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C8orf4 negatively regulates self-renewal of liver
cancer stem cells via suppression of NOTCH2
signalling
Pingping Zhu1,2, Yanying Wang2, Ying Du2, Lei He3, Guanling Huang2,4, Geng Zhang2,

Xinlong Yan2 & Zusen Fan2,4

Liver cancer stem cells (CSCs) harbour self-renewal and differentiation properties, accounting

for chemotherapy resistance and recurrence. However, the molecular mechanisms to sustain

liver CSCs remain largely unknown. In this study, based on analysis of several hepatocellular

carcinoma (HCC) transcriptome datasets and our experimental data, we find that C8orf4 is

weakly expressed in HCC tumours and liver CSCs. C8orf4 attenuates the self-renewal

capacity of liver CSCs and tumour propagation. We show that NOTCH2 is activated in liver

CSCs. C8orf4 is located in the cytoplasm of HCC tumour cells and associates with the

NOTCH2 intracellular domain, which impedes the nuclear translocation of N2ICD. C8orf4

deletion causes the nuclear translocation of N2ICD that triggers the NOTCH2 signalling,

which sustains the stemness of liver CSCs. Finally, NOTCH2 activation levels are consistent

with clinical severity and prognosis of HCC patients. Altogether, C8orf4 negatively regulates

the self-renewal of liver CSCs via suppression of NOTCH2 signalling.
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H
epatocellular carcinoma (HCC), the most common liver
cancer, is the third leading cause of cancer related death1.
The 5-year survival rate of HCC patients remains poor,

and 4750,000 HCC patients die each year. The high rate of
recurrence and heterogeneity are the two major features of HCC2.
Many studies have suggested that heterogeneity is a result of the
hierarchical organization of tumour cells by a subset of cells with
stem/progenitor cell features known as cancer stem cells (CSCs)3,
which are cancer cells with stem cell features. These CSCs within
tumour bulk display the capacity to self-renew, differentiate and
give rise to a new tumour4, accounting for a hierarchical
organization of heterogeneous cancer cells and a high rate of
cancerous recurrence. Liver CSCs can be enriched by several
defined surface markers, including epithelial cell adhesion
molecule (EpCAM), CD13, CD133, CD90, CD24,CD44, calcium
channel a2d1 subunit and so on5–8.

Like stem cells, CSCs are characterized by self-renewal and
differentiation simultaneously9. Not surprisingly, CSCs share core
regulatory genes and developmental pathways with normal tissue
stem cells. Accumulating evidence shows that NOTCH,
Hedgehog and Wnt signalling pathways are implicated in the
regulation of CSC self-renewal4. NOTCH signalling modulates
many aspects of metazoan development and tissue stemness10,11.
NOTCH receptors contain four members (NOTCH1–4) in
mammals, which are activated by engagement with various
ligands. The aberrant NOTCH signalling was first reported to be
involved in the tumorigenesis of human T-cell leukaemia12,13.
Recently, a number of studies have reported that the NOTCH
signalling pathway is implicated in regulating self-renewal of
breast stem cells and mammary CSCs14,15. However, how the
NOTCH signalling regulates the liver CSC self-renewal remains
largely unknown.

C8orf4, also called thyroid cancer 1 (TC1), was originally cloned
from a papillary thyroid carcinoma and its surrounding normal
thyroid tissue16. C8orf4 is ubiquitously expressed across a wide
range of vertebrates with the sequence conservation across species.
A number of studies have reported that C8orf4 is highly expressed
in several tumours and implicated in tumorigenesis17–19. In
addition, C8orf4 augments Wnt/b-catenin signalling in some
cancer cells20,21, suggesting it may be involved in the regulation of
self-renewal of CSCs. However, the biological function of C8orf4 in
the modulation of liver CSC self-renewal is still unknown. Here we
show that C8orf4 is weakly expressed in HCC and liver CSCs.
NOTCH2 signalling is highly activated in HCC tumours and liver
CSCs. C8orf4 negatively regulates the self-renewal of liver CSCs via
suppression of NOTCH2 signalling.

Results
C8orf4 is weakly expressed in HCC tissues and liver CSCs. To
search for driver genes in the oncogenesis of HCC, we performed
genome-wide analyses using several online-available HCC tran-
scriptome datasets by R language and Bioconductor approaches.
After analysing gene expression profiles of HCC tumour and peri-
tumour tissues, we identified 4360 differentially expressed genes
from both Park’s cohort (GSE36376; ref. 22) and Wang’s cohort
(GSE14520; refs 23,24). Of these changed genes, we focused on
C8orf4, which was weakly expressed in HCC tumours derived
from both Park’s cohort (GSE36376) and Wang’s cohort
(GSE14520) (Fig. 1a). Lower expression of C8orf4 was further
confirmed in HCC samples by quantitative reverse transcription–
PCR (qRT–PCR) and immunoblotting (Fig. 1b,c). In this study,
HCC patient samples we used included all subtypes of HCC. In
addition, these observations were further validated by immuno-
histochemical (IHC) staining (Fig. 1d). These data indicate that
C8orf4 is weakly expressed in HCC tumour tissues.

