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Abstract
In this article, we investigate a diffusive two-strain epidemic model with non-monotone incidence rate and virus mutation.

The positivity, existence and uniform boundedness of the solutions of the model system are studied. It is found that the

system has three equilibrium points, namely the infection-free equilibrium point, the strain-2 endemic equilibrium point

and both the strain-1 and strain-2 endemic equilibrium points. The global asymptotic stability analysis of the diffusive

model system near all the equilibrium points is carried out by constructing appropriate Lyapunov functional. It is found that

the system has no strain-1 endemic equilibrium point possibly due to the virus mutation. So, in this type of diseases, the

infection due to strain-1 cannot be persistent in the community.

Keywords Two-strain epidemic model � Reaction–diffusion equation � Non-monotone incidence rate � Virus mutation �
Global dynamics.

Mathematics Subject Classification 92B05 � 97M10 � 37N25 � 35Q92

1 Introduction

Mathematical modeling has been extensively used in last

few decades for studying the dynamics of the infectious

diseases. After the pioneering work of Kermack and

McKendrick (1927), different kinds of mathematical

models have been proposed in order to achieve a better

understanding of the transmission pattern of the infectious

diseases (see Dubey et al. (2016a), Dubey et al. (2016b),

Hattaf et al. (2012), Khatua and Kar (2020a), Khatua and

Kar (2020b), Khatua et al. (2021), Mandal et al. (2020),

Mandal et al. (2020) ). The proper choice of the incidence

function is of great practical importance in studying the

disease dynamics. There are several nonlinear incidence

functions in literature for describing the disease transmis-

sion rate, for example bi-linear incidence rate (Martcheva

(2015)), nonlinear incidence rate (Korobeinikov and Maini

(2004)), saturated incidence rate (Zhang and Liu (2008)),

non-monotone incidence rate (Xiao and Ruan (2007)), and

general incidence rate (Ávila-Vales et al. (2017)). How-

ever, from a practical point of view, out of these, the non-

monotone incidence is most important as it is capable to

incorporate the behavioral changes of the susceptible

population when the infected population is very large. Xiao

and Ruan (2007) studied the global behavior of an epi-

demic system with non-monotonic incidence rate, while

Muroya et al. (2011) investigated a delayed SIRS type

epidemic model with a non-monotonic incidence rate. By

using the monotone iterative techniques, they established

the sufficient conditions for the global asymptotic stability

of endemic equilibrium under the condition R0 [ 1. Baba

and Hincal (2017) investigated the dynamics of a two strain

epidemic model with bi-linear and non-monotone inci-

dence rate. They have shown that any strain with highest

basic reproduction ratio will automatically outperform the

other strain. Meskaf et al. (2020) studied the two-strain

SEIR type model with non-monotone incidence rates. Very
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recently, Kumar (2021) studied the effects of non-mono-

tonic functional response on a disease transmission model.

Some other model-based research works using non-

monotone incidence rate can be found in Feng and Qiu

(2018), Li and Teng (2018), Kar and Batabyal (2010) and

the references cited therein.

Also, there are many diseases in which more than one

pathogen strains are observed due to the process of virus

mutation, for example influenza, dengue, COVID-19, and

some sexually transmitted diseases. So, it is better to use

the multi-strain models as they can describe those diseases

more accurately in comparison with the single strain

models. Baba et al. (2018) studied an epidemic model

consisting of two strains with vaccine for each strain. They

concluded that if both the basic reproduction numbers are

less than unity, then the disease dies out, and if one of the

ratios is less than unity, then epidemic occurs with respect

to the other. While Baba and Hincal (2018) proposed and

analyzed an epidemic model for influenza with three strains

and they studied the effects of vaccination and awareness,

Nandi et al. (2019) studied the complex dynamical

behavior of an epidemic model with two diseases, and also

they pointed out the optimal control strategy. Similar kind

of research articles on multi-strain models can be found in

Li et al. (2013), Liu et al. (2018), Meskaf et al. (2020), and

the references cited in those articles.

Moreover, spatial heterogeneity of the populations plays

an important role in the spread of infectious diseases.

Ignoring spatial diffusion in model is to ignore the reality.

In this regard, reaction–diffusion equations are used to

include the spatial movement of the populations into the

models. Wang et al. (2012) investigated the complex

dynamics of a reaction–diffusion epidemic model. Their

results indicate that the spread of the epidemic is strongly

influenced by the diffusion. Li and Bie (2019) studied the

dynamics of a diffusive SIRS type epidemic system in

spatially heterogeneous environment. They concluded that

the spontaneous infection enhances the persistence of dis-

ease. Han and Lei (2019) studied the global dynamics of a

diffusive SEIR epidemic model with nonlinear incidence.

