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Quantitative reconstruction of 
time-varying 3D cell forces with 
traction force optical coherence 
microscopy
Jeffrey A. Mulligan1, Xinzeng Feng2 & Steven G. Adie3

Cellular traction forces (CTFs) play an integral role in both physiological processes and disease, and 
are a topic of interest in mechanobiology. Traction force microscopy (TFM) is a family of methods used 
to quantify CTFs in a variety of settings. State-of-the-art 3D TFM methods typically rely on confocal 
fluorescence microscopy, which can impose limitations on acquisition speed, volumetric coverage, 
and temporal sampling or coverage. In this report, we present the first quantitative implementation 
of a new TFM technique: traction force optical coherence microscopy (TF-OCM). TF-OCM leverages the 
capabilities of optical coherence microscopy and computational adaptive optics (CAO) to enable the 
quantitative reconstruction of 3D CTFs in scattering media with minute-scale temporal sampling. We 
applied TF-OCM to quantify CTFs exerted by isolated NIH-3T3 fibroblasts embedded in Matrigel, with 
five-minute temporal sampling, using images spanning a 500 × 500 × 500 μm3 field-of-view. Due to the 
reliance of TF-OCM on computational imaging methods, we have provided extensive discussion of the 
equations, assumptions, and failure modes of these methods. By providing high-throughput, label-free, 
volumetric imaging in scattering media, TF-OCM is well-suited to the study of 3D CTF dynamics, and 
may prove advantageous for the study of large cell collectives, such as the spheroid models prevalent in 
mechanobiology.

The field of mechanobiology seeks to understand the role of mechanical interactions and forces in both physio-
logical processes and disease. Cellular traction forces (CTFs) are a topic of particular interest to mechanobiology 
researchers, as CTFs have been shown to play an integral role in many settings, including metastasis1, angiogen-
esis2,3, and collective cell migration4,5. As a result, several tools and techniques have been developed to enable 
the measurement of CTFs under a variety of conditions and settings6–9. Traction force microscopy (TFM) com-
prises a diverse family of methods used to quantify CTFs, based upon the optical measurement of CTF-induced 
deformations in the surrounding environment. TFM has enabled the discovery of several important biological 
findings, such as the association of strong CTF generation with the metastatic potential of cancer cells1, and the 
finding that growth cones of neurons from the peripheral nervous system exert significantly stronger forces than 
those of neurons from the central nervous system10.

As both mechanobiology and TFM continue to develop, there is a growing demand for the application of TFM 
in settings that pose technical challenges for the imaging systems that TFM relies upon. A growing prevalence 
of TFM performed in 3D environments (and the associated need for 3D imaging) has been motivated by the 
fact that cell behavior can vary greatly between 2D and 3D environments11–14. As the mechanical behavior of 
single cells and cell collectives span a wide range of spatiotemporal scales (i.e., micrometers to millimeters, and 
minutes to days)15–18, there is a need for high resolution imaging over large (volumetric) fields-of-view that can 
be achieved with high temporal sampling and/or repetition over extended durations. Finally, there is a growing 
interest in measuring CTFs within biopolymer substrates (e.g., collagen and fibrin)2,19–21 that can introduce addi-
tional complications for imaging (e.g., optical scattering), as well as the characterization of mechanical properties 
and CTF reconstruction9. Confocal fluorescence microscopy is the dominant imaging modality for performing 
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3D TFM. However the limitations of this modality may restrict the range of experimental conditions in which 3D 
TFM is feasible. These obstacles include a limited penetration depth (of a few hundred micrometers) in scattering 
media, long measurement times for the acquisition of large volumes, and complications posed by photobleaching 
and phototoxicity.

Motivated by the developing needs of the TFM field and by the limitations of current technologies, we previ-
ously proposed a TFM method based upon optical coherence microscopy (OCM)15, a variant of optical coher-
ence tomography (OCT) with high transverse resolution. The method, which we named traction force optical 
coherence microscopy (TF-OCM)15, would leverage multiple advantages offered by OCM and computed imaging 
methods to enable quantitative reconstruction of 3D CTFs with high temporal sampling in scattering media. 
These advantages include a rapid (minute-scale) volumetric acquisition rate provided by Fourier domain OCM 
systems, focal plane resolution over an extended depth-of-field achieved with the aid of computational adaptive 
optics (CAO)22, and label-free imaging at near-IR wavelengths to mitigate scattering and photobleaching/pho-
totoxicity concerns. In ref.15, we demonstrated the feasibility of TF-OCM by showing that OCM images recon-
structed with CAO procedures could be used to measure time-varying deformations induced by CTFs exerted 
within a 3D hydrogel substrate. However, we had not yet developed the full experimental and data processing 
methods required to obtain quantitative reconstructions of time-varying CTFs with TF-OCM.

In this study, we expand upon the methods reported in ref.15, and present a complete quantitative implemen-
tation of TF-OCM. With this new technique, we quantified time-varying 3D CTFs exerted by isolated NIH-3T3 
fibroblasts embedded within a Matrigel substrate. This was achieved by analyzing OCM images acquired with 
five-minute temporal sampling, spanning a 500 × 500 × 500 μm3 field-of-view (FOV). In order to obtain OCM 
images suitable for TFM, we developed a computational image formation procedure which mitigates a variety of 
detrimental image artifacts. Although this procedure was developed for TF-OCM, the underlying mechanisms 
and techniques are relevant to other applications of computed OCT/OCM imaging which require geometrically 
accurate reconstructions of object structure. We have therefore provided extensive discussion of the equations, 
assumptions, and failure modes of these methods. High-level results and discussions regarding TF-OCM and 
computed imaging appear in the main text below, while detailed equations and discussions may be found in the 
Supplementary Methods and Supplementary Discussion sections of this report. The results shown here mark 
the first quantitative implementation of TF-OCM, and set the stage for future work toward the application of 
TF-OCM to more complex model systems, such as multicellular spheroids.