Notably, C8orf4 was also weakly expressed in embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs) by
analysis of its expression profiles derived from online datasets
(GSE14897; ref. 25 and GSE25417; ref. 26) (Supplementary
Fig. 1a,b). C8orf4 was also lowly expressed in normal liver stem
cells (Supplementary Fig. 1c,d), suggesting that C8orf4 may be
involved in the regulation of self-renewal of liver stem cells. Thus,
we propose that C8orf4 might play a role in the maintenance of
liver CSCs. Since CD13 and CD133 were widely used as liver CSC
surface markers, we sorted CD13þCD133þ cells from Huh7 and
Hep3B HCC cell lines as well as HCC samples, serving as liver
CSCs. We observed that C8orf4 was weakly expressed in liver
CSCs enriched from both HCC cell lines and patient samples
(Fig. 1e). Six HCC samples were analysed for these experiments.
Similar results were obtained in CD13þCD133þ cells from
Hep3B cells. Furthermore, we performed sphere formation
experiments using Huh7 cells and HCC primary sample cells,
and detected expression levels of C8orf4. We observed that
C8orf4 was dramatically reduced in the oncospheres generated by
both HCC cell lines and patient samples (Fig. 1f). In addition, we
noticed that C8orf4 expression was negatively correlated with
liver CSC markers such as CD13 and CD133 in HCC samples
(Fig. 1g), suggesting lower expression of C8orf4 in liver CSCs.
Moreover, C8orf4 was mainly located in the cytoplasm of tumour
cells. Altogether, C8orf4 is weakly expressed in HCC tumour
tissues and liver CSCs.

C8orf4 negatively regulates self-renewal of liver CSCs. We then
wanted to look at whether C8orf4 plays a critical role in the self-
renewal maintenance of liver CSCs. C8orf4 was knocked out in
Huh7 cells through a CRISPR/Cas9 system (Fig. 2a). Two C8orf4-
knockout (KO) cell strains were established and C8orf4 was
completely deleted in these two strains. C8orf4 deletion drama-
tically enhanced oncosphere formation (Fig. 2b). We co-stained
SOX9, a widely used progenitor marker, and Ki67, a well-known
proliferation marker, in C8orf4 KO sphere cells. We found
that SOX9 was strongly stained in C8orf4 KO sphere cells
(Supplementary Fig. 2a). In contrast, Ki67 staining was not sig-
nificantly altered in C8orf4 KO sphere cells versus WT sphere
cells. We also digested sphere cells and examined the SOX9 and
Ki67 expression by flow cytometry. Similar results were achieved
(Supplementary Fig. 2b). Importantly, through serial passage of
CSC sphere cells, similar observations were obtained in the fourth
generation oncosphere assay (Supplementary Fig. 2c,d). These
data suggest that C8orf4 is involved in the regulation of liver CSC
self-renewal.

In addition, C8orf4-deficient Huh7 cells overtly increased
xenograft tumour growth (Fig. 2c). We then performed sphere
formation and digested oncospheres formed by C8orf4-deficient
or WT cells into single-cell suspension, then subcutaneously
implanted 1� 104, 1� 103, 1� 102 and 10 cells into BALB/c nude
mice. Tumour formation was examined for tumour-initiating
capacity at the third month. C8orf4 deficiency remarkably
enhanced tumour-initiating capacity and liver CSC ratios
(Fig. 2d). In addition, C8orf4 deletion significantly enhanced
expression levels of the liver CSC markers such as CD13 and
CD133 (Fig. 2e). We also silenced C8orf4 in HCC primary cells
using a lentivirus infection system and established C8orf4-silenced
cells. Two pairs of short hairpin RNA (shRNA) sequences
obtained similar knockdown efficiency. C8orf4 knockdown
remarkably promoted sphere formation and xenograft tumour
growth (Fig. 2f and Supplementary Fig. 2e). These data indicate
that C8orf4 deletion potentiates the self-renewal of liver CSCs.

We next overexpressed C8orf4 in Huh7 cells and HCC primary
cells using lentivirus infection. We observed that C8orf4
overexpression in Huh7 cells remarkably reduced sphere

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8122

2 NATURE COMMUNICATIONS | 6:7122 | DOI: 10.1038/ncomms8122 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


formation and xenograft tumour growth (Fig. 2g,h). In addition,
C8orf4 overexpression remarkably reduced tumour-initiating
capacity and expression of liver CSC markers (Fig. 2i,j). Similar
results were observed by C8orf4 overexpression in HCC primary
cells (Fig. 2k). We tested three HCC samples with similar results.
Overall, C8orf4 negatively regulates the maintenance of liver CSC
self-renewal and tumour propagation.

C8orf4 suppresses NOTCH2 signalling in liver CSCs. To
further determine the underlying mechanism of C8orf4 in the
regulation of liver CSCs, we analysed three major self-renewal
signalling pathways, including Wnt/b-catenin, Hedgehog and

NOTCH pathways, in C8orf4-deleted Huh7 cells and HCC pri-
mary cells. We found that only NOTCH target genes were
remarkably upregulated in C8orf4-deficient cells (Fig. 3a),
whereas C8orf4 deficiency did not significantly affect the Wnt/b-
catenin or the Hedgehog pathway. Given that the NOTCH family
receptors have four members, we wanted to determine which
NOTCH member was involved in the C8orf4-mediated sup-
pression of liver CSC stemness. We noticed that only NOTCH2
was highly expressed in both Huh7 cells and HCC samples
(Fig. 3b). In addition, this result was also confirmed by analysis of
NOTCH expression levels derived from Wang’s cohort
(GSE14520) and Petel’s cohort (E-TABM-36; ref. 27) (Fig. 3c).
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Figure 1 | C8orf4 is weakly expressed in HCC tumours and liver CSCs. (a) C8orf4 is weakly expressed in HCC patients. Using R language and

Bioconductor methods, we analysed C8orf4 expression in HCC tumour and peri-tumour tissues provided by Park’s cohort (GSE36376) and Wang’s cohort

(GSE14520) datasets. (b,c) C8orf4 expression levels were verified in HCC patient samples by quantitative RT–PCR (qRT–PCR) (b) and immunoblotting (c).

b-actin served as a loading control. 18S: 18S rRNA. (d) HCC samples were assayed by immunohistochemical staining. Scale bar—left: 50mm; right: 20mm.