There are many research works investigating the role of

spatial diffusion on the dynamics of the diseases, for

example Holmes et al. (1994), Lotfi et al. (2014), Kuniya

and Wang (2018), and the references cited therein. How-

ever, to our best knowledge no attempt has been made to

study the dynamics of a two-strain reaction–diffusion epi-

demic model with non-monotone incidence rate for both

the strains and virus mutation. In this present study, we will

study the dynamical behavior of a diffusive two-strain

epidemic model incorporating non-monotonic incidence

rate.

The rest of this article is organized as follows: In

Sect. 2, we formulate the two-strain epidemic model con-

sidering the spatial diffusion and virus mutation. Then, the

existence, positivity and uniform boundedness of the

solutions of the model system are studied in Sect. 3. All the

possible equilibrium points of the system and their

respective global stability analysis are investigated in the

Sect. 4. Finally, in Sect. 5, some conclusions are provided.

2 Model Formulation

Here, we develop a two-strain diffusive epidemic model

with virus mutation and non-monotone incidence rate. We

assume that the total population is divided into four classes,

namely susceptible class S(t), infected class with strain-1

I1ðtÞ, infected class with strain-2 I2ðtÞ and recovered class

R(t). Further we consider the following assumptions to

construct the model.

� The recruitment rate to the susceptible class is taken as

K:
� The susceptible individuals can become infected by

strain-1 or strain-2 and move to the infected compartments

I1 and I2 at a rate a1 and a2 respectively.

� Following Xiao and Ruan (2007), non-monotonic

incidence rate kSI
1þaI2 is considered. The incidence function is

increasing when I is small and decreasing when I is large.

This type of incidence is considered to interpret the psy-

chological effect: for a very large number of infective

individuals the infection force may decrease as the number

of infective individuals increases, because in the presence

of large number of infectives the population may tend to

reduce the number of contacts per unit time.

• The infected individuals with one of the strain cannot

be infected with the other, i.e., there is no super-

infection. However, it is considered that the strain-1

mutate into strain-2 at a rate n.

• The infected individuals of I1 and I2 compartments

recover at a rate q1 and q2 respectively.

• The natural mortality rate for each classes is taken as d

and the disease induced mortality rate for due to strain-

1 and strain-2 is taken as l1 and l2 respectively.

• Moreover, the spatial diffusion is taken into consider-

ation, i.e., the population move randomly described as

Brownian random motion.

Based on the above assumptions, our reaction–diffusion

model takes the following form:
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oS

ot
¼ K� a1SI1

1 þ c1I
2
1

� a2SI2
1 þ c2I

2
2

� dSþ d1r2S; x 2 X; t[ 0;

oI1
ot

¼ a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1

� nI1 þ d2r2I1; x 2 X; t[ 0;

oI2
ot

¼ a2SI2
1 þ c2I

2
2

� d þ l2 þ q2ð ÞI2 þ nI1 þ d3r2I2; x 2 X; t[ 0;

oR

ot
¼ q1I1 þ q2I2 � dRþ d4r2R; x 2 X; t[ 0;

ð1Þ

with homogeneous Neumann boundary conditions

oS

om
¼ 0;

oI1
om

¼ 0;
oI2
om

¼ 0;
oR

om
¼ 0; x 2 oX; t[ 0 ð2Þ

and initial conditions

Sðx; 0Þ ¼S0ðxÞ� 0; I1ðx; 0Þ ¼ I10ðxÞ�
0; I2ðx; 0Þ ¼I20ðxÞ� 0;Rðx; 0Þ ¼ R0ðxÞ� 0:

ð3Þ

Here, X is a bounded domain in Rn with smooth boundary

oX, and oS
om,

oI1
om , oI2

om , and oR
om are, respectively, the normal

derivatives of S; I1; I2 and R on oX.

In the above, Sðx; tÞ; I1ðx; tÞ; I2ðx; tÞ;Rðx; tÞ, respectively,

stand for the density of susceptible, infected with strain-1,

infected with strain-2 and recovered populations at location

x and time t. The positive constants d1; d2; d3; d4 are used to

measure their respective migration (movement) mobility.

3 Global Existence, Positivity,
and Boundedness

Proposition 1 The system (1) has a unique solution

defined on ½0; 1Þ and this solution remains non-negative

for all t� 0.

Proof The system (1) can be written abstractly in the

Banach space X ¼ Cð �XÞ � Cð �XÞ of the following form:

u
0 ðtÞ ¼ AuðtÞ þ FðuðtÞÞ; t[ 0;

uð0Þ ¼ x0 2 X:

where u ¼ ColðS; I1; I2;RÞ, AðuðtÞÞ ¼ Colðd1r2S; d2r2I1;

d3r2I2; d4r2RÞ and

FðuðtÞÞ ¼

K� a1SI1
1 þ c1I

2
1

� a2SI2
1 þ c2I

2
2

� dS

a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1 � nI1

a2SI2
1 þ c2I

2
2

� d þ l2 þ q2ð ÞI2 þ nI1

q1I1 þ q2I2 � dR

0
BBBBBBBBB@

1
CCCCCCCCCA

:

However, F is locally Lipschitz in X. Therefore, it can be

concluded from Pazy (1983) that the system (1) admits a

local solution on ½0; Tmax�, where Tmax is the maximum

time for which the solution of the system (1) exist.