Overview of TF-OCM.  Detailed descriptions of our methods are available in the Methods and 
Supplementary Methods sections of this report. However, a brief overview of TF-OCM here is pertinent to inter-
preting the results in the sections that follow.

TFM does not measure CTFs directly. Instead, CTFs are numerically reconstructed based upon how they 
deform the surrounding environment. CTF reconstruction requires the measurement of three key pieces of infor-
mation: (1) substrate mechanical properties, (2) substrate deformations in response to CTFs, and (3) boundary 
conditions (e.g., environment boundaries and cell geometry). The first is obtained through mechanical characteri-
zation of the substrate material (e.g., polyacrylamide, Matrigel, collagen, etc.). The latter two are obtained through 
a combination of optical imaging and appropriate assumptions/constraints. To measure substrate deformations 
in particular, the sample structure must be known from both a ‘deformed state’ (when CTFs are present) and a 
‘reference state’ (when CTFs are not present). The ‘reference state’ is typically induced by a chemically-mediated 
inhibition of CTFs at the end of an experiment. Once the three key pieces of information are known, numerical 
methods are used to reconstruct the CTFs. This entire procedure can be performed in a variety of ways, creating 
opportunities for the development of new methods, such as the TF-OCM technique presented here9,15.

Our implementation of TF-OCM follows these same general procedures. Here, NIH-3T3 fibroblasts were 
embedded in a Matrigel susbtrate containing scattering polystyrene beads. The cells exerted contractile CTFs, 
causing the Matrigel to deform, resulting in displacement of the scattering beads from their resting (i.e., refer-
ence) positions. A contractility inhibitor (cytochalasin D) was then added to the culture. In response, the cells 
relaxed, allowing the scattering beads to return to their resting positions (due to the elasticity of the substrate). 
This process was observed over a three-hour period with five-minute temporal sampling using a spectral domain 
OCM imaging system. Volumetric images (spanning a 500 × 500 × 500 μm3 FOV) were reconstructed using a 
customized procedure which combined CAO and additional computational methods22–25. These images were 
then used to obtain measurements of time-varying bead displacements, and to generate time-varying discrete 
meshes of cell surfaces. These data, in addition to the mechanical properties of the Matrigel substrate (as charac-
terized by bulk rheology), were fed into a previously reported finite element method (FEM) procedure26 to obtain 
quantitative reconstructions of time-varying 3D CTFs.

The computational workflow underlying TF-OCM is a union of two modules, which are depicted by the flow-
chart in Fig. 1. The computational image formation module generates a time series of high resolution, volumetric 
OCM images of a cell and its surroundings. The TFM module uses this image data to quantify time-varying 3D 
CTFs. It is important to note that, although CAO can restore focal plane resolution throughout an imaged vol-
ume, the structure of the resulting image is not necessarily a reliable representation of the true sample structure. 
This can be detrimental to the accurate measurement of substrate deformations and subsequent quantification 
of CTFs. The numerous steps preceding CAO were used to mitigate factors that corrupt the image formation 
process, and thus played a critical role in our implementation of TF-OCM. The results associated with Figs 2 
and 3 show the impact of a selection of these procedures and have relevance to the field of computed OCT/OCM 
imaging. The results associated with Figs 4–9 are specific to TF-OCM.
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Results
Phase registration and bulk demodulation mitigate shearing and motion artifacts in compu-
tationally refocused images.  As our implementation of TF-OCM relies upon the accurate reconstruc-
tion of high resolution volumes via CAO, we had to design our computational image formation module to 
ensure that interferometric phase instability and other factors would not corrupt the image data23,24. Figure 2 
and Supplementary Movie 1 demonstrate the impact and necessity of our phase registration and bulk demod-
ulation procedures (detailed in the Supplementary Methods) for mitigating such effects. In Fig. 2, the red and 
green channels (which correspond to images generated by our computational image formation module with and 
without these procedures, respectively) exhibit a depth-dependent transverse misalignment with respect to one 
another. The severity of this misalignment increases linearly with distance from the focal plane. In addition, the 
direction of the misalignment has opposite signs on opposite sides of the focal plane. The red and green channels 
are therefore distorted relative to one another by a shearing deformation (analogous to pushing against the side 
of a deck of cards). Supplementary Movie 1, which depicts a time lapse of the en face planes shown in Fig. 2, 
reveals additional features of this misalignment. In panels (a) and (c) of the animation, the embedded scattering 
particles are at depths far away from the imaged NIH-3T3 fibroblast cell, and are expected to exhibit little to no 
motion in the animation. This expected behavior is exhibited by the red (phase-registered and demodulated) 
channel. In contrast, bead positions in the green (uncorrected) channel fluctuate over time. These fluctuations are 
non-uniform across the FOV and are most prevalent along the left-right axis, corresponding to the slow scanning 
axis of our imaging system (which is known to be more susceptible to interferometric phase fluctuations23,24). 
Given that the red channel of Supplementary Movie 1 exhibits the behavior we expect to observe (i.e., little to no 
motion of beads far from the cell), we conclude that our phase registration and bulk demodulation procedures are 
effective at mitigating shearing and motion artifacts in computationally refocused OCM images, and are therefore 
beneficial to the accuracy of TF-OCM. Further theoretical justification of this conclusion may be found in the 
Supplementary Discussion.

Focal plane registration facilitates CAO over a wide field-of-view for systems with non-ideal optics.  
Non-idealities in the sample arm optics can negatively impact the reconstructed resolution and 
signal-to-noise-ratio (SNR) of computationally refocused OCM images, and are therefore detrimental to both 
the tracking of bead displacements and identification of cell boundaries in TF-OCM. In this study, non-idealities 
in our sample arm optics caused the axial position of the focal plane to vary as a function of transverse position 
(such that the focal plane appears slightly tilted and/or curved). This resulted in an imaging point spread func-
tion (PSF) that varied across the 500 × 500 μm2 transverse FOV of our images. As our implementation of CAO 
(detailed in the Supplementary Methods) applies a refocusing operation that is transversely invariant, it cannot 
account for transverse non-uniformity in the imaging PSF.