(e) C8orf4 is weakly expressed in CD13þCD133þ cells sorted from Huh7 cells and primary HCC samples. C8orf4 messenger RNA (mRNA) was measured

by qRT–PCR. Six HCC samples got similar results. (f) C8orf4 is much more weakly expressed in oncospheres than non-sphere tumour cells. Non-sphere:

Huh7 or HCC primary cells that failed to form spheres. (g) HCC sample tissues were co-stained with anti-C8orf4 and anti-CD13 or anti-CD133 antibodies,

then counterstained with DAPI for confocal microscopy. White arrows indicate CD13þ or CD133þ cells. Scale bars: 20mm. For a,b, data are shown as box

and whisker plot. Boxes represent interquartile range (IQR); upper and lower edge corresponds to the 75th and 25th percentiles, respectively. Horizontal

lines within boxes represent median levels of gene intensity. Whiskers below and above boxes extend to the 5th and 95th percentiles, respectively. For e

and f, Student’s t-test was used for statistical analysis, *Po0.05; **Po0.01, data are shown as mean±s.d. Data are representative of at least three

independent experiments. P, peri-tumour; T, tumour
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Moreover, we analysed expression profiles of C8orf4 and NOTCH
target genes using Park’s cohort (GSE36376) and Wurmbach’s
cohort (GSE6764; ref. 28). These cohort datasets provided several
Notch signalling and its target genes. HEY1, NRARP and HES6
genes were highly expressed in HCC tumour tissues (GSE6764;
ref. 28), which were further confirmed in HCC samples by
real-time PCR (Supplementary Fig. 3a,b). Furthermore, HEY1,
NRARP and HES6 genes have been reported to be relatively
specific NOTCH target genes. We then examined these three

genes as the NOTCH2 target genes throughout this study. We
found that the C8orf4 expression level was negatively correlated
with the expression levels of HEY1 and HES6, suggesting that
C8orf4 inhibited NOTCH signaling in HCC patients (Fig. 3d).
Finally these results were further confirmed in HCC samples by
qRT-PCR (Fig. 3e). To further explore the activation status of
NOTCH2 signalling in liver CSCs, we examined the expression
levels of NOTCH downstream target genes in oncospheres and
CD13þCD133þ cells derived from both Huh7 cells and HCC
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cells. We observed that NOTCH target genes were highly
expressed in liver CSCs (Fig. 3f,g). These observations were ver-
ified by immunoblotting (Fig. 3h). In addition, the expression
levels of NRARP, HES6 and HEY1 were positively related to the
expression levels of EpCAM and CD133 derived from Zhang’s
cohort (GSE25097; ref. 29) and Wang’s cohort (GSE14520;
Supplementary Fig. 3c,d). These data suggest that the NOTCH2
signalling plays a critical role in the maintenance of self-renewal
of liver CSCs.

C8orf4 interacts with NOTCH2 that is critical for liver CSCs.
On ligand–receptor binding, the NOTCH receptor experiences a
proteolytic cleavage by metalloprotease and g-secretase, releasing

a NOTCH extracellular domain (NECD) and a NOTCH intra-
cellular domain (NICD), respectively30. Then the active NICD
undergoes nuclear translocation and activates the expression of
NOTCH downstream target genes31.Then we constructed the
NOTCH2 extracellular domain (N2ECD) and intracellular
domain (N2ICD) and examined the interaction with C8orf4 via
a yeast two-hybrid approach. Interestingly, we found that C8orf4
interacted with N2ICD, but not N2ECD (Fig. 4a). The interaction
was validated by co-immunoprecipitation (Fig. 4b). Through
domain mapping, the ankyrin repeat domain of NOTCH2 was
essential and sufficient for its association with C8orf4 (Fig. 4c).
Taken together, C8orf4 interacts with the N2ICD domain of
NOTCH2.
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Figure 3 | C8orf4 suppresses NOTCH2 signalling in liver CSCs. (a) C8orf4 deficiency or depletion activates NOTCH signaling. The indicated major
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To further verify the role of NOTCH2 in the maintenance of
liver CSC self-renewal, we knocked down NOTCH2 in Huh7 cells
and established stably depleted cell lines by two pairs of NOTCH2

shRNAs (Fig. 4d). NOTCH2 knockdown dramatically reduced
sphere formation (Fig. 4e), as well as attenuated xenograft tumour
growth and tumour-initiating capacity (Fig. 4f,g). Similar
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observations were achieved in NOTCH2-depleted HCC primary
cells (Fig. 4h). In addition, we found that simultaneous
knockdown of NOTCH2 and overexpression of C8orf4 failed to
reduce sphere formation capacity compared with individual
knockdown of NOTCH2 (Fig. 4i), suggesting that NOTCH2 and
C8orf4 affected sphere formation through the same pathway.
Meanwhile, C8orf4 knockdown failed to rescue the sphere
formation ability of NOTCH2-depleted HCC primary cells
(Fig. 4i). Similar observations were obtained in Huh7 cells
(Supplementary Fig. 4). Finally, NOTCH2 depletion in C8orf4-
silenced Huh7 cells or HCC primary cells also abrogated the
C8orf4 depletion-mediated enhancement of xenograft tumour
growth (Fig. 4j), suggesting that C8orf4 acted as upstream of
NOTCH2 signalling. These data suggest that C8orf4 suppresses
the liver CSC stemness through inhibiting the NOTCH2
signalling pathway.