In addition, the system (1) can be written as:

oS

ot
� d1r2S ¼ K� a1SI1

1 þ c1I
2
1

� a2SI2
1 þ c2I

2
2

� dS

¼ F1ðS; I1; I2;RÞ;
oI1
ot

� d2r2I1

¼ a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1 � nI1 ¼ F2ðS; I1; I2;RÞ;

oI2
ot

� d3r2I2 ¼ a2SI2
1 þ c2I

2
2

� d þ l2 þ q2ð ÞI2 þ nI1

¼ F3ðS; I1; I2;RÞ;
oR

ot
� d4r2R ¼ q1I1 þ q2I2 � dR

¼ F4ðS; I1; I2;RÞ:
ð4Þ

Here the functions FiðS; I1; I2;RÞ; i ¼ 1; 2; 3; 4 are contin-

uously differentiable functions and also

F1ð0; I1; I2;RÞ ¼K[ 0;

F2ðS; 0; I2;RÞ ¼0� 0;

F3ðS; I1; 0;RÞ ¼n1I1 � 0;

F4ðS; I1; I2; 0Þ ¼q1I1 þ q2I2 � 0:

Since the initial data of the system (1) are non-negative, all

the solutions of the system (1) remain positive. h

Proposition 2 There exists a positive constant K1 inde-

pendent of initial data such that the solution ðS; I1; I2;RÞ of
the system (1) satisfies

jj Sð:; tÞ jjL1ðXÞ þ jj I1ð:; tÞ jjL1ðXÞ þ jj I2ð:; tÞ jjL1ðXÞ

þ jj Rð:; tÞ jjL1ðXÞ �K1; 8t� T0;

for some large time T0 [ 0.
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Proof First adding the equations of the system (1), we

obtain

o

ot
Sþ I1 þ I2 þ Rð Þ

� d1r2S� d2r2I1 � d3r2I2 � d4r2R

¼ K� d Sþ I1 þ I2 þ Rð Þ � l1I1

� l2I2; 8t 2 ð0; TmaxÞ

ð5Þ

Now integrating both sides of Eq. (5) over X with respect

to x by parts and using the zero Neumann boundary con-

ditions, we then obtain

d

dt

Z
X
Sþ I1 þ I2 þ Rð Þdx

¼
Z
X
Kdx�

Z
X
d Sþ I1 þ I2 þ Rð Þdx

�
Z
X
l1I1dx�

Z
X
l2I2dx

�
Z
X
Kdx�

Z
X
d Sþ I1 þ I2 þ Rð Þdx

ð6Þ

Let VðtÞ ¼
Z
X
Sþ I1 þ I2 þ Rð Þdx:

Then, from inequality (6), we have

dV

dt
� j X j K� dV tð Þ

Now integrating the above inequality from 0 to t, we get

VðtÞ�Vð0Þe�dt þ j X j K
d

1 � e�dt
� �

i.e.

Z
X
Sþ I1 þ I2 þ Rð Þdx

� e�dt

Z
X
S0ðxÞ þ I10ðxÞ þ I20ðxÞ þ RðxÞð Þdx

þ j X j K
d

1 � e�dt
� �

8t� 0

Thus, we obtain

lim sup
t!1

Z
X
Sþ I1 þ I2 þ Rð Þdx� j X j K

d
: ð7Þ

Now in view of [Theorem 3.3 of Dung (1998) ], there

exists a positive constant K1, which does not depend on

initial data such that

jj Sð:; tÞ jjL1ðXÞ þ jj I1ð:; tÞ jjL1ðXÞ

þ jj I2ð:; tÞ jjL1ðXÞ þ jj Rð:; tÞ jjL1ðXÞ �K1; 8t� T0:

for some large time T0 [ 0. Hence, the result follows. h

Note that R does not appear in the first three equations,

so it is equivalent to study the following sub-system:

oS

ot
¼ K� a1SI1

1 þ c1I
2
1

� a2SI2
1 þ c2I

2
2

� dSþ d1r2S;

oI1
ot

¼ a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1 � nI1 þ d2r2I1;

oI2
ot

¼ a2SI2
1 þ c2I

2
2

� d þ l2 þ q2ð ÞI2 þ nI1 þ d3r2I2:

ð8Þ

4 Model Analysis

In the absence of spatial movement, we find the basic

reproduction number of the system (1) as:

R0 ¼ max R1
0;R

2
0

� �
;

where

R1
0 ¼ a1K

ðd þ l1 þ q1 þ nÞd and R2
0 ¼ a2K

ðd þ l2 þ q2Þd
:

Here, R1
0ðR2

0Þ is the number of secondary infection cases

generated by infection of the first (second) strain, called the

reproduction number of the first (second) strain.

