have “100.0 L2 norm,”79 and scaling
of unknowns is not used. The derivative operator DF(x) ∈
CNeN×2N is defined as

DF(x) =
[
𝜕F
𝜕𝛒

𝜕F
𝜕𝚫f

]
=

⎡
⎢
⎢
⎢
⎢
⎣

𝜕F1
𝜕𝛒

𝜕F1
𝜕𝚫f

⋮ ⋮
𝜕FNe
𝜕𝛒

𝜕FNe
𝜕𝚫f

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

diag (exp (𝑗2π𝚫fTE1)) diag(𝛒)diag (exp (𝑗2π𝚫fTE1)) (𝑗2πTE1)

⋮ ⋮

diag
(
exp

(
𝑗2π𝚫fTENe

))
diag(𝛒)diag

(
exp

(
𝑗2π𝚫fTENe

)) (
𝑗2πTENe

)

⎤
⎥
⎥
⎥
⎥
⎦

.

(A5)

Using Eq. A5, the matrix–vector product dy =
DF(x)Wdx̂ ∈ CNeN×1 is calculated as

dy =
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where we define 𝝍m = exp (𝑗2π𝚫fTEm). Similarly, the
matrix–vector product dx = [DF(x)]Hdy ∈ C2N×1 involv-
ing the adjoint of the derivative operator can be calculated
as

dy =

[
d𝛒

d𝚫f

]

= [DF(x)]H
⎡
⎢
⎢
⎢
⎣

dy1

⋮

dyNe

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

∑Ne
m=1diag

(
𝝍
∗
m
)

dym

ℜ
{∑Ne

m=1diag(𝛒)diag
(
𝝍
∗
m
)
(−𝑗2πTEm)dym

}
⎤
⎥
⎥
⎦
,

(A7)

where ℜ{⋅} denotes the real operator that keeps only the
real part of a complex-valued input.
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