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Feature selection and lung nodule recognition are the core modules of the lung computer-aided detection (Lung CAD) system. To
improve the performance of the Lung CAD system, algorithmic research is carried out for the above two parts, respectively. First, in view
of the poor interpretability of deep features and the incomplete expression of clinically defined handcrafted features, a feature cascade
method is proposed to obtain richer feature information of nodules as the final input of the classifier. Second, to better map the global
characteristics of samples, the multiple kernel learning support vector machine (MKL-SVM) algorithm with a linear convex com-
bination of polynomial kernel and sigmoid kernel is proposed. Furthermore, this paper applied the methods for speed contraction factor
and roulette strategy, and a mixture of simulated annealing (SA) and particle swarm optimization (PSO) is used for global optimization,
so as to solve the problem that the PSO is easy to lose particle diversity and fall into the local optimal solution as well as improve the
model’s training speed. Therefore, the MKL-SVM algorithm is presented in this paper, which is based on swarm intelligence opti-
mization is proposed for lung nodule recognition. Finally, the algorithm construction experiments are conducted on the cooperative
hospital dataset and compared with 8 advanced algorithms on the public dataset LUNA16. The experimental results show that the
proposed algorithms can improve the accuracy of lung nodule recognition and reduce the missed detection of nodules.

1. Introduction

Lung cancer deaths account for 25% of all cancer deaths
worldwide [1]. With regard to the number of lung cancer
patients, China ranks first in the world, accounting for 37%
of the total global cases [2]. The latest research data show that
in China, both male and female lung cancer mortality rates
rank first, male morbidity ranks first, and female morbidity
ranks second [3]. The 5-year relative survival rate of lung
cancer patients is 18%, and early surgery is the most effective
treatment for lung cancer. If health management can be
strengthened to achieve early screening, detection, and early
treatment of lung cancer, the cure rate of patients can reach
65%, which can effectively improve the survival rate of lung
cancer patients and avoid missing the best treatment op-
portunity [4].

Computed tomography (CT) is an important method for
detecting early lung cancer. On CT images, early lung cancer

appears as a round or round-like dense shadow with a di-
ameter of less than 30 mm, known as a lung nodule. The
Lung CAD system is a comprehensive application of medical
image processing and machine-learning technology, aiming
to detect nodules and identify benign and malignant lung
nodules from CT quickly and accurately, so as to provide
efficient assisted diagnosis and treatment solutions. The
standard Lung CAD system usually includes image pre-
processing, lung parenchymal segmentation, segmentation
of a candidate nodule region of interest (ROI) or volume of
interest (VOI), the calculation and selection of ROI or VOI
features, and benign or malignant pulmonary nodule
recognition.

Many machine-learning algorithms are applied to Lung
CAD systems, which are mainly divided into two categories:
one is the traditional machine-learning algorithms, such as
random forest (RF), support vector machine (SVM),
k-nearest neighbor (KNN) algorithm; the other one is deep
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learning algorithms, among which convolutional neural
networks (CNN) is the most widely used, such as VGG16
[5], U-Net [6], and ResNet [7]. Traditional machine-learning
methods generally design texture features, morphological
features, and other handcrafted features according to doc-
tors’ suggestions, and then input them into the appropriate
classifier, of which SVM is the most commonly used [8-11].
SVM is a traditional machine-learning method, mainly
applied to small sample data, with strong interpretability and
deep theoretical foundation [12]. The complexity of SVM
computation only depends on the number of support vec-
tors, not the dimensionality of the space, which avoids the
disaster of dimensionality to a certain extent. Kernel
function is the necessary theoretical tool of SVM, which can
map original data to high-dimensional feature space and
realize nonlinear transformation. Compared with single
kernel learning, MKL-SVM can improve classification ac-
curacy and robustness [13]. However, SVM is difficult to
implement for large-scale data and is very sensitive to the
setting of kernel function parameters. With the great success
of deep learning in medical image processing, classification
based on the CNN method to automatically learn features is
very attractive [14]. However, a deep learning system trained
from scratch requires a lot of training data, and it is still a
challenge to obtain such large medical images with detailed
annotations [15]. The deep model training phase requires
longer training time and more complex processing, as well as
higher requirements for the selection of computing devices,
so it is mostly implemented through transfer learning [16].
The theoretical basis of deep learning is still not perfect and
lacks interpretability, but it is widely used due to its good
results. Although the above related algorithms have achieved
certain results in Lung CAD recognition, there are still the
following challenges:

(1) Deep features extracted by deep convolutional neural
networks can improve the detection effect, but the
training process requires a large amount of data, and
the design of the model is very complicated and
computationally expensive. Although transfer
learning can solve the time-consuming problem of
training the model from scratch, it still lacks some
interpretability for data features.

(2) The traditional SVM algorithm realizes the nonlinear
mapping of high-dimensional space through the
kernel function, so designing the suitable kernel
function for a specific problem is still difficult.

(3) The performance of SVM is strongly influenced by
the parameters, so finding the suitable parameters
can improve the performance of the SVM and avoid
falling into the local optimum. In general, the most
common global optimization algorithm for SVM is
the grid search method, which tries every possibility
through loop traversal to select the best performing
parameter set, but the disadvantage is that the cal-
culation is large and the search time is long. Swarm
intelligence optimization algorithms provide a so-
lution to this problem, of which the PSO algorithm is
very extensive. However, PSO is a local search
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algorithm; as the number of iterations increases, it is
easy to lose the diversity of particles and fall into the
local optimal solution.

Both traditional machine-learning methods and deep
learning methods have their own characteristics, so specific
solutions need to be proposed for specific problems. In
recent years, traditional machine-learning algorithms are
often used in combination with deep learning methods; for
instance, SVM is often used as a classifier for the hybrid
architecture of deep learning models, and has achieved
remarkable results [17-20]. In addition, algorithms are still
limited in the field of medical image analysis; it is worth
exploring them in combination with classical techniques in
other fields. For example, in recent years, attention mech-
anisms commonly used in the field of text parsing [21],
embedded real-time detection strategy in the field of quality
monitoring [22], siamese networks in video tracking [23],
graph neural networks in knowledge graphs [24], all of them
provide valuable references for the subsequent wise infor-
mation technology of medicine.

In this study, the key algorithms for feature extraction
and lung nodule recognition in the Lung CAD system are
designed to improve the accuracy of lung nodule recognition
and reduce the missed detection of nodules. The main
contributions are as follows:

(1) The classical deep learning network (VGG16) is
proposed to be used for deep features extraction of
nodule ROI in Lung CAD, and the deep features are
combined with handcrafted features as the final fea-
ture vector to take into account more comprehensive
feature information of nodules. On the one hand, it
overcomes the shortcomings of the single handcrafted
teature and cannot fully reflect the internal features of
the lesions, and on the other hand, it complements the
lack of interpretability of the deep features.