Also, we define two invasion reproduction numbers. By

definition, the invasion reproduction number of the strain-1

R2
1 is given by

R2
1 ¼ R1

0

R2
0

¼ a1ðd þ l2 þ q2Þ
a2ðd þ l1 þ q1 þ nÞ ;

which gives the number of secondary infections that an

individual infected by the strain-1 will generate in a pop-

ulation in which the strain-2 is at equilibrium.

Similar to R2
1, the invasion reproduction number of the

strain-2 R1
2 is given by

R1
2 ¼ R2

0

R1
0

¼ a2ðd þ l1 þ q1 þ nÞ
a1ðd þ l2 þ q2Þ

:

4.1 Existence of Equilibria

There may be at most four equilibria for the non-spatial

system corresponding to the spatial system (8), and they are

given below

(i) Disease-free equilibrium:

The disease-free equilibrium point is E0 ¼ S0; I1;0;
�

I2;0Þ, where S0 ¼ K
d ; I1;0 ¼ I2;0 ¼ 0

(ii) Strain-1 endemic equilibrium:

To derive the strain-1 endemic equilibrium point

E1 ¼ S1; I1;1; I2;1
� �

, we consider I2;0 ¼ 0 and we note that

I2;0 ¼ 0)I1;0 ¼ 0 and K� dS1 ¼ 0. Thus, no strain-1

endemic equilibrium can exist.
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(iii) Strain-2 endemic equilibrium:

The strain-2 endemic equilibrium is E2 ¼ S2; I1;2; I2;2
� �

,

where

I1;2 ¼ 0, S2 ¼ K

dþ a2 I2;2

1þc2 I
2
2;2

¼ 1þc2I
2
2;2ð ÞK

d 1þc2I
2
2;2ð Þþa2I2;2

and I2;2 is the

positive root of the following equation

dc2I
2
2;2 þ a2I2;2 �

Ka2

C
� d

� �
¼ 0 ð9Þ

and it is given by I2;2 ¼
�a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2 þ 4dc2

Ka2

C
� d

� �s

2dc2

.

Again, for the positivity of I2;2, we have Ka2 �
Cd[ 0 i.e. Ka2 � dðd þ l2 þ q2Þ[ 0: i.e. R2

0 [ 1.

(iv) Strain-1 and strain-2 endemic equilibrium:

Let us choose A ¼ d þ l1 þ q1 þ n1, B ¼ d þ l1 þ q1,

C ¼ d þ l2 þ q2:

Then, the endemic equilibrium point E3 ¼ ðS3; I1;3; I2;3Þ
is given by

I1;3 ¼
a2S3

1þc2I
2
2;3

� C

� �
I2;3

�n1

S3 ¼Kn1 � BCI2;3 � Cn1I2;3

dn1 � B
a2I2;3

1þc2I
2
2;3

¼
Kn1 � ACI2;3
� �

ð1 þ c2I
2
2;3Þ

n1ðd þ a2I2;3 þ dc2I
2
2;3Þ � Aa2I2;3

and I2;3 is obtained from the following equation:

a0I
6
2;3 þ a1I

5
2;3 þ a2I

4
2;3

þ a3I
3
2;3 þ a4I

2
2;3 þ a5I2;3 þ a6 ¼ 0

ð10Þ

where

a0 ¼AC2d2c1c
2
2 [ 0;

a1 ¼ACdc2ð2Ca2c1 þ a1c2n1Þ[ 0;

a2 ¼� A2Ca1a2c2 � da1c
2
2Kn

2
1 þ AðC2c1ða2

2 þ 2d2c2Þ
þ d2c2

2n
2
1 þ Ca2c2ð�2dc1Kþ a1n1ÞÞ;

a3 ¼� 2A2da2c2n1 � a1a2c2Kn
2
1

þ Að2C2da2c1 þ a2c2n1ða1Kþ 2dn1Þ
þ Cð�2a2

2c1Kþ 2da1c2n1ÞÞ;
a4 ¼A3a2

2 � 2da1c2Kn
2
1 � A2a2ðCa1 þ 2a2n1Þ

þ AðC2d2c1 þ 2d2c2n
2
1 þ Cð�2da2c1Kþ a1a2n1Þ

þ a2
2ðc1K

2 þ n2
1ÞÞ;

a5 ¼n1ð�2A2da2 � a1a2Kn1

þ AðCda1 þ a1a2Kþ 2da2n1ÞÞ;
a6 ¼dðAd � a1KÞn2

1 ¼ d2n2
1ðd þ l1

þ q1 þ n1Þð1 � R1
0Þ:

Now, we note that under the conditions R1
0 [ 1, R2

0 [ 1,

Ba1c2 [Ca2c1, Ba2 [Ca1, Ad[Ba2 and ABa2ðBa2 �
Ca1Þ þ 2dc2n

2
1ðAd � Ka1Þ þAc1ðKa2 � CdÞ2\0, we

have a0 [ 0; a1 [ 0; a2\0; a3\0; a4\0; a5\0; a6\0.