C8orf4 blocks nuclear translocation of N2ICD. As shown in
Fig. 1g, C8orf4 was mainly localized in the cytoplasm in tumour
cells of HCC samples. To confirm these observations, we stained
C8orf4 in several HCC cell lines and noticed that C8orf4
also resided in the cytoplasm of Huh7 cells and Hep3B cells
(Fig. 5a and Supplementary Fig. 5a). These results were further
validated by cellular fractionation (Fig. 5b). Importantly,
C8orf4 KO led to nuclear translocation of N2ICD (Fig. 5c). In
addition, we also examined the intracellular location of N2ICD in
Huh7 spheres. We found that C8orf4 deletion caused complete
nuclear translocation of N2ICD in oncosphere cells (Fig. 5d,e),
while N2ICD was mainly located in the cytoplasm of WT
oncosphere cells. However, we found that C8orf4 KO did not
affect subcellular localization of b-catenin (Supplementary
Fig. 5b,c). Through luciferase assays, C8orf4 transfection
did not significantly influence promoter transcription activity
of Wnt target genes such as TCF1, LEF and SOX4 (Supplementary
Fig. 5d). These data indicate that C8orf4 resides in the
cytoplasm of HCC cells and inhibits nuclear translocation of
N2ICD.

To further determine whether C8orf4 inhibits the NOTCH2
signalling in the propagation of xenograft tumours, we examined
the distribution of N2ICD and NOTCH2 target gene activation
in C8orf4-deficient xenograft tumour tissues. We found that
C8orf4-deficient tumours displayed much more nuclear
translocation of N2ICD compared with WT tumours (Fig. 5f).
Expectedly, C8orf4-deficient tumours showed elevated expression
levels of NOTCH2 target genes such as HEY1, HES6 and NRARP
(Supplementary Fig. 5e). Furthermore, C8orf4 overexpression
blocked the nuclear translocation of N2ICD (Fig. 5g,h). Conse-
quently, C8orf4-overexpressing tumours showed much less
N2ICD nuclear translocation and reduced expression levels of
NOTCH2 target genes compared with control tumours
(Supplementary Fig. 5f,g). Of note, C8orf4 overexpression in
N2ICD-overexpressing Huh7 cells still blocked nuclear
translocation of N2ICD (Fig. 5i,j). Consequently, C8orf4 over-
expression abolished the activation of Notch2 signalling (Fig. 5k).
These results suggest that C8orf4 deletion causes the nuclear
translocation of N2ICD leading to activation of NOTCH2
signalling.

NOTCH2 signalling is required for the stemness of liver CSCs.
To further verify the role of NRARP and HEY1 in the main-
tenance of liver CSC self-renewal, we knocked down these two
genes in Huh7 cells and established stably depleted cell lines by
two pairs of shRNAs. As expected, NRARP knockdown drama-
tically reduced sphere formation (Fig. 6a,b). NRARP knockdown
also attenuated tumour-initiating capacity and liver CSC ratios

(Fig. 6c). Similar results were achieved in NRARP-silenced HCC
primary cells (Fig. 6d,e). Similarly, HEY1 silencing remarkably
reduced sphere formation derived from Huh7 and HCC primary
cells (Fig. 6f–i), as well as declined xenograft tumour growth and
tumour-initiating capacity (Supplementary Fig. 6a,b). In sum,
NOTCH2 signalling is required for the maintenance of liver CSC
self-renewal.

NOTCH2 signalling is correlated with HCC severity. As shown
above, the NOTCH2 signalling was highly activated in liver CSCs
and involved in the regulation of liver CSC stemness. We further
examined the relationship of NOTCH2 signalling with the pro-
gression of HCC. First, we analysed NOTCH2 activation levels in
HCC tumour tissues and peri-tumour tissues derived from Park’s
cohort (GSE36376). We observed that HEY1, HES6 and NRARP
were highly expressed in the tumour tissues of HCC patients
(Fig. 7a). Consistently, high expression levels of HEY1, HES6 and
NRARP in HCC tumours were validated by Zhang’s cohort
(GSE25097) (Fig. 7b). Importantly, high expression of these three
genes was confirmed in HCC samples through quantitative RT–
PCR (Fig. 7c), as well as immunoblotting (Fig. 7d). To confirm a
causative link between low C8orf4 expression level and nuclear
N2ICD, we examined 93 HCC samples (31 peri-tumour, 37 early
stage of HCC patients and 25 advanced stage of HCC patients)
with immunohistochemistry staining. We observed that nuclear
staining of N2ICD appeared in B10% tumour cells in the
majority of early HCC patients we tested (Fig. 7e,f). In advanced
HCC patients, nuclear staining of N2ICD in tumour cells
increased to B30% in almost all the advanced HCC patients we
examined. Consequently, HEY1 staining existed in B10%
tumour cells with scattered distribution and increased to 30%
tumour cells in the advanced HCC patients (Fig. 7e). Con-
sistently, low expression of C8orf4 was well correlated with
activation of NOTCH2 signalling (Fig. 7e,f).