(2) Animproved MKL-SVM algorithm is proposed with
a linear convex combination of the polynomial
kernel with high generalization ability and the sig-
moid kernel function with high learning ability to
avoid overfitting during the model training process
and increase the model generalization ability.

(3) In order to overcome the problems of long training
time and complex search process of the grid search
method, the swarm intelligence strategy is further
introduced for parameter optimization to shorten the
training time of the model. At the same time, in view of
the problem that the locally optimized PSO algorithm
is prone to premature phenomenon and lack of
particle diversity, this paper adopts a hybrid swarm
intelligent optimization strategy, through the distur-
bance of speed contraction factor and roulette strategy,
in the proposed MKL-SVM algorithm and introduces
a global optimization algorithm based on SA and PSO
to help particles jump out of the local optimum and
better seek the global optimum solution, so as to
improve the accuracy of the model to identify lung
nodules and reduce the missed detection.
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The rest of the paper is organized as follows: Section 2
introduces the research and application of machine-learning
algorithm in medical image processing and the combined
application of swarm intelligence optimization in machine
learning. Section 3 elaborates the method of cascade feature
and the MKL-SVM algorithm of hybrid swarm intelligence
optimization in this paper. Section 4 presents the experi-
mental dataset, parameter settings, experimental results, and
analysis. The conclusion of this article and future work are
summarized in Section 5.

2. Related Works

2.1. Lung Nodule Feature Extraction Algorithm

2.1.1. Handcrafted Feature. The handcrafted features in
Lung CAD are designed according to doctors’ suggestions,
and are usually represented by texture features, morpho-
logical features, and pixel brightness features. Gongalves
et al. [9] used features based on shape, intensity, and texture
to describe the ROI of lung nodules, and finally selected
exponential kernel SVM as the classifier, and used the re-
ceiver operator characteristic (ROC) curve as a discriminant
criterion. The model obtained an area under ROC curve
(AUC) value of 0.962 under the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-
IDRI) database, which has a better classification result. De
Carvalho Filho et al. [10] used Minkowski functional, dis-
tance measures, representation of the vector of points
measures, and other shape features, which were input into
SVM to realize the recognition of benign and malignant lung
nodules. The experiment used 1405 nodules (including 394
malignant nodules and 1011 benign nodules) from LIDC-
IDRI, and the accuracy and sensitivity reached 93.19% and
92.75%, respectively, which can effectively identify nodules
and prevent missed detection.

The traditional method of handcrafted features repre-
sents the image through global visual underlying charac-
teristic statistics, but discards image detail. Selecting features
manually is a very laborious and heuristic (requiring ex-
pertise) method; whether it can be selected well depends
heavily on experience and luck, and its adjustment requires a
lot of time, while deep learning is about learning features.
Although several improved methods based on handcrafted
feature extraction can enhance the experimental results, it is
difficult to extract all significant features of medical images.

2.1.2. Deep Learning Feature. Deep neural network models
have powerful hierarchical feature learning capabilities.
CNN can use the original image as input and automatically
learn deep features for classification, thus eliminating the
need for predefined features [25, 26]. Hua et al. [27] first
introduced CNN to the nodule classification in lung CT
images, simplified the image analysis process of conven-
tional CAD through deep learning technology, and adopted
deep confidence networks and CNN models without the
need to calculate handcrafted features. The experimental
results showed that the deep learning method can achieve
better recognition results. Wang et al. [28] designed a Lung

CAD system based on CNN to automatically extract features
and detect nodules, and realized the rapid detection of
candidate nodules from CT images on LUNA16 dataset. The
experiments showed that the maximum sensitivity of the
model is 96.8%, which can reduce false positives.

Compared with traditional solutions, deeply structured
algorithms can automatically extract feature information
and potentially generate valuable features. However, the
training of deep models requires large datasets, and there are
few large-scale medical image datasets with annotations. The
lack of training data is an inevitable problem in medical
image processing, which can be solved by fine-tuning CNN
models pretrained on large-scale datasets such as natural
scene classes through transfer learning [29, 30].

2.1.3. Feature Combination. In recent years, the combina-
tion of handcrafted features and deep learning features has
been gradually applied to Lung CAD systems. Ho and Gwak
[31] combined the four handcrafted features of scale in-
variant feature transform (SIFT); generalized search trees
(GIST), local binary pattern (LBP), and histogram of ori-
ented gradients (HOG) with the deep features extracted by
CNN; and combined seven traditional supervised learning
classifiers to implement the classification of lung diseases,
and the results showed that the combination of features can
improve the classification results. Bansal et al. [32] proposed
to use ResNet network and morphological technology to
extract deep features and handcrafted features, and XGBoost
was selected for classification after feature combination, with
an experimental accuracy of 88.30%, which was better than
the other methods mentioned.

The combination of deep learning features and hand-
crafted features can take into account the image feature
information more comprehensively. On the one hand,
handcrafted features have certain interpretability than deep
features, and on the other hand, deep features can extract
more complete feature information of the image and
complement the disadvantage that handcrafted features
cannot reflect the internal features of the image.

2.2. Lung Nodule Recognition Algorithm

2.2.1. Traditional Machine-Learning Algorithm. Traditional
machine-learning methods are widely used in the detection
and recognition of pulmonary medical images, and SVM
algorithm is the most commonly used [8-11, 31-34]. The
SVM algorithm is a traditional machine-learning method
based on statistical theory, which can minimize structural
errors and maximize geometric edges, and is often used in
classification tasks and regression analysis. SVM takes
structural risk minimization as the criterion, and takes into
account both empirical risk minimization and expected risk
minimization [12]. The SVM is implemented in the feature
space by mapping the input sample data x to a high-di-
mensional feature space through a nonlinear transformation
® (x) and constructing the optimal classification hyperplane.
When constructing the hyperplane in space, using the kernel
function K (x;, x;) to represent the inner product of ® (x;)



and @ (x j), the specific form of @ (x) can be known without
being explicit, as shown in

K(xi,xj) :(D(xi)-CD(xj), (1)

where x; is the feature variable of the iy, sample input.

The kernel function is the core of SVM, and constructing
a kernel function suitable for a given problem can improve
the performance of the classifier. Li et al. [8] proposed a
MKL-SVM algorithm mixed with polynomial kernel and
Gaussian kernel to identify lung nodules, which has a higher
accuracy of 92.00% compared with the single kernel SVM
method. In order to learn from heterogeneous features, Tong
etal. [33] proposed a SVM lung nodule classification method
based on MKL, in which a polynomial kernel and a radial
basis kernel were used for the clinical features of the patient
and the deep features of the image, respectively, and the
MKL method was able to improve the classification accuracy
compared to using the deep neural network alone. Multiple
kernel functions can improve the performance of SVM to
some extent, and finding the kernel function for a given
problem is a major difficulty. The influence of SVM model
parameter selection cannot be ignored. The grid search
method has a complex training process and a long training
time, so the swarm intelligence optimization algorithm
stands out.