Hence, using Descartes’ rule of sign we conclude that

Eq. (10) has a unique root and we write the following

proposition.

Proposition 3 If the conditions R1
0 [ 1, R2

0 [ 1,

Ba1c2 [Ca2c1, Ba2 [Ca1, Ad[Ba2 and ABa2ðBa2 �
Ca1Þ þ 2dc2n

2
1ðAd � Ka1Þ þAc1ðKa2 � CdÞ2\0, are sat-

isfied, then there is a unique positive solution of Eq. (10).

So, for this unique I2;3, we have a I1;3 and hence a S3.

Thus, the endemic E3 ¼ ðS3; I1;3; I2;3Þ is unique under

Proposition 3.

4.2 Global Stability Analysis

In this section, we investigate the global asymptotic

stability of the model system (8) around all the possible

equilibrium points. Here, we follow the technique as

described by Hattaf and Yousfi (2013) to establish the

global stability of the diffusive system. The Lyapunov

functional are constructed based upon the Proposition

2.1. of Hattaf and Yousfi (2013). In fact, first we for-

mulate the Lyapunov functional for the non-diffusive

system, i.e., for the following ordinary differential

equations system

dS

dt
¼ K� a1SI1

1 þ c1I
2
1

� a2SI2
1 þ c2I

2
2

� dS;

dI1
dt

¼ a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1 � nI1;

dI2
dt

¼ a2SI2
1 þ c2I

2
2

� d þ l2 þ q2ð ÞI2 þ nI1:

ð11Þ

Then, we construct the Lyapunov functional for the dif-

fusive system (8).

Theorem 1 The infection-free equilibrium point of the

system (8) is globally asymptotically stable if R2
0\1 and

Ka1\dðd þ l1 þ q1Þ.

Proof Following Hattaf and Yousfi (2013), we first con-

struct the Lyapunov functional for system (11) as:

L1 ¼ S� S0 � S0ln
S

S0

� �
þ I1 þ I2: ð12Þ

Now calculating the time derivative of Eq. (12) along the

solutions of the system (11), we get
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dL1

dt
¼ 1 � S0

S

� �
dS

dt
þ dI1

dt
þ dI2

dt

¼ 1 � S0

S

� �
K� a1SI1

1 þ c1I
2
1

� a2SI2
1 þ c2I

2
2

� dS

� �

þ a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1 � nI1 þ
a2SI2

1 þ c2I
2
2

� d þ l2 þ q2ð ÞI2 þ nI1

¼ dS0 2 � S

S0
� S0

S

� �
þ S0

S

a1SI1
1 þ c1I

2
1

þ a2SI2
1 þ c2I

2
2

� �

� d þ l1 þ q1ð ÞI1 � d þ l2 þ q2ð ÞI2

� dS0 2 � S

S0
� S0

S

� �
þ S0

S
a1SI1 þ a2SI2ð Þ

� d þ l1 þ q1ð ÞI1 � d þ l2 þ q2ð ÞI2

¼ dS0 2 � S

S0
� S0

S

� �
þ Ka1

d
� ðd þ l1 þ q1Þ

� �
I1

þ Ka2

d
� ðd þ l2 þ q2Þ

� �
I2

¼ dS0 2 � S

S0
� S0

S

� �
þ Ka1

d
� ðd þ l1 þ q1Þ

� �
I1

þ ðR2
0 � 1Þðd þ l2 þ q2ÞI2

ð13Þ

Now, by applying A.M.�G.M., we have 2 � S
S0 � S0

S

	 


� 0. In addition, under the conditions R2
0\1 and

Ka1\dðd þ l1 þ q1Þ, we observe that dL1

dt � 0.

Now we construct the Lyapunov functional for the

diffusive system (8), at the disease-free state E0 as follows:

W1 ¼
Z
X
L1ðSðx; tÞ; Iðx; tÞ; I2ðx; tÞÞdx

Calculating the time derivative of W1 along the solutions of

the system (8), we get

dW1

dt
�
Z
X

dS0 2 � S

S0
� S0

S

� �
þ Ka1

d
� ðd þ l1 þ q1Þ

� �
I1

�

þðR2
0 � 1Þðd þ l2 þ q2ÞI2

�

� d1S
0

Z
X

jrSj2

S2
dx

ð14Þ

Now, under the conditions R2
0\1 and Ka1\dðd þ l1

þq1Þ, we have dW1

dt � 0. Also, the largest set in H1 ¼
ðS; I1; I2Þ : dW1

dt ¼ 0
� �

is the singleton E0. Hence, from the

LaSalle invariance principle (La Salle 1976), we conclude

that the infection-free equilibrium point E0 is globally

asymptotically stable under the stated conditions. Hence

the theorem is proved. h

Theorem 2 The strain-2 endemic equilibrium point

E2ðS2; 0; I2;2Þ is globally asymptotically stable if R2
0 [ 1,

S2\min dþl1þq1

a1
; dþl2þq2

a2

n o
and nI1 þ a1SI2

1þc2I
2
2

[

2ðd þ l2 þ q2ÞI2.