Serial passages of colonies or sphere formation in vitro, as well
as transplantation of tumour cells, are frequently used to assess
the long-term self-renewal capacities of CSCs32. We used HCC
primary cells for serial passage growth in vitro and tested the
expression levels of C8orf4, HEY1 and SOX9. We found that
C8orf4 expression was gradually reduced over serial passages in
oncosphere cells (Supplementary Fig. 7a). Consequently, the
expression of NOTCH2 targets such as HEY1 and SOX9
was gradually increased in oncosphere cells during serial
passages (Supplementary Fig. 7b). In addition, N2ICD nuclear
translocation appeared in oncosphere cells with high expression
of HEY1 plus low expression of C8orf4 (termed as C8orf4� /
N2ICDnuc/HEY1þ cells) (Supplementary Fig. 7c). These data
suggest that the C8orf4� /N2ICDnuc/HEY1þ fraction cells
represent a subset of liver CSCs.

Through analysing Wang’s cohort (GSE54238), we noticed that
the NOTCH2 activation levels were positively correlated with the
development and progression of HCC (Fig. 7g). By contrast, the
NOTCH2 pathway was not activated in inflammation liver,
cirrhosis liver and normal liver (Fig. 7f). Consistently, similar
observations were achieved by analysis of Zhang’s cohort
(GSE25097) (Supplementary Fig. 7d). In addition, the NOTCH2
activation levels were consistent with clinicopathological stages of
HCC patients derived from Wang’s cohort (GSE14520)
(Supplementary Fig. 7e). Finally, HCC patients with higher
expression of HEY1 displayed worse prognosis derived from
Petel’s cohort (E-TABM-36) and Wang’s cohort (GSE14520)
(Fig. 7h). These two cohorts (E-TABM-36 and GSE14520) have
survival information of HCC patients. Taken together, the
NOTCH2 activation levels in tumour tissues are consistent with
clinical severity and prognosis of HCC patients.
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Discussion
CSC have been identified in many solid tumours, including
breast, lung, brain, liver, colon, prostate and bladder cancers4,6,33.
CSCs have similar characteristics associated with normal tissue
stem cells, including self-renewal, differentiation and the ability to
form a new tumour. CSCs may be responsible for cancer relapse
and metastasis due to their invasive and drug-resistant

capacities34. Thus, targeting CSCs may become a promising
therapeutic strategy to deadly malignancies35,36. However, it
remains largely unknown about hepatic CSC biology. In this
study, we used CD13 and CD133 to enrich CD13þCD133þ

subpopulation cells as liver CSCs. Based on analysis of several
online-available HCC transcriptome datasets, we found that
C8orf4 is weakly expressed in HCC tumours as well as in
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CD13þCD133þ liver CSCs. NOTCH2 signalling is required for
the maintenance of liver CSC self-renewal. C8orf4 resides in the
cytoplasm of tumour cells and interacts with N2ICD, blocking the
nuclear translocation of N2ICD. Lower expression of C8orf4
causes nuclear translocation of N2ICD that activates NOTCH2
signalling in liver CSCs. NOTCH2 activation levels are consistent
with clinical severity and prognosis of HCC patients. Therefore,
C8orf4 negatively regulates self-renewal of liver CSCs via
suppression of NOTCH2 signalling.

Elucidating signalling pathways that maintains self-renewal of
liver CSCs is pivotal for the understanding of hepatic CSC biology
and the development of novel therapies against HCC. Several
signalling pathways, such as Wnt/b-catenin, transforming growth

factor-beta, AKT and STAT3 pathways, have been defined to be
implicated in the regulation of liver CSCs37. Not surprisingly,
some liver CSC subsets and normal tissue stem cells may share
core regulatory genes and common signalling pathways. The
NOTCH signalling pathway plays an important role in
development via cell-fate determination, proliferation and cell
survival38,39. The NOTCH family receptors contain four
members in mammals (NOTCH1–4), which are activated
by binding to their corresponding ligands. A large body of
evidence provides that NOTCH signalling is implicated in
carcinogenesis40. However, the role of NOTCH signalling in
liver cancer is controversial. A previous study reported that
NOTCH1 signalling suppresses tumour growth of HCC41.

Huh7 Huh7
1.2

0.8

0.4

0

sh
Ctrl

sh
NRARP#1

sh
NRARP#2

sh
Ctrl

sh
NRARP#1

sh
NRARP#2

sh
Ctrl

sh
NRARP#1

sh
NRARP#2

sh
Ctrl

sh
NRARP#1

sh
NRARP#2

sh
Ctrl

sh
HEY1#

1

sh
HEY1#

2

sh
Ctrl

sh
NRARP#1

sh
NRARP#2

N
R

A
R

P
 m

R
N

A
(f

ol
d 

ch
an

ge
)

1.2

0.8

0.4

0

N
R

A
R

P
 m

R
N

A
(f

ol
d 

ch
an

ge
)

Huh7

Huh7

1.2

0.8

0.4

0

*
*

0

0.4

0.8

1.2

1.6

H
E

Y
1 

m
R

N
A

(f
ol

d 
ch

an
ge

)

6

4

2

0

1.2

0.8

0.4

0

1.2

0.8

0.4

0

H
E

Y
1 

m
R

N
A

(f
ol

d 
ch

an
ge

)

S
ph

er
e-

in
iti

at
in

g
ce

lls
 (

%
)