2.2.2. Parameter Optimization Algorithm. Most machine-
learning problems involve an optimization problem, such
as Bayesian algorithm based on maximizing the posterior
probability, K-means algorithm to minimize the intra-class
distance, and SVM algorithm to maximize the classification
hyperplane. The objective function or loss function is
optimized through optimization methods to train the best
model. Optimization algorithms are mainly divided into
two categories: gradient algorithms (deterministic algo-
rithms) and gradient-free optimization algorithms (sto-
chastic algorithms) [35]. The gradient algorithm is an
iterative approach to find the optimal solution in a de-
termined direction until the algorithm converges to the
optimal solution. The gradient algorithm is simple to
implement and can find the global solution, which is loved
by researchers, but it still has the following disadvantages:
convergence slows down when it is close to the optimal
solution, it is easy to fall into the local optimum, and it is
greatly influenced by the initialization parameters. How-
ever, the proposal of stochastic algorithms provides more
solutions to problems [36]. The gradient algorithm has a
strict moving direction; if the iteration starts from the same
initial point, the solutions are the same, which makes the
gradient algorithm not flexible enough and does not have
diverse solutions. In contrast, the stochastic algorithm
searches for solutions in a more flexible manner, which is
less influenced by the initialization parameters and is more
likely to jump out of the local optimum. Although different
solutions may be obtained even with the same initial values,
however, they will still converge to the optimal solution
within the given range, even though they are slightly dif-
ferent [35].
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At present, the more common stochastic algorithms are
mainly evolutionary algorithms, swarm intelligence opti-
mization algorithms, etc. Among them, swarm intelligence
optimization algorithms are widely used and perform more
prominently in solving modern nonlinear numerical global
optimization problems. The swarm intelligence optimiza-
tion algorithm is derived from the idea of natural evolution
and follows the following principles: proximity principle,
quality principle, diversity response principle, stability
principle, and adaptability principle [37, 38]. Swarm in-
telligence optimization is mainly designed based on the
social behavior mechanism of a certain biological group.
Each member of the group changes the direction of search
by continuously accumulating experience, randomly gen-
erating, evolving and updating a large number of possible
solutions, until the stopping criterion is reached, then the
search stops. The swarm intelligence optimization strategy
has the characteristics of fast solving speed, high accuracy,
wide application range, and strong stability, and it is widely
used in the parameter optimization of machine-learning
algorithms [39, 40]. Typical swarm intelligence optimiza-
tion includes PSO [41], Ant Colony Optimization (ACO)
[42], Artificial Bee Colony (ABC) [43], etc. In recent years,
new swarm intelligence optimization algorithms such as
Grey Wolf Optimizer (GWO), Whale Optimization Al-
gorithm (WOA), and Grasshopper Optimization Algo-
rithm (GOA) have also emerged and excelled in solving a
variety of optimization problems such as quadratic plan-
ning and convex planning [44-49].

PSO has the advantages of simple operation, faster
convergence, and fewer setup parameters, and is a widely
used swarm intelligence optimization algorithm [50, 51].
Suppose a population X = (X, X,,...,X,,) of n particles in
a D-dimensional search space, the position of the i, particle
in the D-dimensional search space is X; = (x;, %, .. .,
x;p)", which also represents a potential solution of the
problem. The adaptation value corresponding to each par-
ticle X; can be obtained according to the objective function.
Suppose the velocity of the iy, particle is V; = (V;,V},,
.., Vip)b, its individual extremum is P, = (P, P,,...,
P,;)T, and the population extremum is Py=(Pg, Py
P gD)T. During each iteration, the particle updates its velocity
and position by individual and population extremes, and the
updated expressions are

Vid' = Vi + Clrl(Pfd - de) + Czrz(P];d - X:'ii)’
k+1 k k+1 (2)
Xia =Xig+Vig »
where k is the number of current iterations; w is the inertia
weight;d = 1,2, ..., D; V; is the velocity of the iy, particle in
the dy dimension; ¢; and ¢, are acceleration factors
(nonnegative constants), and r, and r, are random numbers
distributed in the interval [0, 1]. To prevent the blind search
of particles, their velocity and position are usually restricted
to the range of [V ..V and [-X_ ., X
respectively.
Although the PSO algorithm can get the optimal solution
faster, with the increase of the number of iterations, the

max?> max] max> max]’
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population diversity will decrease, which is easy to cause
precocity, thus falling into the local optimal. The No Free
Lunch theorem shows that the average performance of any
two optimization algorithms is equal for any optimization
problem, and no optimization algorithm performs well in
terms of computational efficiency, generality, and global
search capability [52]. Therefore, it is a great strategy to solve
parameter optimization by combining multiple optimiza-
tion ideas. Bi and Qiu [53] combined Genetic Algorithm
(GA) and SA algorithm to propose an effective global op-
timization algorithm, and experiments showed that the
convergence speed of the algorithm was improved. Mafarja
and Mirjalili [54] proposed two hybrid schemes based on SA
and WOA for the feature selection problem, one is to embed
SA into WOA to enhance the search ability of the pop-
ulation, and the other is to use SA algorithm to further
search for the best solution after the solution of WOA al-
gorithm, and the experiments verified that the hybrid ap-
proach can improve the classification accuracy.

To improve the overall performance of the PSO algo-
rithm, the researchers have also made improvements in
terms of parameter settings, convergence, and combination
with other algorithms. For the problem of high-dimensional
feature selection, to improve the search speed of the par-
ticles, Song et al. [55] combined the feature clustering
method to reduce the search space of the PSO algorithm and
improved the overall performance through correlation
guidance and adaptive disturbance. To improve the ro-
bustness of the algorithm, Koessler and Almomani [56]
proposed a hybrid optimization algorithm of pattern search
and PSO, and the experimental results showed that the
hybrid optimization strategy was successful in improving the
accuracy and robustness. Tharwat and Hassanien [57] used
the quantum-behaved particle swarm optimization based on
statistical methods to find the parameters of SVM, by in-
troducing Monte Carlo Methods and the idea of averaging
into the standard PSO to increase the randomness of particle
positions, which reduces the number of parameters and can
reduce the rate of classification errors. Choudhary et al. [58]
used the genetic mutation operator in the GA algorithm
combined with the PSO algorithm to avoid the phenomenon
of premature convergence of particles, and the experimental
results showed that the hybrid algorithm performed well in
metrics such as optimal solution, mean value, and com-
putation time.

Therefore, the design of appropriate swarm intelligence
optimization strategies for different problems can combine
the advantages of multiple algorithms to a greater extent,
making the model solution faster and more accurate.