Proof As earlier, following Hattaf and Yousfi (2013), we

first construct the Lyapunov functional for system (11) as

L2 ¼ S� S2 � S2ln
S

S2

� �
þ I1 þ I2 � I2;2 � I2;2ln

I2
I2;2

� �
:

ð15Þ

Now calculating the time derivative of the equation (15)

along the solutions of the system (11), we get

dL2

dt
¼ 1 � S2

S

� �
dS

dt
þ dI1

dt
þ 1 � I2;2

I2

� �
dI2
dt

¼ 1 � S2

S

� �
K� a1SI1

1 þ c1I
2
1

� a2SI2
1 þ c2I

2
2

� dS

� �

þ a1SI1
1 þ c1I

2
1

� d þ l1 þ q1ð ÞI1 � nI1

þ 1 � I2;2
I2

� �
a2SI2

1 þ c2I
2
2

� d þ l2 þ q2ð ÞI2 þ nI1

� �

¼ dS2 2 � S

S2

� S2

S

� �
þ a2S2I2;2

1 þ c2I
2
2;2

� S2

S

a2S2I2;2
1 þ c2I

2
2;2

� a1SI1
1 þ c1I

2
1

� a2SI2
1 þ c2I

2
2

 !

� ðd þ l1 þ q1ÞI1

� ðd þ l2 þ q2ÞI2 �
a2SI2;2

1 þ c2I
2
2

þ ðd þ l2 þ q2ÞI2;2 �
nI1I2;2
I2

� dS2 2 � S

S2

� S2

S

� �
þ a2S2I2;2

1 þ c2I
2
2;2

þ a1S2I1
1 þ c1I

2
1

þ a2S2I2
1 þ c2I

2
2

� ðd þ l1 þ q1ÞI1 � ðd þ l2 þ q2ÞI2

� a2SI2;2
1 þ c2I

2
2

þ ðd þ l2 þ q2ÞI2;2 �
nI1I2;2
I2

� dS2 2 � S

S2

� S2

S

� �
þ a2S2I2;2

1 þ c2I
2
2;2

þ a1S2I1 þ a2S2I2 � ðd þ l1 þ q1ÞI1 � ðd þ l2 þ q2ÞI2

� a2SI2;2
1 þ c2I

2
2

þ ðd þ l2 þ q2ÞI2;2 �
nI1I2;2
I2

¼ dS2 2 � S

S2

� S2

S

� �
þ a1S2 � ðd þ l1 þ q1Þð ÞI1

þ a2S2 � ðd þ l2 þ q2Þð ÞI2

� I2;2
I2

a2SI2
1 þ c2I

2
2

þ nI1 � 2ðd þ l2 þ q2ÞI2
� �

ð16Þ
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Now, by applying A.M.�G.M., we have

2 � S
S2
� S2

S

	 

� 0. Further, under the conditions S2\min

dþl1þq1

a1
; dþl2þq2

a2

n o
and nI1 þ a1SI2

1þc2I
2
2

[ 2ðd þ l2 þ q2ÞI2,

we note that dL2

dt � 0.

Now we construct the Lyapunov functional for the

diffusive system (8), at the strain-2 endemic steady state E2

as follows:

W2 ¼
Z
X
L2ðSðx; tÞ; I1ðx; tÞ; I2ðx; tÞÞdx

Calculating the time derivative of W2 along the solutions of

the system (8), we get

dW2

dt
�
Z
X
dS2 2 � S

S2

� S2

S

� �
þ a1S2 � ðd þ l1 þ q1Þð ÞI1

þ a2S2 � ðd þ l2 þ q2Þð ÞI2

� I2;2
I2

a2SI2
1 þ c2I

2
2

þ nI1 � 2ðd þ l2 þ q2Þ
� �

dx

� d1S2

Z
X

jrSj2

S2
dx

� d2I2;2

Z
X

jrI2j2

I2
2

dx

Now, under the conditions as stated earlier, we have
dW2

dt � 0. Also, the largest set in H2 ¼ ðS; I1; I2Þ : dW2

dt ¼ 0
� �

is the singleton E2. Hence, from the LaSalle invariance

principle (La Salle 1976), we conclude that the strain-2

endemic equilibrium point E2 is globally asymptotically

stable under the stated conditions. Hence, the theorem

follows. h

Theorem 3 The strain-1 and strain-2 endemic equilibrium

pointE3ðS3; I1;3; I2;3Þis globally asymptotically stable under
the conditions R1

0 [ 1,R2
0 [ 1 and either

I2
I2;3

� 1� I1
I1;3

, I2I2;3 �
S
S3
� I1

I1;3
or I1

I1;3
� 1� I2

I2;3
, I1
I1;3

� S
S3
� I2

I2;3
.