In the absence of our focal plane registration procedure, refocused images exhibited a non-uniform transverse 
resolution after CAO, as demonstrated in Fig. 3(b). To mitigate this effect, we devised a focal plane registration 
procedure (detailed in the Supplementary Methods) which maps the image data to a coordinate system in which 
the axial position of the focal plane is transversely invariant. (See Fig. 3(a) for a visual example of this transforma-
tion.) Following this procedure, images refocused with CAO exhibited a transverse resolution that was uniform 
across the transverse FOV, as in Fig. 3(c). These results show that our focal plane registration technique allows 
for a standard implementation of CAO to refocus volumetric data over a wide FOV (500 × 500 μm2), even when 

Figure 1.  Data processing workflow of traction force optical coherence microscopy. A time series of volumetric 
images is reconstructed via the computational image formation module (left). These images are then used to 
quantify time-varying 3D CTFs via the traction force microscopy module (right).
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non-idealities of the optical system cause the focal plane to be tilted or curved with respect to the axes of the 
image data. Of course, spatially-varying CAO reconstructions may instead be employed to address this problem 
at the cost of greater complexity27,28. However, the methods used in this study may be considered as a simple 
alternative to be used when the tilt/curvature of the focal plane is small.

Figure 2.  Shearing artifacts in computationally refocused images. Panels (a–c) were obtained from 3 separate 
depths, located 200 μm above, at, and 200 μm below the focal plane, respectively. The red channel corresponds 
to images obtained using our phase registration and bulk demodulation procedures, whereas the green channel 
corresponds to images obtained without these procedures. The green channel exhibits a depth-dependent 
translation artifact, corresponding to a shearing of the reconstructed volumetric image. Additional spatial and 
temporal variations in this artifact are visible in Supplementary Movie 1.

Figure 3.  Effects of focal plane registration on volumetric image reconstructions. (a) Cross-section of a 
volumetric image obtained with (red channel) and without (green channel) focal plane registration. The bright 
horizontal band spanning both channels corresponds to the focal plane. (b,c) En face planes obtained from a 
region centered 50 μm above the focal plane in volumetric images reconstructed with CAO. Only beads which 
exhibited little to no overlap with neighboring beads were retained in these images. The methods for generating 
these panels are detailed in the Supplementary Methods. (b) En face plane reconstructed without focal plane 
registration, exhibiting a transverse resolution which varies across the FOV. (c) En face plane reconstructed with 
focal plane registration, resulting in a uniform transverse resolution. FWHM indicates the full-width-at-half-
maximum diameter of the polystyrene beads shown in (b,c). This value is not a measurement of the post-CAO 
imaging resolution, but is directly correlated to resolution and is therefore used here to demonstrate the impact 
of focal plane registration. Color bar applies only to (b,c).
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Speckle reduction aids automated analysis of cell geometry from OCM images.  As discussed 
previously, the reconstruction of CTFs requires knowledge of cell shape/geometry. Cell tracing based on auto-
mated image segmentation of OCM images can be difficult, due to the presence of speckle (such as that shown in 
Fig. 4(a)), which is ubiquitous to coherent imaging modalities like OCT/OCM, ultrasound, radar, etc. However, 
the alternative prospect of performing manual cell tracing would have been prohibitive to conducting TF-OCM 
in time-lapse settings. For example, the 10 time-lapse experiments performed in this preliminary study span a 
total of 370 distinct time points. Performing manual 3D tracing typically would have required manual 2D tracing 
of at least 15 slices from the volumetric image corresponding to each time point. For this study alone, that would 
have entailed performing manual tracing for more than 5500 individual 2D images. To overcome this obstacle 
and keep TF-OCM feasible for larger experiments in the future, we employed speckle reduction methods to aid 
the automated analysis of cell geometry from OCM images. To reduce speckle artifacts in and around the cell 
body, we combined multiple sequentially-acquired OCM images (as detailed in the Methods), which resulted in 
images like the one shown in Fig. 4(b). The reduction in speckle provided by our technique enabled automated 
image segmentation and identification of the cell body via K-means clustering29, yielding 3D segmented regions 
like that depicted in Fig. 4(c). Segmented regions were converted to 3D discrete meshes, as in Fig. 4(d), for use in 
our FEM solver.

Note that some of the finer structures visible in Fig. 4(a,b) were not retained in the segmentation shown in 
Fig. 4(c). We found that our speckle reduction method can suppress cellular structures which exhibit more static 
speckle patterns over short time scales (e.g., static regions of fine filipodial extensions). Unlike the remainder 
of the cell body (which exhibited dynamic speckle patterns), these suppressed structures were not effectively 
captured by our K-means clustering algorithm. For the purposes of this preliminary study, we assumed that the 
3D image segmentation (and resulting 3D meshes) generated by our automated methods provided a sufficiently 
accurate approximation of the cell surface for quantifying time-varying CTFs. Additional future experiments will 
be needed to determine whether the loss of fine cellular structures by our algorithm has any significant impact 
on the accuracy of CTF reconstructions. More advanced algorithms may yield improved cell tracings with higher 
fidelity30, and this aspect of TF-OCM merits further work. Future iterations of TF-OCM may also benefit from 
the incorporation of hardware-based speckle reduction methods31,32. However, the methods presented here do 
have the advantage that they may be performed using standard OCM microscopes without modification. That 
is, our methods only require the acquisition of additional images in time, and do not require the introduction of 
additional hardware or specialized scanning geometries.