2.2.3. Deep Learning Algorithm. Deep learning has made
significant contributions to the detection and recognition
algorithms for Lung CAD systems in recent years, with CNN
being the most widely used [59]. Qin et al. [60] developed a
system for automatic detection of pulmonary nodules in CT
images using 3D U-Net, 3D DenseNet, and region proposal
network (RPN). On the LUNAL16 dataset, the sensitivity of
the multitask residual learning and hard negative mining

method can reach 96.7%, which was better than other
methods. Liu et al. [61] constructed a new multiscale
multiview model based on CNN for the lung nodule clas-
sification problem, with an overall accuracy of 92.1% and
90.3% in the LIDC-IDRI dataset and ELCAP dataset, re-
spectively. Masood et al. [62] proposed a multidimensional
region-based fully convolutional network for lung nodule
detection and used the LIDC-IDRI dataset to verify the
validity of the model, and the experimental results showed
that the sensitivity and classification accuracy of the pro-
posed model reached 98.1% and 97.91%, respectively. Deep
learning plays an important role in the field of medical
images, but the problems of unbalanced samples of medical
image datasets, lack of generality and interpretability of
network architectures, and high computational cost still
remain to be explored.

2.2.4. Combination of Deep Features and Traditional Ma-
chine-Learning Methods. In recent years, there has been
much interest in combining deep learning with traditional
machine learning. Ginneken et al. [17] used a pretrained
CNN model for ROI feature extraction combined with linear
SVM for classification, using 865 scans of CT from the
LIDC-IDRI dataset for their experiments. CNN performed
well but not as well as traditional CAD systems for lung
nodule detection, and when the two methods were used in
combination, significantly better results were obtained than
either method alone. Da Nobrega et al. [18] for lung nodule
malignancy classification problem, based on the transfer
learning method, proposed feature extraction through
networks such as VGG16, VGG19, and ResNet, and then
combined with traditional machine-learning methods such
as multilayer perceptron, SVM, and RF. The results showed
that the combination of the deep feature extractor based on
ResNet and traditional SVM had an AUC of 93.1%, which
has better classification performance. Polat and Danaei
Mehr [19] proposed a new 3D-CNN model based on
AlexNet and GoogleNet networks for feature extraction, and
used SVM as a classifier for lung nodule classification, and
the results showed that deep learning combined with SVM
classifier can improve the performance of the architecture.

In summary, combining deep features with handcrafted
features can obtain richer feature information. In addition,
combining deep learning methods with traditional machine-
learning methods can build models with better results and
improve classification performance.

3. Key Algorithms of the Proposed Lung
CAD System

In this paper, we investigate the key algorithms of the Lung
CAD system, mainly including lung nodule ROI feature
extraction and recognition. In order to obtain more com-
prehensive ROI feature information of lung nodules, this
paper quantifies the doctors’ advice into 13-dimensional
handcrafted features, and extracts deep features from the
VGG16 pretraining model through transfer learning, and
combines handcrafted features with deep features. In the



nodule recognition algorithm, an improved MKL-SVM al-
gorithm is adopted, and the kernel function adopts the form
of a linear convex combination of polynomial kernel and
sigmoid kernel to improve the classification performance of
SVM, taking into account the generalization ability and
learning ability. To accelerate model training, the proposed
MKL-SVM algorithm is further improved by combining the
hybrid swarm intelligence optimization strategy, aiming at
the problem that PSO algorithm is easy to fall into the local
optimal solution. In other words, the hybrid strategy of SA
and PSO is used to optimize the parameters of the improved
MKL-SVM model, so as to quickly find the optimal pa-
rameter set.

3.1. Feature Extraction and Feature Combination

3.1.1. Feature Extraction. The feature extraction in this
paper is divided into two parts: handcrafted feature ex-
traction and deep feature extraction. Among them, the
handcrafted feature extracts the 13-dimensional features of
the lung nodule candidate ROI according to the doctors’
suggestions, including 7-dimensional morphological fea-
tures, 2-dimensional grayscale features, and 4-dimensional
texture features. The details are the same as in [8].

In the deep feature extraction part, due to the difficulty of
acquiring images of lung lesions with annotations, the
VGG16 model pretrained on the large public dataset
(ImageNet) was selected as the deep feature extractor by the
transfer learning method, in order to achieve better learning
results.

The VGG16 model replaces the large convolution kernel
with a small convolution kernel and multiple convolution
layers to reduce the number of parameters of the network,
and has better recognition accuracy [5]. The lower layer of
CNN is composed of alternating convolutional and max-
pooling layers, while the higher layer is a fully connected
layer. The feature semantic information of the lower layer is
less, and the semantic information of the higher layer is
more abundant. The core of CNN feature extraction is the
convolutional layer and the pooling layer. The extracted
feature map is used as the input of the fully connected layer,
which contains the richest semantic information of lung
nodules and can describe the features more comprehen-
sively. Therefore, in this paper, the weights before the first
fully connected layer of VGG16 will be pretrained and
transferred to the target network to extract the deep features.
Deep convolutional neural networks have deep abstract
information but contain a large number of irrelevant and
redundant features, which are prone to the dimensional
disaster problem. Feature dimensionality reduction can
reduce the complexity of computation while eliminating the
noise contained in irrelevant features.

Commonly used feature dimensionality reduction
methods include linear discriminant analysis (LDA) and
principal component analysis (PCA), two classical algo-
rithms. The LDA method is used to perform a new pro-
jection on the eigenvalues. After the projection, the distance
of data points of different properties is larger, and the
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distance of data points of the same property is more
compact. PCA maps high-dimensional features to low-di-
mensional space from the perspective of covariance, and
expects the variance of the data to reach the maximum in the
projected dimension [63]. In order to be able to find the key
subset of the original features and reduce unnecessary
feature computation and resource consumption, the PCA
method is chosen for feature dimensionality reduction in
this paper.

3.1.2. Feature Combination. The specific steps of the feature
combination algorithm are as follows:

(1) Based on the transfer learning method, the pre-
trained VGG16 model is used as the feature extractor
of the target network, and a total of 25088 dimen-
sional features are extracted.

(2) According to the cumulative variance contribution
rate and the structure of the VGG16 model, while
reducing the computational complexity, the
extracted deep features are reduced to 98 dimensions
by PCA method.

(3) Cascading of handcrafted features and deep features
to form combined features.

(4) Finally, the combined features are input to the MKL-
SVM proposed in this paper to realize the recog-
nition of lung nodules.

3.2. Lung Nodule Recognition Algorithm

3.2.1. MKL-SVM Algorithm. The selection of the kernel
function is the key to SVM, and according to Mercer’s
theorem, the kernel function has various forms [12]. The
kernel functions are divided into linear and nonlinear
kernels, where the linear kernel is expressed as

K(x,x") = (x,x"). (3)

Commonly used nonlinear kernels include polynomial
kernel function, radial basis function (RBF), and sigmoid
kernel functions, denoted by K K¢ and K

sigmoid>
respectively.

poly>

Kpoly (x’ x/) = ((X, X,) + l)d’

"2
K (x, x') = exp<_"x_j">) (4)
29

Ksigmoid (.X, X,) = tanh (a (X, x’) + T),

where d represents the degree of the polynomial kernel and
takes a positive integer greater than 1; g represents the RBF
kernel width; and a and r represent the regulation parameter
and displacement parameter of the sigmoid kernel,
respectively.