Proof As earlier, following Hattaf and Yousfi (2013), we

first construct the Lyapunov functional for system (11) as:

L3 ¼S� S3 � S3ln
S

S3

� �
þ I1 � I1;3 � I1;3ln

I1
I1;3

� �

þ I2 � I2;3 � I2;3ln
I2
I2;3

� �
:

ð17Þ

Now calculating the time derivative of the equation (17)

along the solutions of the system (11), we get

dL3

dt
¼ 1 � S3

S

� �
dS

dt
þ 1 � I1;3

I1

� �
dI1
dt

þ 1 � I2;3
I2

� �
dI2
dt

¼ S� S3ð Þ
_S

S
þ I1 � I1;3
� � _I1

I1
þ I2 � I2;3
� � _I2

I2

ð18Þ

Now for clarity, we calculate the terms
_S
S,

_I1
I1

and
_I2
I2

separately.

_S

S
¼ K

S
� a1I1

1 þ c1I
2
1

� a2I2
1 þ c2I

2
2

� d

¼ K
S
� a1I1

1 þ c1I
2
1

� a2I2
1 þ c2I

2
2

� d

� �

� K
S3

� a1I1;3
1 þ c1I

2
1;3

� a2I2;3
1 þ c2I

2
2;3

� d

 !

¼ K S3 � Sð Þ
SS3

� a1

I1
1 þ c1I

2
1

� I1;3
1 þ c1I

2
1;3

 !

� a2

I2
1 þ c2I

2
2

� I2;3
1 þ c2I

2
2;3

 !

¼ K S3 � Sð Þ
SS3

� a1

I1
1 þ c1I

2
1

� I1;3
1 þ c1I

2
1

�
þ I1;3

1 þ c1I
2
1

� I1;3
1 þ c1I

2
1;3

!

� a2

I2
1 þ c2I

2
2

� I2;3
1 þ c2I

2
2

þ I2;3
1 þ c2I

2
2

� I2;3
1 þ c2I

2
2;3

 !

¼ K S3 � Sð Þ
SS3

� a1

I1 � I1;3
ð1 þ c1I

2
1Þ

�
c1I1;3ðI2

1 � I2
1;3Þ

ð1 þ c1I
2
1Þð1 þ c1I

2
1;3Þ

 !

� a2

I2 � I2;3
ð1 þ c2I

2
2Þ

�
c2I2;3ðI2

2 � I2
2;3Þ

ð1 þ c2I
2
2Þð1 þ c2I

2
2;3Þ

 !

_I1
I1

¼ a1S

1 þ c1I
2
1

� d þ l1 þ q1 þ nð Þ

¼ a1S

1 þ c1I
2
1

� a1S3

1 þ c1I
2
1;3

¼ a1

S

1 þ c1I
2
1

� S3

1 þ c1I
2
1

�

þ S3

1 þ c1I
2
1

� S3

1 þ c1I
2
1;3

!

¼ a1

S� S3

ð1 þ c1I
2
1Þ

�

�
c1S3ðI2

1 � I2
1;3Þ

ð1 þ c1I
2
1Þð1 þ c1I

2
1;3Þ

!
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_I2
I2

¼ a2S

1 þ c2I
2
2

� d þ l2 þ q2ð Þ þ nI1
I2

¼ a2S

1 þ c2I
2
2

� d þ l2 þ q2ð Þ

þ nI1
I2

� a2S3

1 þ c2I
2
2;3

� d þ l2 þ q2ð Þ þ nI1;3
I2;3

 !

¼ a2

S

1 þ c2I
2
2

� S3

1 þ c2I
2
2;3

 !
þ n

I1
I2
� I1;3
I2;3

� �

¼ a2

S

1 þ c2I
2
2

� S3

1 þ c2I
2
2

þ S3

1 þ c2I
2
2

� S3

1 þ c2I
2
2;3

 !

þ n
I1
I2
� I1;3
I2;3

� I1;3
I2

þ I1;3
I2

� �

¼ a2

S� S3

ð1 þ c2I
2
2Þ

þ
c2S3ðI2

2;3 � I2
2Þ

ð1 þ c2I
2
2Þð1 þ c2I

2
2;3Þ

 !

þ n
I1 � I1;3

I2
� I1;3ðI2 � I2;3Þ

I2I2;3

� �

Now substituting the values of
_S
S,

_I1
I1

and
_I2
I2

in the equation

(18), we get

dL3

dt
¼ ðS� S3Þ

K S3 � Sð Þ
SS3

� a1

I1 � I1;3
ð1 þ c1I

2
1Þ

��

�
c1I1;3ðI2

1 � I2
1;3Þ

ð1 þ c1I
2
1Þð1 þ c1I

2
1;3Þ

!