TF-OCM quantifies 3D substrate deformations induced by time-varying CTFs.  Unlike the 
cell body or Matrigel substrate, the polystyrene beads embedded in the sample emitted very strong scattering 
signals, and so were readily segmented for the purposes of localization and tracking over time. Figure 5 and 
Supplementary Movie 2 depict the resulting measurements of 3D substrate deformations (in the form of bead 
displacement data) from three representative cells (referred to as cells 1, 2, and 3). These data show that, at the 
beginning of each time-lapse experiment, cell force-induced deformations extended further than 100 μm from 
the cell body. After the addition of the contractility inhibitor (cytochalasin D) 30 minutes into the experiment, 
there was a delayed onset of cell relaxation, consistent with our prior work using similar force inhibition proto-
cols15. Once relaxation began, bead displacements declined until the beads arrived at their reference (i.e., assumed 
zero deformation) positions at the end of the experiment. (Note that although the final (reference) image in each 
time-lapse experiment was assumed to correspond to a state when cells were completely relaxed, this was not 
necessarily the case for all cells. Details about this possible assumption failure and its consequences can be found 
in the Supplementary Discussion.) Cell 1 and cell 3 (Fig. 5(a,c), respectively) demonstrated gradually increasing 
contractility, until the inhibitor took effect and caused contractility to decline. Cell 2 (Fig. 5(b)), on the other 
hand, demonstrated a relatively static level of contractility, which then declined in response to the inhibitor. 

Figure 4.  Automated segmentation of cell bodies aided by speckle reduction. (a) En face plane extracted from a 
single depth in a single volumetric image. The imaged NIH-3T3 fibroblast exhibits significant speckle artifacts, 
which hinder automated segmentation. Arrow indicates cellular structure not retained by our segmentation 
procedure (see text for details). (b) The same En face plane as in (a), after combining eight sequential volumetric 
acquisitions. Speckle contrast is reduced, allowing for segmentation via K-means clustering. (c) Summation 
projection of the 3D segmented volume, which approximates the cell body. (d) 3D mesh of the cell body, 
generated from the data depicted in (c). Note that (d) was generated from a different viewing angle as (a–c) to 
more clearly depict the cell’s 3D shape.
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Figure 5.  Time-varying, 3D substrate deformations measured with TF-OCM. (a–c) Bead displacement data 
for three NIH-3T3 fibroblasts. Left panels depict bead displacements at the time point immediately preceding 
the addition of the contractility inhibitor, cytochalasin D. Arrows indicate bead displacements with respect to 
their ‘reference’ positions. Arrow lengths are exaggerated for visualization. Animations over time may be found 
in Supplementary Movie 2. Right panels depict the mean magnitude of bead displacement as a function of time 
and distance from the cell centroid (see the Supplementary Methods for details on this calculation). The bead 
localization sensitivity along the x, y, and z axes were 37 nm, 32 nm, and 86 nm, respectively (described in the 
Methods section).
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Figure 6 summarizes the time-varying deformations observed in the vicinity of each of the 10 cells studied for 
this report, demonstrating a gradual decline in bead displacement by all cells after introduction of the contrac-
tility inhibitor. The variability in contractility observed across these data may be due to multiple sources, such 
as variable cell health and behavior (e.g. migratory, resting, dividing, etc.) or errors in our image reconstruction 
procedures (detailed in the Supplementary Methods and Supplementary Discussion). Overall, these results show 
that TF-OCM offers the capability to measure CTF-induced deformations with minute-scale temporal sampling, 
enabling the study of dynamic processes, such as the cell relaxation shown here.

TF-OCM quantifies time-varying, 3D cell traction forces.  The results so far have depicted substrate 
deformation data and cell surface geometry data obtained by our TF-OCM workflow (Fig. 1). After obtaining 
the mechanical properties of the Matrigel substrate (as described in the Methods), time-varying CTFs were 
reconstructed using FEM software26. Figure 7 depicts CTF reconstructions at a single time point for the three 
fibroblast cells previously shown in Fig. 5. Animations of these reconstructions are provided in Supplementary 
Movie 3. Note that cell 1 (shown in Fig. 7(a)) exhibited the greatest degree of polarization among the three cells 
shown, with protrusions extending lengthwise into the surrounding medium. Cell traction forces can be found 
concentrated at either end of the cell, consistent with prior results from other TFM studies9,33. Cells 2 and 3 
(shown in Fig. 7(b,c)) were more spherical in shape. The reconstructed traction fields seem to reflect this relative 
lack of polarization, as the tractions appear more irregularly distributed across the cell surface, suggesting that 
a more non-directional contractile behavior is present. Irregular/fluctuating CTF distributions may also result 
from measurement noise and/or numerical instabilities. This is a major challenge for most CTF reconstruction 
methods, especially in 3D settings6,9,33.

Figure 8 summarizes how reconstructed CTFs of cells 1–3 changed over time. Each data point represents 
the total force exerted by a cell at a given time point, oriented along its principal axis of stress (defined in the 
Supplementary Methods). These plots show that the forces exerted by the fibroblast cells tended to increase until 
approximately 30 minutes after the addition of the contractility inhibitor, after which their contractility declined. 
These curves also resemble the deformation distributions in Fig. 5, as would be expected. Similar trends of initial 
contractile behavior followed by relaxation are shown in Fig. 9, which summarizes the total force reconstructed 
across all 10 cells examined in this study. The variability between individual time points (visible in Supplementary 
Movie 3, Figs 8, and 9) may be due to a combination of factors, including actual changes in CTF distribution, 
noise, and artifacts emerging from the use of FEM. In particular (as detailed in the Supplementary Discussion), 
the relatively low bead density used in our samples may have impacted the quality of CTF reconstructions in 
this study, and hence reduced the sensitivity of our TF-OCM system to time-varying CTFs. Overall, these data 
have demonstrated the ability of TF-OCM to measure trends in time-varying CTFs exerted by isolated cells with 
minute-scale temporal sampling.