It has been shown that each kernel function has its own
advantages and also limitations [64]. The polynomial kernel
is a global kernel function that acts not only on points close
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to the sample center but also on points farther away from the
center of the sample, and the generalization ability increases
as the degree d increases. The RBF kernel is a local kernel
function that has a large effect on points near the sample
centroid, and this effect diminishes as the distance increases.
The RBF kernel has a high learning ability but is overly
influenced by parameters and prone to overfitting. The
sigmoid kernel has strong nonlinear fitting ability and is also
a global kernel function. The SVM using the sigmoid kernel
is equivalent to a two-layer perceptron network. The
structural risk minimization property of SVM can overcome
the problem of local optimal solutions in neural networks,
and the result is a global optimal solution, which ensures
good generalization to unknown samples and can avoid
overfitting.

In addition to the several kernel functions introduced
above, kernel functions can be constructed according to the
actual needs of the problem. It has been proved that the
weighted convex combination form of the kernel function
satisfies Mercer’s theorem, and is still a kernel function,
which can be used in the SVM model [8], as shown in

mlx(xx)_z(x (.X, ’
(5)

M=z

a,=1, 0<a,<lLp=1...,N,

1

a~]
Il

where a,, is the weight of the py, basic kernel function in the
multiple kernel function and K , (x, x") is the py, basic kernel
function used. A total of N basic kernel functions are used in
the multiple kernel function and the sum of their weights is
1.

This paper proposed an improved MKL-SVM algorithm.
The kernel function used a polynomial kernel with strong
generalization ability and a sigmoid kernel function with
strong learning ability for linear convex combination, so as
to avoid overfitting in the model training process and in-
crease the model generalization ability.

The specific composition of the multiple kernel function
is shown in

K (x’ ) /\Kpoly (X x ) + (1 /\)ngmmd (.X, )’ (6)

where A is free to adjust the weights of different kernels in the
multiple kernel function in the range of (0, 1).

3.2.2. Improved MKL-SVM Algorithm for Hybrid Swarm
Intelligent Optimization Strategy. Swarm intelligent opti-
mization is a heuristic algorithm, which mainly simulates the
life behaviors of various creatures in nature, such as insects,
shoal of fish, birds. They forage for food in a cooperative way,
and each organism in the group constantly updates the
search direction through accumulated experience [65].
PSO algorithm is a typical swarm intelligence optimi-
zation algorithm. The PSO algorithm is simple and easy to
implement, with fewer setup parameters, and has been
widely used, but it also has the following disadvantages.
First, the algorithm is prone to precocity. If there are

deviations and unreasonable choices in the design imple-
mentation and parameter settings of the algorithm, it will
lead to the rapid loss of biodiversity of particles in the search
process, making the algorithm prone to local optimal so-
lutions. Second, the convergence rate of the algorithm is
slow, which is because the algorithm uses individual ex-
tremes and global extremes to update the particle state.
Third, the convergence accuracy of the algorithm is not high,
mainly because the search step of the algorithm is too large
and the local search ability is weak.

SA algorithm is a classic global optimization algorithm,
which was first applied in 1983 by Kirkpatrick et al. to
combinatorial optimization problems [66]. The physical
annealing process of SA consists of the following three parts:
the heating process, the isothermal process, and the cooling
process. The heating process corresponds to the set initial
temperature of the algorithm, the isothermal process cor-
responds to the Metropolis sampling process of the algo-
rithm, and the cooling process corresponds to the decrease
of the control parameters. The Metropolis criterion is the key
for the SA algorithm to converge to the global optimal
solution, which is to accept the deteriorating solution with a
certain probability, so that the algorithm can jump out of the
trap of local optimality. Given the initial value of the control
parameter in advance, the algorithm randomly selects the
current solution from the feasible solutions and follows the
iterative process of “generating a new solution — judging
— accepting or discarding.” As the temperature pa-
rameter decreases, a series of Markov chains are generated
and the optimal solution to the problem is sought step by
step.

To address the problem that the PSO algorithm is prone
to the phenomenon of premature maturity and missing
particle diversity, this paper adopts a hybrid swarm intel-
ligent optimization strategy, which can effectively avoid
particles staying at the local optimum and better seek the
global optimal solution. The flow of the proposed SAPSO
optimization algorithm for SA and PSO hybrid is shown in
Figure 1.

The above steps are specified as follows:

(1) Randomly initialize the position and velocity of each
particle in the population.

(2) Calculate the fitness of each particle, and store the
current position and fitness value of each particle in
P).

(3) Find the individual Py, with the best fitness value
among the current particles, and store the position
and fitness value of P, ., in the population extremum
Gbest'

(4) The initial temperature T is generally set empirically,
as shown in [67]:

T = f(Gbest)’ (7)
In5

where f is the value of the fitness function.

(5) Determine the fitness value TF (P (7)) for individuals
at the current temperature according to
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FIGURE 1: The flow chart of SAPSO algorithm.

~(P(i)~f (Gpew))IT (6) In combination with the roulette strategy, compare
TF(P(i)) = - , the magnitude of the random probability bet with the
Zfil e (PO (Goe))/T (8) value of the cumulative probability ComFit (i) of an
individual particle being selected. Determine the
P(i) = f(X;), maximum value G, from all P (i) to replace the
global optimal Gy, and then update the velocity and
where f is the fitness function value and P (i) is the position of the particles according to
fitness value of the current particle.
ComFit(i) = ) TF(P(m)), (9)

m=1

Vi(m+1) = o{Vi(m) + ¢,7, [Pye (D) = X; (m)] + 6,15 [ Gy — X, (m) ]},

2
"Thoc- Vo 1o

C=c,+c¢,,
Xm+1)=X;(m)+V;(m+1), (11)

T, =T, (12)
where m represents the current particle; ¢, and ¢, are

acceleration factors, which affect the trajectory of the where A is the cooling rate and takes values between
particle; r; and r, are random numbers of [0, 1]; ¢ is [0, 1].

the constriction factor, which controls the flying
speed of the particles to improve the convergence of
the algorithm.

(9) If the maximum number of iterations is satisfied, the
search stops; otherwise, go to step (4).

(7) Calculate the new fitness value of each particle,
update the individual extreme value Py, and the
group extreme value G-

4. Experimental Results

In this paper, the cascade feature is adopted as the final input
(8) The desuperheating operation is performed  feature and the MKL-SVM algorithm is combined with the
according to improved swarm intelligence optimization strategy to



Computational Intelligence and Neuroscience

identify the nodules. The main purpose is to improve the
recognition accuracy and detection rate of the nodules. In
order to verify the effectiveness of the proposed key algo-
rithm for CAD system, the algorithm in this paper is applied
to lung nodule recognition, and the specific flow of the
experiment is shown in Figure 2.