S
ph

er
e-

in
iti

at
in

g
ce

lls
 (

%
)

shNRARP#2

S
ph

er
e-

in
iti

at
in

g
ce

lls
 (

%
)

Tu
m

ou
r 

fo
rm

at
io

n
m

ic
e 

(%
)

S
ph

er
e-

in
iti

at
in

g
ce

lls
 (

%
)

8

6

4

2

0

4
2

0Li
ve

r 
C

S
C

 r
at

io
 (

‰
)

1

0
10 102 103 104

20

40

60

80

100

***
***

Sphere cells

*
* shNRARP#1

HCC sample

HCC sample

HCC sample

HCC sample

shNRARP#2shNRARP#1shCtrl

shCtrl

shNRARP#2shNRARP#1shCtrl

sh
HEY1#

2

sh
HEY1#

1shHEY1#2shHEY1#1shCtrl

shHEY1#2shHEY1#1shCtrl

sh
Ctrl

sh
HEY1#

2

sh
HEY1#

1

sh
Ctrl

sh
HEY1#

2

sh
HEY1#

1

sh
Ctrl

**

**
**

**

Figure 6 | Depletion of NRARP and HEY1 impairs stemness of liver CSCs. (a,b) NRARP-silenced Huh7 cells were established (a) and showed reduced

sphere formation capacity (b). Two pairs of shRNAs against NRARP obtained similar results. (c) NRARP-silenced Huh7 cells decline tumour-initiating

capacity (left panel) and reduce liver CSC frequency (right panel). Error bars represent the 95% confidence intervals of the estimation. (d,e) NRARP was

knocked down in HCC primary cells (d) and sphere formation was detected (e). Three HCC samples were tested with similar results. (f,g) HEY1-silenced

Huh7 cells were established (f) and sphere formation was assayed (g). Two pairs of shRNAs against HEY1 obtained similar results. (h,i) HEY1 was knocked

down in HCC primary cells (h) and HEY1 depletion impaired sphere formation capacity (i). Three HCC samples were tested with similar results. Scale bars:

b,e,g,i, 500mm. For a,b,d–i, Student’s t-test was used for statistical analysis, *Po0.05; **Po0.01; ***Po0.001, data are shown as mean±s.d. Data are

representative of at least three independent experiments.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8122 ARTICLE

NATURE COMMUNICATIONS | 6:7122 | DOI: 10.1038/ncomms8122 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Recently, several reports showed that NOTCH signalling
enhances liver tumour initiation42–44. Importantly, a recent
study showed that various NOTCH receptors have differential
functions in the development of liver cancer45. Here we
demonstrate that NOTCH2 signalling is activated in HCC
tumour tissues and liver CSCs, which is required for the
maintenance of liver CSC self-renewal.

C8orf4, also known as TC1, was originally cloned from a
papillary thyroid cancer16,46. The copy number variations of
C8orf4 are associated with acute myeloid leukaemia and other

haematological malignancies19,47. C8orf4 has been reported to be
implicated in various cancers. C8orf4 was highly expressed in
thyroid cancer, gastric cancer and breast cancer16,20,46. C8orf4
has been reported to enhance Wnt/b-catenin signalling in cancer
cells that is associated with poor prognosis20,21. However, C8orf4
is downregulated in colon cancer48. In this study, we show that
C8orf4 is weakly expressed in HCC tumour tissues and liver
CSCs. Our observations were confirmed by two HCC cohort
datasets. Importantly, C8orf4 negatively regulates the NOTCH2
signalling to suppress the self-renewal of liver CSCs. Therefore,
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C8orf4 may exert distinct functions in the regulation of various
malignancies.

NOTCH receptors consist of noncovalently bound extracellular
and transmembrane domains. Once binding with membrane-
bound Delta or Jagged ligands, the NOTCH receptors undergoes
a proteolytic step by metalloprotease and g-secretase, generating
NECD and NICD fragments11,31. The NICD, a soluble fragment,
is released in the cytoplasm on proteolysis. Then the NICD
translocates to the nucleus and binds to the transcription
initiation complex, leading to activation of NOTCH-associated
target genes49. However, it is largely unclear how the NICD is
regulated during NOTCH signalling activation. Here we show
that N2ICD binds to C8orf4 in the cytoplasm of liver non-CSC
tumour cells, which impedes the nuclear translocation of N2ICD.
By contrast, in liver CSCs, lower expression of C8orf4 causes the
nuclear translocation of N2ICD, leading to activation of NOTCH
signalling.

CSCs or tumour-initiating cells, behave like tissue stem cells in
that they are capable of self-renewal and of giving rise to
hierarchical organization of heterogeneous cancer cells4. Thus,
CSCs harbour the stem cell properties of self-renewal and
differentiation. Actually, the CSC model cannot account for
tumorigenesis in all tumours. CSCs could undergo genetic
evolution, and the non-CSCs might switch to CSC-like cells4.
These results highlight the dynamic nature of CSCs, suggesting
that the clonal evolution and CSC models can act in concert for
tumorigenesis. Furthermore, low C8orf4 expression in tumour
cells results in overall Notch2 activation, which then may have
more of a progenitor signature and be more aggressive. These
cells would likely have a growth advantage in non-adherent
conditions and express many of the stemness markers. The
dynamic nature of CSCs or persistent NOTCH2 activation may
contribute to the high number of C8orf4� /N2ICDnuc/HEY1þ

cells in advanced HCC tumours and correlation in the patient
cohort.