Discussion
As shown by the results in Fig. 2 and Supplementary Movie 1, the phase registration and bulk demodulation 
techniques used in this study mitigate distortions that can appear in volumetric images reconstructed with CAO. 
A detailed discussion of the origin of these distortions may be found in the Supplementary Discussion. In brief, 
the shearing artifact shown in Fig. 2 originates from a tilt/misalignment in the optics and/or sample stage, while 
the motion artifacts visible in Supplementary Movie 1 originate from interferometric phase instability. The effects 
of tilt must be mitigated either through signal demodulation (as was done in this study) or a modification of the 
equations underlying CAO (specifically, Eqn. (S.10) in the Supplementary Methods). The effects of phase instability 

Figure 6.  Average (mean) bead displacement magnitude for beads located within 50 μm of the cell body, 
over time. The whiskers, boxes, and circles depict the full range, interquartile range, and median value of the 
data (n = 10 cells), respectively. The contractility inhibitor (cytochalasin D) was added immediately after time 
t = 30 minutes.
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Figure 7.  CTF reconstructions at a single time point for three NIH-3T3 fibroblast cells (shown previously 
in Fig. 5). A time-lapse animation of this figure is provided in Supplementary Movie 3. Black arrows indicate 
measured bead displacements with respect to their reference positions. See text for details.

Figure 8.  Total force exerted by three NIH-3T3 fibroblast cells (shown previously in Figs 5 and 7) over time. 
Black dashed line indicates when the contractility inhibitor (cytochalasin D) was introduced to the samples 
30 minutes into the experiment. See the Supplementary Methods for a description of the measurement of ‘total 
force’ from 3D CTF distributions.
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require special attention from any who wish to perform TF-OCM. It is well known that CAO and related com-
puted imaging methods rely on the use of phase stable OCM image data23,24. The discussions surrounding phase 
stability typically focus on the ability of CAO to reconstruct high resolution volumetric images. That is, phase 
instability may be regarded as a negligible factor to image formation if high resolution images can be restored. 
However, our results show that applications like TF-OCM have stricter phase stability requirements than appli-
cations which solely require high spatial resolution. This is because, although a small degree of phase instability 
may not noticeably impact the final spatial resolution, it can still result in image distortion artifacts like those seen 
in Supplementary Movie 1, which are detrimental to TF-OCM and other applications which use reconstructed 
images to measure features of the sample structure. Therefore, phase stabilization is an essential component of the 
TF-OCM processing workflow, even for imaging systems which exhibit a high degree of phase stability.

TFM relies on the ability to perform accurate quantitative analysis of substrate deformations. The implementa-
tion of TF-OCM in this study relied upon numerous computational operations (in both the space and spatial fre-
quency domains) to achieve its objectives. These operations (shown in Fig. 1, and detailed in the Supplementary 
Methods) included standard OCM image reconstruction procedures, coherence gate curvature removal, focal 
plane registration, phase registration, bulk demodulation, CAO, and motion correction. Each of the steps in 
our computational image formation module involved coordinate transformations and/or phase manipulations 
which can have dramatic effects on the final image structure, substrate deformation data, cell tracings, and CTF 
reconstructions. As a result, these steps offer several opportunities for errors to emerge before the final image 
structure is generated. Optical distortions and the question of image fidelity are problems faced when using any 
type of imaging system. Whether formed physically or through computation, an image can only be a best attempt 
to represent the true underlying sample structure. To provide further insight into the workings, reasoning, and 
potential flaws of our TF-OCM methods, major assumptions and possible failure modes of our processing work-
flow have been detailed in the Supplementary Discussion.

One potential disadvantage of the experimental methods shown here is the use of relatively large (1 μm diam-
eter) scattering beads. High concentrations of beads allow for substrate deformations to be sampled more densely 
in space, and therefore can help to mitigate the impact of error/measurement noise and/or resolve the forces 
exerted by smaller cellular structures34,35. In general, beads used for TFM are typically at least one order of mag-
nitude smaller than the minimum desired bead spacing19,33,36. Using 1 μm beads allows for a minimum bead 
spacing of approximately 10 μm (the actual spacing in the experiments reported here was approximately 18 μm, 
thereby limiting our ability to resolve stress features on the cell surface below this length scale). We found that 
our current bead density limited the sensitivity of our system to CTFs by contributing noise on the order of 18 
nN, at the worst-case time point. However, the median cell forces (as in Fig. 9) exceeded this noise contribution 
by approximately one order of magnitude at the time points which exhibited the poorest sensitivity. (A detailed 
description of these findings is provided in the Supplementary Discussion.) Future experiments with TF-OCM 
may use smaller beads to allow for greater bead densities without disrupting substrate mechanics or cell behavior. 
However, as a decrease in bead size tends to decrease the strength of the scattered signal from a given bead, any 
reduction in bead size must optimize a trade-off between bead density and SNR of the bead signal with respect 
to the imaging noise floor. In addition, the presence of highly scattering particles may obstruct any co-registered 
fluorescence imaging which may accompany a TF-OCM experiment. One solution to this problem may be to 
abandon scattering beads entirely. TFM has been demonstrated using confocal reflectance microscopy to track 
the motion of collagen fibers, instead of embedded beads37,38. OCT/OCM could similarly be used to image the 
deformation of fibrous extracellular matrix constituents for TF-OCM. If the scattering structures (e.g., collagen 
fibers) are too small to resolve, speckle tracking methods (analogous to those used for optical coherence elastog-
raphy39), may be a possible solution.