4.1. Dataset. The experiment uses a total of two datasets,
dataset 1 is the dataset of the cooperative hospital, and
dataset 2 is the large public dataset LUNA16 [68]. The ex-
perimental dataset 1 comprises 20 sets of CT images ac-
quired from a large specialized hospital in Jilin Province,
China, with a total of about 700 images. After the pre-
preparation for identification, the specific implementation
steps were the same as in reference [8], and a total of 270
candidate ROIs of lung nodules were extracted, including 80
nodules and 190 nonnodules. These data were randomly
divided into 170 training samples and 100 test samples, and
normalized. In the image preprocessing process, the original
image is first grayed out and the isolated type nodule part is
individually framed according to the annotation informa-
tion, and then binarization is performed and the largest 8-
connected region is reconstructed to remove the background
to obtain the ROI part of the lung nodule.

Experimental dataset 2 is Lung Nodule Analysis 16
(LUNAL16), which is a subset of the public LIDC-IDRI
database, including 888 groups of low-dose lungs CT images,
including 1186 nodules marked by at least 3 radiologists.
After the image preprocessing method, a total of 1140 lung
nodule ROIs were selected, including 650 nodules and 490
nonnodules. After randomly scattering, 800 of these ROIs
were used as the training dataset, and 340 ROIs were used as
the test dataset.

In the experiments of this paper, dataset 1 is mainly used
for the proposed Lung CAD system key algorithm con-
struction study, while dataset 2 is used to further verify the
robustness of the proposed Lung CAD system key algorithm.
In this paper, the experiments will be conducted in three
aspects, namely, kernel function construction of MKL-SVM,
optimization strategy of hybrid swarm intelligence, and
feature cascading, respectively. Firstly, for the lung nodule
recognition algorithm, in order to select a suitable kernel
function and improve the classification performance, ex-
perimental dataset 1 is used for algorithm construction ex-
periments. Furthermore, in order to reduce the training time
of the model, the swarm intelligence optimization strategy will
be used during the experiments, and only 13-dimensional
manual features will be used as input. Secondly, based on the
selected MKL-SVM recognition algorithm, feature selection
experiments were conducted with handcrafted features, deep
features, and combined features as input to determine the
effectiveness of the feature combination scheme for the Lung
CAD system. After the above experiments, the key algorithms
of the Lung CAD system in this paper were initially deter-
mined. Finally, to further validate the effectiveness of the
proposed key algorithm for the Lung CAD system, validation
experiments were conducted using dataset 2. In other words,
experimental dataset 1 is used for subsequent experiments of

SVM algorithms with different kernel functions, experiments
of hybrid intelligent optimization strategies, and experiments
of feature selection, while dataset 2 is used only for validation
experiments of the key algorithms of the proposed Lung CAD
system.

4.2. Parameter Setting and Evaluation Criteria

4.2.1. Parameter Setting Range. In the optimization stage of
the model parameters, the particle population and velocity
are initialized first. In the algorithm of this paper, the pa-
rameter setting is shown in Table 1.

4.2.2. Evaluation Criteria. In Lung CAD, the accuracy
(ACC) index is generally used to measure the overall nodule
recognition accuracy, and the sensitivity (SEN) index is used
to measure the actual detection rate of lung nodules.

ACC = TP + TN ’
TP + TN + FP + FN
(13)
TP
SEN= ——,
TP + FN

where TP is the identified true positive nodule; TN is the
identified true negative nodule, that is, nonnodule; FP is the
false-positive nodule; and FN is the false-negative nodule.

In practice, optimization strategies are often combined
with machine-learning algorithms and use ACC or SEN as
the fitness function, but it will result in a bias towards the
improvement of only one index. In order to take into ac-
count both the overall recognition rate ACC and the nodule
detection rate SEN to prevent missed detection of nodules,
the harmonic mean F — score function of both is used as the
evaluation index in this paper, as shown in

F — score = 2+ SEN = ACC ACC. (14)
SEN + ACC

In the parameter search phase of the model, the F — score
function under 5-fold cross-validation is used as the fitness
function of the proposed algorithm. To ensure the robust-
ness of the experimental results, each subsequent set of
experiments is repeated 10 times, and the statistical mean of
the 10 experimental results is taken as the final experimental
results.

To better evaluate the performance of the model, the
following metrics will also be referred to

TN
SPE=——
TN + FP
TP
" TP + FP’
TP+ TN — FP % F
MCC = *IN-FP+ N

/(TP + FP) (TP + FN) (IN + FP) (TN + FN)
(15)

Among them, Specificity (SPE) represents the correct
rate of nonnodule recognition, Precision (PRE) represents
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FIGURE 2: The flow chart of the proposed model.

TaBLE 1: Parameter settings of the model.

Number of population particles n 20
Maximum number of population iterations 200

Per particle dimension D 4
Degree of polynomial kernel d 2,3
Acceleration factors =15 ¢=17

Represent the weight share A of the hybrid kernel of the i,, particle, the
regularization coefficient C, the regulation parameter a, and the
displacement parameter r of the sigmoid kernel, respectively

Solution of the particle X; = (xil,xiz,xi3,xi4)T

Particle Range of values Range of velocity
) [0, 1] [-0.6, 0.6]
Particle settings C [272,29] [272 % 0.6,2°  0.6]
a [277,27] [277 % 0.6,27 % 0.6]
r [-3, 3] [-3%0.6,3 % 0.6]

the ability of the model to distinguish nonnodules, and
Matthews Correlation Coefficient (MCC) represents the
correlation coefficient between the predicted classification
and the actual classification results. If the SPE and PRE are
higher, the FP is lower, and the possibility of judging the
nodule as nonnodule is lower, and the false detection is easy
to cause psychological stress and additional financial burden
to patients, resulting in excessive medical care.

4.3. Analysis of Experimental Results. The experiments are
divided into two parts: the first part is the experiments for
the selection of key algorithms and the second part is the
experiments for the validation of the proposed algorithms.
Firstly, the selection of key algorithms for lung CAD is
performed in dataset 1, which is divided into different kernel
function SVM experiments, hybrid intelligent optimization
strategy experiments, and feature selection experiments.
Secondly, to further determine the robustness of the pro-
posed lung CAD system, validation experiments are per-
formed in public dataset 2.

4.3.1. Experiments of SVM Algorithm with Different Kernel
Functions. In the comparison experiments of the SVM al-
gorithm using different kernel functions, only the model
construction problem is involved and the experimental
dataset 1 is used for experimental validation. Several single
kernel functions such as RBF kernel, sigmoid kernel,
polynomial kernel, and the proposed multicore function
shown in equation (6) are selected for the experiments, and
the ROC curves during the training phase are shown in
Figure 3. Table 2 shows the AUC for each of the four kernel
functions, and the larger the AUC value, the better the
classifier effect.