A recent study showed that NOTCH2 and its ligand Jag1 are
highly expressed in human HCC tumours, suggesting activation
of NOTCH2 signalling in HCC45. In addition, inhibiting
NOTCH2 or Jag1 dramatically reduces tumour burden and
growth. However, suppression of NOTCH3 has no effect
on tumour growth. Dill et al.43 reported that Notch2 is an
oncogene in HCC. Notch2-driven HCC are poorly differentiated
with a high expression level of the progenitor marker Sox9,
indicating a critical role of Notch2 signalling in liver CSCs. Here
we found that NOTCH2 and its target genes such as NRARP,
HEY1 and HES6 are highly expressed in HCC samples. In
addition, depletion of NRARP and HEY1 impairs the stemness
maintenance of liver CSCs and tumour propagation. Moreover,
the expression levels of NRARP, HEY1 and HES6 in tumours
are positively correlated with clinical severity and prognosis
of HCC patients. Finally, the NOTCH2 activation status is
positively related to the clinicopathological stages of HCC
patients. Altogether, C8orf4 and NOTCH2 signalling can be
detected for the diagnosis and prognosis prediction of HCC
patients, as well as used as targets for eradicating liver CSCs
for future therapy.

Methods
Cell lines and tumour specimens. Human liver cancer cell lines Huh7 and Hep3B
were provided by Dr Zeguang Han (the Shanghai Jiaotong University School of
Medicine, Shanghai, China). Cells were maintained in DMEM supplemented with
10% FBS (Life Technologies), 100 mg ml� 1 penicillin and 100 U ml� 1 strepto-
mycin. Human liver cancer specimens were obtained from the Department of
Hepatobiliary Surgery, PLA General Hospital (Beijing, China) with informed
consent, according to the Institutional Review Board approval. We numbered HCC
samples according to obtaining date, and randomly utilized the samples without
artificial bias.

Antibodies and reagents. Commercial antibodies were mouse anti-b-actin,
mouse anti-Flag, rabbit anti-C8orf4 antibodies (Sigma-Aldrich); mouse anti-green
fluorescent protein (anti-GFP), PE-conjugated CD13 antibodies (Sungene Biotech,
Tianjin); rabbit anti-NOTCH2 antibody (Cell Signaling Technology); PE-con-
jugated CD133 antibody (BD), Rabbit anti-CD133, anti-CD13 antibodies (Sangon
Biotech, Shanghai); Calreticulin, Alexa488-conjugated goat anti-rat immunoglo-
bulin-G (IgG; Biolegend); Alexa488-conjugated donkey anti-mouse IgG, Alexa594-
conjugated donkey anti-mouse IgG, Alexa594-conjugated donkey anti-rabbit IgG
(Molecular Probes) and horseradish peroxidase (HRP)-conjugated secondary
antibody (Santa Cruz). Dilutions of anti-b-actin, anti-Flag, anti-GFP and HRP-
conjugated secondary antibodies (for western blot) were 1:5,000, dilutions of
anti-CD133, anti-CD13 and fluorescence-conjugated or HRP-conjugated second-
ary antibodies (for IHC staining) were 1:500, and the others were 1:1,000. Other
major reagents were bFGF (Millipore), EGF (Sigma-Aldrich), N2 supplement
(Life Technologies), B27 (Life Technologies), PEG8000 (Sigma-Aldrich), DAPI
(40 ,6-diamidino-2-phenylindole; Sigma-Aldrich) and PI (Sigma-Aldrich).

Quantitative RT–PCR. Extraction of specimen RNA was followed by a standard
protocol provided by Life Technology. Briefly, fresh specimens were homogenized
with Trizol, and then segregated by adding chloroform, after obtaining the aqueous
phase isopropanol and 75% ethanol were added sequentially. RNA pellet was
resolved in RNase free H2O. After RT of messenger RNA by a standard protocol
provided by Promega, complementary DNA was obtained and used as a template
for quantitative PCR. Quantitative PCR kit was purchased from TIANGEN
BioMart (Beijing) and sequence-specific primers were obtained from SanGon
Company (Shanghai). We examined messenger RNA expression by quantitative
PCR with ABI7300 (Applied Biosystems). Sequences of PCR primers are shown in
the Supplementary Table 1.

Western blot. For western blot, tumour cells or specimens were homogenized
with RIPA buffer (150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% NP40,
1 mM EDTA, 50 mM Tris (pH 8.0)). After boiling for 15 min, supernatants were
loaded onto SDS–PAGE gels. Nitrocellulose membranes were incubated with
primary antibodies for immunoblotting, then incubated and visualized by HRP-
conjugated secondary antibodies. We provided uncropped scans of western blot in
Supplementary Fig. 8.

Co-immunoprecipitation. For co-immunoprecipitation, oncospheres were har-
vested, digested with trypsin/EDTA and washed three times with PBS, then treated
with RIPA buffer for 30 min at 4 �C. Precipitation was removed from cell lysates by
centrifugation at 14,000g for 10 min and the supernatant was precleared by protein
A/G beads (Santa Cruz Biotechnology). After 1 h incubation, precleared protein A/
G beads were removed and primary antibody was added for overnight incubation,
and new protein A/G beads were added for 3 h incubation, then beads were col-
lected and washed with PBS. Finally samples were subjected onto SDS–PAGE gels
and detected by western blot.