Figure 9.  Total force exerted by all (n = 10) cells examined for this study. ‘Total force’ is defined as in Fig. 8 
and the Supplementary Methods. The whiskers, boxes, and circles depict the full range, interquartile range, and 
median value of the data, respectively. The contractility inhibitor (cytochalasin D) was added immediately after 
time t = 30 minutes.
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Speckle is another limitation of TF-OCM. This study required the use of speckle reduction methods to per-
form TF-OCM based on automated analysis of time-lapse OCM image data. Future implementations of TF-OCM 
based purely upon OCT/OCM imaging will likely continue to rely on speckle reduction procedures30–32. 
Alternatively, TF-OCM could be performed in conjunction with co-registered fluorescence imaging to capture 
images of cell geometry without speckle. If the cell shape changes slowly in time, fluorescence imaging would not 
have to take place at every time point, so as not to limit the temporal sampling provided by the rapid volumetric 
acquisition of OCT/OCM imaging. Moreover, fluorescence imaging may be confined solely to the cell/s of interest 
while OCM is used to capture the full volumetric FOV under study, thereby keeping any photobleaching/photo-
toxicity from fluorescence imaging to a minimum during extended experiments.

Although future implementations of TF-OCM may be further optimized for high-resolution, single-cell 
imaging, it should be noted that this application space may not utilize TF-OCM to its most impactful potential. 
Physical forces exist on scales spanning molecules to whole organisms, and TFM may likewise be performed 
across a range of scales. For example, TFM performed with super-resolution microscopy pushes the limits of TFM 
to resolve and study the forces exerted by sub-cellular structures34,35. Confocal fluorescence microscopy is ubiqui-
tous for cell-level research. These advantages make super-resolution and confocal microscopy natural choices for 
TFM studies concerned with biomechanical interactions on cellular to sub-cellular spatial scales. OCT and OCM, 
however, have a history as particularly powerful imaging modalities for providing high-throughput, volumetric 
imaging at the ‘mesoscale’, with spatial resolutions typically in the range of 1–10 μm, and volumetric fields-of-view 
spanning hundreds of micrometers to millimeters within scattering media. Therefore, TF-OCM may be particu-
larly advantageous for the study of structures and forces with spatiotemporal variations that are matched to the 
spatiotemporal coverage of OCT/OCM. As such, 3D TF-OCM may find its most impactful niche in the study of 
forces exerted by cell populations, particularly large cellular collectives, such as spheroids and organoids. On such 
scales, the mechanical characterization of substrates and tissues can become difficult, especially in the presence of 
remodeling and cell migration. TF-OCM is readily compatible with optical coherence elastography (OCE)39, as 
both methods share OCT as a parent imaging modality. In the future, TF-OCM may benefit from integration with 
high resolution OCE methods that can measure local variations in substrate mechanical properties40,41.

Similar to many existing TFM procedures, the reconstruction of CTFs in this study relied on several assump-
tions about the substrate medium (e.g., that the material is linear elastic, and its mechanical properties are iso-
tropic, homogeneous, and time-invariant). In practice, biopolymer substrates often violate these assumptions. 
Inappropriate reliance on linear elastic (etc.) models can result in inaccurate CTF reconstructions and can create 
significant discrepancies between experimentally measured substrate deformations and those predicted by the 
(inadequate) mechanical model. The TFM field in recent years has seen a growth in the development and adop-
tion of more advanced mechanical models to improve the accuracy of CTF reconstructions9. Nonlinear elastic 
models have been particularly useful in TFM for describing the behaviors of biopolymer substrates (such as col-
lagen, fibrin, and Matrigel)19,38. Viscoelastic models have also been shown to offer accuracy benefits over purely 
elastic models in some situations42. For the Matrigel substrate used in this study, we found our linear elastic model 
to be sufficient (additional details and justification may be found in the Supplementary Discussion). However, 
due to the inherent modularity of TFM, future studies using TF-OCM could likely benefit from the adoption of 
nonlinear and/or viscoelastic models for CTF reconstruction, even if the image acquisition and image formation 
protocols developed for this study remained unchanged. This may be especially important for future applications 
of TF-OCM in the analysis of cell behaviors in substrates like collagen, which are typically of greater physiological 
relevance than the Matrigel substrate used in this study.

Conclusion
In this study, we have implemented quantitative TF-OCM for the first time, enabling the reconstruction of 
time-varying 3D cell traction forces with minute-scale temporal sampling. This was achieved by combining 
rapid OCM image acquisition with computational image formation methods, applied to an otherwise standard 
TFM experimental protocol. As a result, TF-OCM has been demonstrated to be a viable method for overcom-
ing the limitations of typical TFM methods by providing millimeter-scale volumetric coverage, high temporal 
sampling, and a low risk of photobleaching/phototoxicity. Due to the reliance of high-throughput 3D TF-OCM 
on computational methods, we provided extensive discussion of these methods, their assumptions, and potential 
drawbacks. Currently, TF-OCM has only been applied to single cells. However, due to the ability of OCT/OCM 
to image over large volumes in scattering media, TF-OCM may find its most impactful niche in the study of 
physiologically-relevant multicellular constructs on spatial scales ranging from hundreds of micrometers to mil-
limeters, such as cell networks and spheroids. Since OCM is capable of imaging native scattering contrast, future 
implementations of TF-OCM may also enable the study of CTFs in systems that do not have fiducial marker 
beads, a capability that is currently uncommon in the TFM field. Moreover, TF-OCM is compatible with optical 
coherence elastography, making OCT imaging systems an attractive platform for mechanobiology research as 
both techniques continue to develop. Finally, due to the highly modular nature of the TF-OCM protocol, the 
procedures outlined in this report may be readily improved, modified, or adapted to a variety of alternative exper-
imental settings, imaging preferences, and mechanical models. Consequently, TF-OCM has significant potential 
for making contributions to research in mechanobiology.