�a2

I2 � I2;3
ð1 þ c2I

2
2Þ

�
c2I2;3ðI2

2 � I2
2;3Þ

ð1 þ c2I
2
2Þð1 þ c2I

2
2;3Þ

 !!

þ ðI1 � I1;3Þ a1

S� S3

ð1 þ c1I
2
1Þ

�
c1S3ðI2

1 � I2
1;3Þ

ð1 þ c1I
2
1Þð1 þ c1I

2
1;3Þ

 ! !

þ ðI2 � I2;3Þ a2

S� S3

ð1 þ c2I
2
2Þ

þ
c2S3ðI2

2;3 � I2
2Þ

ð1 þ c2I
2
2Þð1 þ c2I

2
2;3Þ

 !
þ

 

n
I1 � I1;3

I2
� I1;3ðI2 � I2;3Þ

I2I2;3

� ��

After some simplifications, we finally obtain

dL3

dt
¼ �KðS� S3Þ2

SS3

� nI1;3ðI2 � I2;3Þ2

I2I2;3

þ nðI1 � I1;3ÞðI2 � I2;3Þ
I2

þ a1c1ðI1 � I1;3ÞðI1 þ I1;3ÞðSI1;3 � S3I1Þ
ð1 þ c1I

2
1Þð1 þ c1I

2
1;3Þ

þ a2c2ðI2 � I2;3ÞðI2 þ I2;3ÞðSI2;3 � S3I2Þ
ð1 þ c2I

2
2Þð1 þ c2I

2
2;3Þ

ð19Þ

Now we note that if either I2
I2;3

� 1� I1
I1;3

, I2
I2;3

� S
S3
� I1

I1;3
or

I1
I1;3

� 1� I2
I2;3

, I1
I1;3

� S
S3
� I2

I2;3
, then dL3

dt � 0.

Now we construct the Lyapunov functional for the

diffusive system (8), at the strain-1 and strain-2 endemic

steady state E3 as follows:

W3 ¼
Z
X
L3ðSðx; tÞ; I1ðx; tÞ; I2ðx; tÞÞdx

Calculating the time derivative of W3 along the solutions of

the system (8), we get

dW3

dt
¼
Z
X
�KðS� S3Þ2

SS3

� nI1;3ðI2 � I2;3Þ2

I2I2;3

þ nðI1 � I1;3ÞðI2 � I2;3Þ
I2

þ a1c1ðI1 � I1;3ÞðI1 þ I1;3ÞðSI1;3 � S3I1Þ
ð1 þ c1I

2
1Þð1 þ c1I

2
1;3Þ

þ a2c2ðI2 � I2;3ÞðI2 þ I2;3ÞðSI2;3 � S3I2Þ
ð1 þ c2I

2
2Þð1 þ c2I

2
2;3Þ

dx

� d1S3

Z
X

jrSj2

S2
dx� d2I1;3

Z
X

jrI2j2

I2
2

dx

� d3I2;3

Z
X

jrI3j2

I2
3

dx

Therefore, under the conditions as stated earlier, we get
dW3

dt � 0. Also, the largest set in H3 ¼ ðS; I1; I2Þ : dW3

dt ¼ 0
� �

is the singleton E3. Hence, from the LaSalle invariance

principle (La Salle 1976), it follows that the strain-1 and

strain-2 endemic equilibrium point E3 is globally asymp-

totically stable under the stated conditions. Hence, the

theorem follows. h

5 Conclusions

In this paper, we have proposed and analyzed a diffusive

epidemic model with two strains and non-monotonic inci-

dence rates for both the strains. These types of incidence

rate are considered to interpret the psychological effects.

The recent pandemic outbreak due to SARS-CoV-2 has

such psychological effects on the common people; also

several strains of the virus are found. So, this work can be

applied to study transmission mechanisms of the corona

virus disease. The biological feasibility conditions of the

solutions of the system are studied. All the possible equi-

librium points of the system are obtained and their global

asymptotic stability are investigated. The parametric con-

ditions are derived for the long-term occurrence of the

disease-free steady state and the strain-1 and strain-2

endemic equilibrium point. It is observed that the model
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system has no strain-1 endemic steady state. This scenario

occurs possibly due to the presence of the virus mutation. It

indicates that the disease due to strain-1 do not stay per-

manently in the community.

An epidemic model becomes more useful from a prac-

tical point of view when it is calibrated with the real world

data. Also it is quite important to visualize the obtained

theoretical results in graphical way. We would like to

address these issues in our future research which requires

more advanced computational skills. However, this theo-

retical study may be very useful to explain the dynamical

characteristics of a diffusive two strain epidemic model

with virus mutation and non-monotonic incidence rate.
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