In the kernel function selection problem, as shown in
Figure 3, the upper left vertex of the ROC curve of the

ROC curve
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Ficure 3: ROC curves of the four kernel functions.

TaBLE 2: AUC values of the four kernel functions.

Kernel function =~ RBF  Polynomial Sigmoid Proposed
AUC 0.9752 0.9686 0.9608 0.9779

The bold values represent the maximum values in the row.

proposed algorithm is closer to the (0, 1) point, and the AUC
value can reach 0.9779, which has a better recognition effect.
In the testing stage, the box plots of the four kernel functions
are shown in Figure 4.

The box plot of the proposed algorithm is located at the
uppermost end and has the largest maximum and median
values. The mean value of the F — score in this paper is able
to reach 0.9141 and the maximum value is 0.9250, which are
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FIGURE 4: Box plots of the kernel functions in the test stage.

optimal compared to several single kernel functions. When
F — score takes the maximum value, the corresponding ACC
and SEN reach 89.00% and 96.30%, respectively, and the
missed detection rate is low. In a comprehensive compar-
ison, the experimental results of the multiple kernel function
are better, so the subsequent recognition algorithms in this
paper all adopt the MKL-SVM algorithm with a mixture of
polynomial kernel and sigmoid kernel.

4.3.2. Hybrid Intelligent Optimization Strategy Experiment.
To verify the effectiveness of the proposed hybrid swarm
intelligence strategy, the experimental results of different
optimization strategies are compared in this section. During
the experiments in Section 4.3.1, when only the PSO algo-
rithm was used for parameter search, it was found that the
use of the sigmoid kernel was very easy to fall into the local
optimal solution in the training phase, as shown in
Figure 5(a), and the value of the optimal fitness function
obtained was only 0.4753; after using the SAPSO algorithm
with hybrid swarm intelligence optimization, it was able to
quickly jump out of the local optimal solution trap, as shown
in Figure 5(b), and the optimal fitness function value reaches
0.8949. Therefore, in the experiment of 4.3.1, the SAPSO
optimization strategy is used.

After selecting the multiple kernel functions, the PSO
algorithm and the SAPSO algorithm in this paper are
experimented with the degree of the multiple kernel func-
tions d = 2 and d = 3, respectively. In the training phase, the
fitness curve of the algorithm in this paper is shown in
Figure 6. The optimal fitness value of 0.9004 is obtained
using the PSO algorithm, while the optimal fitness value of
0.9393 is obtained using the SAPSO algorithm, which en-
ables the particles to jump out of the local optimal solution
and thus obtain a more optimal value.

Table 3 shows the experimental results obtained in the
testing phase for the PSO algorithm as well as the SAPSO
algorithm, respectively.

In Table 3, F ., is the mean value of F —score of 10
experimental results, F .. is the maximum value, F, .4, 1S
the median value, F,;, is the minimum value, ACC and

min mean
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ACC, .« represent the mean and maximum values of ACC of
10 experimental results, respectively, and SEN is the same.
SPE, PRE, and MCC are the mean of the results of 10
experiments.

As can be seen from Table 3, it is easier to find the current
optimal solution by choosing the SAPSO strategy in the case
of d = 2. The F — score related indicators are all optimal,
indicating that the SAPSO algorithm is able to balance both
ACC and SEN, taking into account the actual detection rate
of nodules while ensuring the overall accuracy. Comparing
the values of ACC and SEN, the ACC_,.,, and SEN_ .. of
SAPSO algorithm are higher than the PSO algorithm by
0.60% and 2.22%, respectively. Meanwhile, SPE, PRE, and
MCC are among the maximum values, which can reduce FP
and FN to a certain extent. In the case of d = 3, the SEN of
SAPSO was essentially the same as the PSO algorithm, but
ACC,,..n> SPE, PRE, and MCC all improved, indicating that
the SAPSO algorithm improved the overall performance of
the classifier. Compared to d = 2, the SEN,,, of the SAPSO
algorithm can reach 100%, but its corresponding ACC is
only 77%, which is not satisfactory overall.

In summary, in the subsequent recognition algorithm,
the MKL-SVM algorithm based on SAPSO atd = 2 is used as
the final recognition algorithm.

4.3.3. Feature Selection Experiments. Furthermore, 13-di-
mensional handcrafted features, 98-dimensional deep fea-
tures, and two feature cascades are used as inputs to the
recognition algorithm to determine the final features,
respectively.

As shown in Table 4, the F, ., of the proposed cascade
feature is 0.9394, which is better than the single feature.
Compared with using handcrafted features alone, F, . and
F in improved by 2.81% and 2.14%, and ACC_,,, and SEN_ ..
improved by 1.4% and 3.71%, respectively. Compared with
using deep features alone, F, . and F,;, improved by 10.76%
and 8.23%, and ACC,.,, and SEN_ ., improved by 1.3% and
17.72%, respectively. It is worth noting that when only deep
features are used, SPE and PRE values are both higher, indi-
cating that FP is less and the possibility of misdiagnosis of
nodules as nonnodules is less, but the SEN is low, indicating
that there are more FNs and more possibility of missed de-
tection. It is possible that the classification hyperplane is skewed
due to the imbalance of the positive and negative samples.
However, the comprehensive indexes F, .., and MCC using
cascading features are better, indicating that the proposed
algorithm can provide valuable feature information to a certain
extent, improve the overall performance of the classifier, in-
crease the actual detection rate of nodules, and avoid the missed
detection of nodules.

Figure 7 shows the fitness curve of the algorithm in this
paper using the combined features. The mean value of the
fitness function is 0.8696 for the 10 experiments in the
training phase, but the F,, value in the testing phase is
0.9394, so it is clear that the generalization ability has
improved.

Therefore, cascade features are superior to single
handcrafted features or deep features, and the feature se-
lection algorithm in this paper adopts cascade features.
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FIGURE 6: The fitness curve of the proposed recognition algorithm. (a) PSO. (b) SAPSO.

TaBLE 3: Experimental results of PSO and SAPSO algorithms.
d Algorithm F_ .. Fo  Fuedian Fmin ACChean (%) ACC, .. (%) SEN, ... (%) SEN,.. (%) SPE (%) PRE (%) MCC (%)

2 PSO 0.9000 0.9250 0.9023 0.8753 89.40 91.00 90.74 96.30 88.90 75.47 75.61
2 SAPSO 0.9141 0.9250 0.9179 0.8944 90.00 92.00 92.96 96.30 88.90 75.89 77.34
3 PSO 0.8743 0.8764 0.8753 0.8701 86.20 90.00 90.74 100 84.93 71.83 71.08
3 SAPSO 0.8829 0.9196 0.8753 0.8701 87.30 91.00 90.00 100 86.30 73.23 72.71

The bold values represent the maximum values in the column.