Methods
Sample preparation.  Samples consisted of NIH-3T3 fibroblasts embedded in Matrigel containing scatter-
ing polystyrene beads. Cells were maintained in tissue culture flasks with media consisting of Dulbecco’s Modified 
Eagle Medium (DMEM), supplemented with 10% bovine calf serum, and 1% penicillin-streptomycin. To pre-
pare samples, the cells were trypsinized, pelleted, and resuspended in chilled (4 °C) media at a concentration of 
3.33 × 104 cells/mL. 1 µm-diameter polystyrene beads (Spherotech Inc.) were added to the suspension to achieve 
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a concentration of 5.3 × 108 beads/mL. The cell-bead suspension was added to Matrigel in a 30:70 ratio, resulting 
in a final cell concentration of 1 × 104 cells/mL, and final bead concentration of 1.6 × 108 beads/mL (yielding an 
average bead spacing of approximately 18 μm). (The impact of bead density on the level of noise in CTF recon-
structions is explored in the Supplementary Discussion.) The resulting mixture was deposited in 100 µL aliquots 
on glass-bottomed petri dishes and left to gel in an incubator for 20 minutes, before being covered in culture 
media. Samples were kept in an incubator overnight (~12 hours) prior to imaging.

Bulk rheology.  Sample stiffness was characterized using a TA Instruments DHR3 shear rheometer in a (flat) 
plate-plate geometry. Cell culture media and Matrigel were mixed in a 30:70 ratio. For each test, the mixture 
was loaded and gelled underneath a 40 mm diameter plate on a temperature controlled testing stage at 37 °C for 
20 minutes. The sample stage was covered/sealed to mitigate evaporation. We approximated the Matrigel hydrogel 
as a nearly incompressible substance, by assuming the Poisson’s ratio = 0.45. (Note that the treatment of Matrigel 
as a nearly/fully incompressible material has precedent in prior literature43,44). The Young’s modulus was found to 
be approximately 90 Pa. This value was used as an input to a Finite Element Method solver to reconstruct CTFs. 
See the Supplementary Discussion for additional information regarding the validity of our linear elastic model.

Imaging system.  All samples were imaged using a spectral domain OCM (SD-OCM) system. Illumination 
was supplied by a Ti:Sapph laser (Femtolasers, INTEGRAL Element) with a central wavelength of 800 nm and a 
bandwidth of 160 nm. Light was split between the sample and reference arms by a 90:10 fiber coupler, yielding 
an incident power of ~5 mW in the sample arm beam. The sample arm was built in a double-pass configuration 
with an Olympus XLUMPlanFL 20×/0.95 W ∞/0 objective lens in an inverted configuration (i.e., samples were 
imaged through the bottom of the glass-bottomed petri dish). Spectral data was acquired with a Cobra 800 spec-
trometer (Wasatch Photonics) and 2048-pixel line scan camera (e2v, Octopus). The axial and transverse resolu-
tions of the system were approximately 2.4 μm and 1.5 μm, respectively. All data acquisition was performed with 
a line scan rate of 65 kHz and an exposure time of 10 µs. Under these conditions, the system exhibited a sensitivity 
of ~90 dB and fall-off of −5 dB/mm. The system was controlled using custom software built in LabVIEW.

Time-lapse imaging protocol.  Samples were held in position by an Okolab UNO-PLUS incubating stage 
mounted on a (non-motorized) 3-axis translation stage. This incubating stage maintained physiological temper-
ature, humidity, and pH levels in the samples during imaging. Due to the use of a non-motorized stage, only a 
single embedded fibroblast cell was imaged per time-lapse experiment. For each time-lapse, an isolated cell (i.e., 
a cell which occupied its own ‘personal’ 500 × 500 × 500 µm3 FOV within the Matrigel substrate) was located. 
This cell was aligned to the focal plane of the OCM system and centered within the transverse FOV. Time-lapse 
imaging was then begun. Each time-lapse imaging experiment spanned a total of 3 hours. This 3 hour period was 
divided into two phases. The first phase spanned the first 30 minutes of imaging. During this time, the baseline 
(contractile) behavior of the cell was monitored. At the end of this phase, a contractility inhibitor (0.5 mM cytoch-
alasin D dissolved in DMSO) was added to the petri dish to achieve a final cytochalasin D concentration of 1 µM. 
The second phase spanned the remaining time of the experiment (2.5 hours). During this phase, cell relaxation in 
response to the contractility inhibitor was observed.

Bursts of volumetric images were acquired at five-minute intervals across both phases of each time-lapse exper-
iment. Each burst captured a single ‘full FOV’ volume (spanning 2560 × 500 × 500 µm3 with 2048 × 1024 × 1024 
voxels) and eight ‘reduced FOV’ volumes (spanning 2560 × 125 × 125 µm3 with 2048 × 256 × 256 voxels). This 
multi-acquisition/multi-FOV scheme was used to aid in speckle reduction for automated segmentation of cell 
bodies. Each burst of images took approximately 1.5 minutes to acquire. The laser shutter was closed between each 
burst to limit laser exposure of the sample between acquisitions.

Computational image formation.  The reconstruction of volumetric time-lapse images from raw OCM 
spectral data consisted of six steps: (1) initial volume reconstruction, (2) coherence gate curvature removal, (3) 
focal plane registration, (4) phase registration, (5) bulk demodulation, and (6) computational adaptive optics. 
This procedure was designed to provide accurate high resolution volumetric image data that is well-suited for 
quantitative TFM applications. For a given time-lapse dataset, our implementation of this procedure processed 
each time point in series. However, it should be noted that this procedure is also amenable to parallelization. 
All steps were performed in MATLAB R2014b using CPU-based processing. In addition, all procedures were 
automated, requiring no human input except where otherwise stated in the complete method descriptions, which 
are available in the Supplementary Methods. Data processing was performed on a work station equipped with 2 
Intel(R) Zeon(R) CPU E5-2650 v3 @ 2.30 GHz processors and 128 GB of memory. All image formation and image 
processing steps (including image segmentation and bead tracking) were performed at a rate of approximately 
20 minutes per imaging time point (including data read time from a remote server).

Measurement of substrate deformations.  Substrate deformations were determined from the motion of 
the scattering polystyrene beads embedded in the Matrigel substrate. Bead motion was tracked using a time series 
consisting of the ‘full FOV’ images (described previously) in order to capture substrate deformations both near 
and far away from the cell surface.