Flow cytometry. For flow cytometry, cells were digested with trypsin/EDTA, after
being labelled with proper primary antibodies and secondary antibodies samples
were washed three times, then loaded and analysed with FACSAriaIl. Compared
with IgG control sample, antibody-specific staining cells and negative cells were
gated and collected by adding magnetic field. Then sorted cells were digested for
qRT–PCR to detect gene expression levels.

CRISPR/Cas9 KO system. C8orf4-deficient Huh7 cells were established using
CRISPR/Cas9 according to standard protocol provided by Zhang’s lab50. Briefly,
sgRNA was generated by online CRISPR Design Tool (http://tools.genome-
engineering.org) and cloned into pSpCas9(BB)-2A–GFP vector. After confirming
cutting efficiency of sgRNA, pSpCas9 vectors were transfected into Huh7 cells.
Sorted GFP-positive Huh7 cells were seeded into 96-well plates for mono-
clonalization. Four weeks later, the cell clones derived from single cells were
detected for gene expression. For C8orf4 KO, two pairs of small guide RNA
(sgRNA) were used, and their sequences were 50-TGGGCTGACTCGTAG
CGACG-30 and 50-GCCCACGGCTTTCTTACGAG-30 .

Yeast two-hybrid assay. Yeast two-hybrid assay was performed using Match-
maker Gold Yeast Two-Hybrid system (Takara Bio Inc.). Briefly, C8orf4 was
subcloned into pGBKT7 plasmid (BD-C8orf4). N2ICD and N2ECD were
subcloned into pGADT7 plasmid (AD-N2ICD and AD-N2ECD). BD-C8orf4
and AD-N2ICD or AD-N2ECD were co-transformed into AH109 cells, and then
plated on SD plate lacking adenine, histidine, tryptophan and leucine51. Selected
clones were detected for b-galactosidase activity.

IHC staining. Formalin-fixed HCC sections were deparaffinized using xylene and
then rehydrated with graded alcohols and finally distilled water. After being treated
with 3% H2O2 for 15 min, the slides were treated for antigen retrieval in 121 �C for
5 min, and then cooled down to room temperature slowly. After 30 min incubation
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in 10% goat serum, the sections were incubated in proper primary antibodies
(C8orf4, N2ICD and HEY1, 1:1,000 dilution) overnight. After washing three times
with PBS, the sections were incubated in HRP-conjugated secondary antibodies
(1:500 dilution), and the subsequent detection was performed using the standard
substrate detection of HRP. Then the sections were stained with haematoxylin and
dehydration in graded alcohols and xylene. For C8orf4 staining, citrate/sodium
citrate buffer was used for antigen retrieval. For HEY1 and N2ICD staining, Tris-
EDTA buffer (10 mM, pH 8.0) was used for antigen retrieval.

Lentivirus production and cell infection. We constructed pBPLV–GFP vector
and Psin–GFP–C8orf4 plasmid, and transfected 293T cells for virus production.
Huh7 and HCC primary cells were infected by the virus supernatants. After sorting
for GFP-positive cells, we established C8orf4 overexpression cells. C8orf4,
NOTCH2-, NRARP- and HEY1-silenced Huh7 or HCC primary cells were
established using pSicoR–GFP shRNA vectors by a similar strategy. For HCC
sample cells, we used high infection efficiency lentivirus containing pBPLV–GFP
overexpression vector or pSicoR shRNA vector. shRNA sequences are listed in the
Supplementary Table2.

Sphere formation assay. Thousand Hep3B cells or 5,000 HCC primary cells were
seeded in Ultra Low Attachment 6-well plates (Corning Incorporated Life Sciences,
Acton, MA, USA) and cultured in Dulbecco’s modified Eagle’s medium/F12 (Life
Technologies) supplemented with B27, N2, 20 ng ml� 1 epidermal growth factor
and 20 ng ml� 1 basic fibroblast growth factor (Millipore). Cells were incubated in a
CO2 incubator, and 2 weeks later spheres were counted under stereomicroscope
(Olympus, Tokyo, Japan). The spheres were fixed for immunofluorescence staining
or digested for co-immunoprecipitation and western blot assays. For non-sphere
cell separation, we collected sphere formation medium that contains non-sphere
cells and sphere cells in an Eppendorf tube and let stand for 5 min and pellets were
spheres. Supernatants were then removed in a new Eppendorf tube carefully with
transferpettor and collected by centrifugation at 1,500g for 5 min. Pellets were non-
sphere cells and used directly for subsequent experiments. We cultured these non-
sphere cells under the same non-adherent conditions as sphere cells.

In vivo xenograft experiments. For tumour growth assays, 1� 106 tumour cells
were injected into 6-week-old male BALB/c nude mice. Every 5 days, tumour
volume was calculated by the formula V¼ pab2/6 (a: tumour length, b: tumour
width). For tumour-formation assay, spheres were digested in single cells by
trypsin/EDTA, and 10, 102, 103 and 104 cells were injected into 6-week-old male
BALB/c nude mice. Tumour formation was observed every month and analysed at
the third months. BALB/c nude mice were obtained from the Animal Centre of the
Chinese Academy of Medical Sciences (Beijing, China), and all experiments
involving mice were approved by the institutional committee of Institute of Bio-
physics, Chinese Academy of Sciences.

Statistical analysis. Cohort datasets were downloaded from NCBI or EBI. R
language and Bioconductor methods were used for background correction, nor-
malization, calculation of gene expression and annotation52. Gene and expression
lists generated by R3.1.0 were used for further analysis. Tumour-initiating cell
frequency was calculated using extreme limiting dilution analysis53.
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