In summary, for the feature selection problem of pul-  the deep features with handcrafted features was selected as the
monary nodules, it was not possible to determine whether a  features of the final Lung CAD system. To address the accuracy
single handcrafted feature or a deep feature was more suitable, ~ problem of lung nodule recognition, a linear convex combi-

but the experimental results of cascading the two types of  nation of polynomial kernel and sigmoid kernel was used as the
features were superior; therefore, the model based on cascading ~ kernel function of MKL-SVM, and the F — score function was
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TABLE 4: Recognition results under different feature input patterns.

Algorithm Frow  Fone  Fowtwn  Fum  ACCo. (%) SEN, .. (%) SPE (%) PRE (%) MCC (%)

Handcrafted features 0.9141 0.9250 0.9179 0.8944 90.00 92.96 88.90 75.89 77.34

Deep features 0.8415  0.8455  0.8455  0.8323 90.10 78.95 96.94 94.21 79.10

Proposed features 0.9394 09531 0.9480 0.9158 91.40 96.67 89.14 79.71 81.87

The bold values represent the maximum values in the column.

0.87
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FIGURE 7: The fitness curve of the algorithm in this paper.
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TaBLE 5: Performance comparison between the proposed algorithm and existing algorithms.

References Year Datasets Methods ACC (%) SEN (%) SPE (%) PRE (%) AUC

Filho et al. [10] 2017 LIDC;_IDRI Shape features + GA + SVM 93.19 92.75 93.33 — 0.93
(1405 images)

Da Nobrega et al. [18] 2018 LIDC;_IDRI ResNet50 + SVM 88.41 85.38 — 7348 0.9313
(1536 images)

Zhao et al. [30] 2019 LIDC.:_IDRI Transfer learning CNNs 85.00 94.00 — — 0.94
(743 images)

Tong et al. [33] 2020 LID(?_IDRI 3D-CNN + heterogeneous features 91.29 91.01 91.40 — —
(1601 images)

Mastouri et al. [34] 2020 LUI\.IA16 Bilinear CNN + SVM 91.99 91.85 92.27 — 0.9590
(3186 images)
LIDC-IDRI Enhanced multidimensional region-

Masood et al. [62] 2020 (892 images) based fully CNN 97.91 98.10 93.20 — 0.9813

Abid et al. [25] 2021 MDC-IDRI - Multiview convolutional recurrent o1 o750 9760 9670  0.99
(2370 images) neural network

Majidpourkhoei et al. ), LIDC-IDRI o\ o itectures based on LeNet-5  90.10 8410 9170 7410  —

[26] (7072 images)

Proposed 2021 , LUNALG Cascade features + improved MKL- o500 9197 9g5 9767 09845

(1140 images)

SVM

used as the final goal, taking into account the double im-
provement of accuracy and sensitivity. Furthermore, in order
to solve the problem that the PSO algorithm was easy to fall
into the local optimum in the process of parameter optimi-
zation, a swarm intelligence optimization strategy combining
SA and PSO was proposed to be applied to the recognition
algorithm. Finally, the key algorithms of the proposed Lung
CAD system are validated on the LUNA16 dataset.

4.3.4. Key Algorithm Verification Experiments for the Lung
CAD System. To further evaluate the effectiveness and
generalization of the proposed key algorithms for the Lung
CAD system, validation experiments were conducted on the
LUNAL16 dataset. Table 5 shows the experimental results of
the proposed algorithm and the existing advanced algo-
rithms on LIDC-IDRI and LUNA16 datasets. Since most of
the current models are tested using different image data
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under different conditions, it is impossible to make a de-
tailed and fair comparison with existing solutions. However,
by comparing the main statistical metrics of the different
methods with the proposal of this paper, excellent results
were obtained. As shown in Table 5, the AUC of the pro-
posed algorithm can reach 0.9845, which further validates
the generalization ability of the algorithm in this paper.
Compared with references [18, 26, 30], the evaluation in-
dexes of the proposed algorithm are all above 90%, and the
SPE and PRE are significantly improved, which can effec-
tively avoid the false detection of nodules. Compared with
[10, 33, 34], SEN is on par with the existing algorithm, but
ACC is improved by about 3%, which has a better overall
recognition accuracy. Compared with [25, 62], the perfor-
mance of the proposed algorithm is slightly lower, but the
computational complexity is less than the methods involved
in them, which can save the time cost. Subsequently, the
training samples can be expanded by adding standard da-
tabases to achieve the purpose of improving the classification
performance.

5. Conclusion

After a series of theoretical studies and experiments on the
Lung CAD system, the key algorithms of Lung CAD system
based on cascade feature and hybrid swarm intelligence
optimization with MKL-SVM were proposed. After exper-
imental validation, firstly, to obtain more comprehensive
ROI feature information, handcrafted features and deep
features cascade were used. Secondly, to improve the clas-
sification performance, a MKL-SVM algorithm in the form
of linear convex combination of polynomial kernel function
and sigmoid kernel function was proposed. Finally, to solve
the problem that the PSO algorithm was easy to lose di-
versity and fall into the local optimal solution, and to im-
prove the training speed, the SA algorithm and the PSO
algorithm were combined to optimize the parameters, and
finally applied to the Lung CAD system. In order to further
verify the effectiveness of the proposed system, experiments
were conducted on the public dataset LUNA16. The results
showed the following:

(1) The combination of handcrafted features and deep
features can preserve feature information as much as
possible and improve over using either handcrafted
features or deep features alone

(2) Compared with the single kernel SVM algorithm, the
proposed MKL-SVM algorithm combined with the
F — score objective function can improve the clas-
sification performance of SVM, taking into account
both ACC and SEN

(3) The SAPSO optimization strategy with a mixture of
SA and PSO can make it easier for the particles to
seek the global optimal solution and shorten the
training time

In summary, the key algorithms of the Lung CAD system
proposed in this paper has strong robustness, and can
achieve good experimental results on both datasets, which
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can improve the accuracy of lung nodule recognition and
effectively avoid the missed detection of nodules.

In future work, we will explore whether other types of
kernel functions can improve the performance of the clas-
sifier, and it is also interesting to combine multiple evolu-
tionary algorithms to design optimization schemesand at the
same time, to improve the deep learning architecture such as
multiple deep features cascade method for feature selection.
Meanwhile, it should also be highly focused on the complex
calculation problems caused by high dimensional features in
the course of more comprehensively retaining the key in-
formation of the images. For the problem of lack of datasets
with annotation, the data enhancement algorithm is also the
next research orientation. In addition, the application of
attention models, graph neural networks, embedded strat-
egies, and other technologies to the wise information
technology of medicine has yet to be explored.
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