As the scattering polystyrene beads exhibited a high signal strength well above the noise floor, bead positions 
were localized with a simple segmentation procedure. Volumetric image intensities were first normalized across 
depth. This was followed by binarization via single-level thresholding. The binarized images were then cleaned 
to remove objects that were too small or too large to be scattering beads. Objects removed included those smaller 
than 16 voxels (i.e., those too small to be a bead), and those larger than the 99th percentile of all objects larger 
than 16 voxels (such as the cell body, bead aggregates, or protein debris). All remaining objects in the binarized 
images were assumed to be beads. The location of each bead, was measured by calculating the intensity-weighted 
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centroid of each object in the binary image. The sensitivity of this bead localization procedure was determined 
by measuring the standard deviation of apparent (i.e., measured) bead displacements between two sequential 
images, acquired in the absence of CTFs. The localization sensitivity was found to be 86 nm, 32 nm, and 37 nm 
along the vertical, fast, and slow axes of the imaging system, respectively. (These values correspond to approx-
imately one-fifteenth of the voxel size along each dimension.) The impact of this localization sensitivity on the 
level of noise in CTF reconstructions is explored in the Supplementary Discussion.

Bead motion over time was determined using a feature vector-based point tracking algorithm45. (Details 
regarding algorithm design and performance under various conditions may be found in the original publica-
tion)45. In brief, the algorithm searches for pairs of bead positions (spanning pairs of time points) which are most 
likely to correspond to the same bead. Candidate pairs of positions are then determined to be a ‘match’ based 
upon the relative motion of other nearby beads (i.e., the algorithm assumes the substrate behaves as an elastic 
solid with deformations varying on scales longer than the bead spacing). Using this algorithm, bead positions 
were tracked across the full temporal span of each time-lapse dataset.

Once the positions of all individual beads were determined across time, bead displacements were calculated 
with respect to the final bead positions (i.e., the reference positions, as discussed in the ‘Overview of TF-OCM’ 
section) at the end of the experiment (i.e., time t = tmax, or t = 3 hours, in our imaging procedure). Details about 
this procedure, as well as motion correction, may be found in the Supplementary Methods. We assumed both that 
the fibroblast cells exerted no forces and that the substrate had no internal stresses or strain remaining at the end 
of each time-lapse experiment. This is a standard practice in TFM experiments which use chemical reagents to 
inhibit cell contractility or induce cell death9. We did find evidence of incomplete cell relaxation, in particular for 
cells 2, 5, and 6, which violates this assumption. Details may be found in the Supplementary Discussion.

Image segmentation for the measurement of time-varying cell geometry.  Knowledge of the 
time-varying cell shape and location was required in order to provide the boundary conditions necessary for 
CTF reconstruction. The 8 ‘reduced FOV’ images (described previously) at each time point were used to reduce 
speckle, and thereby enable a simple automated image segmentation procedure to identify the cell body. Due 
to the motion of intracellular components, the speckle pattern varied between individual images. At each time 
point, the corresponding set of reduced FOV images was combined via a projection operation. Specifically, the 
(speckle-reduced) output image was obtained as the standard deviation of the magnitude of the correspond-
ing reduced FOV images, taken on a voxel-by-voxel basis. This caused regions of high speckle fluctuation to be 
emphasized, and regions of static background scattering to be suppressed. It also had the effect of reducing the 
speckle contrast within the cell body. K-means clustering of a given speckle-reduced volumetric image yielded a 
binary image from which a volumetric approximation of the cell body was obtained (see Fig. 4).

Mesh generation.  For each time point, the binary image generated by image segmentation was converted 
into a discretized 3D triangular surface mesh using the iso2mesh46 and ‘Smooth Triangulated Mesh’47 packages 
in MATLAB (see the Supplementary Methods for details about motion correction). This surface mesh was then 
used to generate a volumetric tetrahedral mesh of the imaged volume in the open source program, Gmsh48. The 
outer surface of the mesh was a cube defined by the image boundaries, and the inner surface was defined by the 
cell surface at that time point. Finally, this volumetric tetrahedral mesh was converted into a volumetric hexahe-
dral mesh using the open source software package, tethex49. The final output of this procedure was a sequence of 
volumetric meshes suitable for use in our CTF reconstruction software.

Reconstruction of time-varying 3D cell traction forces.  The substrate mechanical characterization 
data, bead displacement data, and 3D mesh data produced by all the methods described above were used to 
reconstruct time-varying 3D cell traction forces. CTF reconstruction was performed using a previously reported 
custom FEM software package26 based on the open-source deal.II library50. (Details regarding performance using 
simulated data may be found in the original publication)26. In brief, the reconstruction of cell traction forces poses 
an inverse problem, which was solved by minimizing the discrepancy between the measured bead displacements 
and those that would be predicted to result from a candidate hypothesized traction field. The Matrigel substrate 
was assumed to be linear elastic, homogeneous, isotropic, and time-invariant. (These are standard, although nei-
ther universal nor mandatory, assumptions used to make the inverse problem posed by traction force reconstruc-
tion tractable)9. As cell motion was quasi-static for any given time point, the reconstructed traction field was 
required to satisfy force and moment balance. To optimize the trade-off between accuracy and instability of the 
numerical solution, Tikhonov regularization was applied (using a regularization coefficient value of 10−7, which 
was determined using the L-curve method)26. The mechanical properties used as input were a Young’s modu-
lus of 90 Pa (measured, as described previously) and Poisson’s ratio of 0.45 (assumed). CTF reconstruction was 
carried out independently for each time point in a given time-lapse experiment. All force reconstructions were 
performed on a work station equipped with 2 Intel(R) Zeon(R) CPU E5-2680 v2 @ 2.8 GHz processors and 190 
GB of memory. As a result, all 370 time points processed for this study were computed in approximately 80 hours.

Data Availability
All relevant data are available from the authors.
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