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ABSTRACT

In eucaryotes, gene expression is regulated by mi-
croRNAs (miRNAs) which bind to messenger RNAs
(mRNAs) and interfere with their translation into pro-
teins, either by promoting their degradation or induc-
ing their repression. We study the effect of miRNA
interference on each gene using experimental meth-
ods, such as microarrays and RNA-seq at the mRNA
level, or luciferase reporter assays and variations of
SILAC at the protein level. Alternatively, computa-
tional predictions would provide clear benefits. How-
ever, no algorithm toward this task has ever been pro-
posed. Here, we introduce a new algorithm to predict
genome-wide expression data from initial transcrip-
tome abundance. The algorithm simulates the miRNA
and mRNA hybridization competition that occurs in
given cellular conditions, and derives the whole set
of miRNA::mRNA interactions at equilibrium (micro-
targetome). Interestingly, solving the competition im-
proves the accuracy of miRNA target predictions.
Furthermore, this model implements a previously re-
ported and fundamental property of the microtarge-
tome: the binding between a miRNA and a mRNA de-
pends on their sequence complementarity, but also
on the abundance of all RNAs expressed in the cell,
i.e. the stoichiometry of all the miRNA sites and all
the miRNAs given their respective abundance. This
model generalizes the miRNA-induced synchronis-
tic silencing previously observed, and described as
sponges and competitive endogenous RNAs.

INTRODUCTION

MicroRNA (miRNA) genes are transcribed into primary
transcripts, which are processed into mature single-stranded
RNA molecules of ∼22 nucleotides (1). Mature miRNAs
are incorporated in the RNA-induced silencing complex

(RISC), which initially exposes seed nucleotides 2–5 to the
surface that serve as an hybridization template with a com-
plementary site on a messenger RNA (mRNA) (2–4). Base
pairing of these positions further expose subsequent seed
nucleotides for base pairing (5). When a mRNA is bound
by one or numerous miRNAs, it is subject to silencing, ei-
ther by translational repression, or by degradation, the lat-
ter case being dominant (6). Determining the silencing ef-
fect exerted on each gene is key to studying cell behavior.
This is currently accomplished using various experimental
techniques, such as luciferase reporter assays (2,7–8), mi-
croarrays (9,10) and RNA-seq (11), variants of SILAC (sta-
ble isotope labeling by amino acids in cell culture) (12,13),
and variants of CLIP (crosslinking immunoprecipitation)
(14–16). Results from these techniques showed that: (i) each
miRNA can target several mRNAs; (ii) each mRNA can
be the target of several miRNAs and (iii) most mRNAs
are subject to miRNA-induced silencing. Accumulating ev-
idences also indicate that (iv) miRNA-induced silencing is
subject to cellular conditions (17–20).

Determining the silencing effect applied to each gene us-
ing experimental methods is costly, and cannot currently be
applied to all desired cell conditions. For instance, experi-
mentally measuring the target and off-target effects of hun-
dreds of small interfering RNAs and in hundreds of cellular
conditions is elusive. Alternatively, computational methods
are not hindered by such concerns, given an algorithm could
predict accurately and in satisfactory runtimes the degrees
of silencing induced on each gene. However, none designed
for this task has ever been proposed.

Here, we introduce miRBooking, a one-of-a-kind algo-
rithm to address this task computationally. MiRBooking
infers the whole set of miRNA::mRNA interactions by sim-
ulating the RNA competition to hybridize, finding the sta-
ble state at equilibrium (microtargetome), and estimating
the miRNA-induced silencing (miS) levels applied to each
gene. To simulate competition between miRNAs and mR-
NAs, we considered the stable marriage problem (SMP)
(21). Gale and Shapley defined the formation of stable mar-
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riages as an abstract idea in the 60’s. It was illustrated by
men competing for and proposing women for marriages to
establish stable couples by respecting their individual pref-
erences.

By analogy, miRNAs and mRNAs form couples. The
preferences are defined by a combination of their absolute
abundance obtained from microarray or RNA-seq data,
and binding energies expressed as hybridization probabili-
ties (HP). The HPs are based on sequence complementarity
between miRNA seeds and miRNA recognition elements
(MREs). MirBooking is in-context, provides extended tar-
get site information, only requires expression data of the
initial cellular conditions, finds microtargetomes that are
in agreement with those determined by CLIP experiments,
and improves on the accuracy of any other method to pre-
dict effective miRNA targets. Finally, miRBooking was val-
idated on two different genome-wide experimental datasets.

MATERIALS AND METHODS

Stable marriage algorithm

At the beginning, each man and woman has a list of pref-
erences. Each man proposes the next woman in his list. If
the woman is free, she accepts. If she is already married to
another man, then, if she prefers the man with whom she is
currently married, then she rejects the new proposal, or oth-
erwise the marriage is broken and she rematches with the
new man. A man who is rejected proposes the next woman
in his list. The algorithm stops when no more stable mar-
riages can be formed, i.e. when no more marriages can favor
both party. If the preference lists include all members of the
other gender and are ordered from best to worst, then the
resulting set of couples is both stable and unique (22).

RNA abundance of cell lines

mRNAs. Using known absolute quantifications of eight
mRNAs in human CD4+ and CD8+ cells (23), we applied
a linear regression of log transformed data (R2 = 0.5) to
convert sets of relative gene expression data into absolute
quantities. These absolute expression data were used as a
reference to convert any other gene expression data into ab-
solute quantities by fitting the mean and the standard de-
viation of the log transformed data of the considered gene
expression to the reference.

miRNAs. Absolute quantifications of miRNA expression
data were determined from liver samples (24). It was ob-
served that the median and the maximum quantities of miR-
NAs are respectively 633 and 52 567 copies per cell. These
values were used to transform microarray expression data
into absolute quantities using a linear regression of the log
transformed data to adopt the same median and maximum.

Datasets. We used the GSE5949 and GSE26375 samples
from the Gene Expression Omibus (GEO) (25) to quantify
respectively the mRNAs and miRNAs in 41 different cell
lines. For each cell line, cDNA hybridization was performed
on Affymetrix Human Genome U95 Array, a combination
of five microarrays. To avoid a bias among the five microar-
rays, we realigned the expression data using the log trans-
formed expression value of two control genes, GAPDH and

ACTB. For the probes matching more than one mRNA, we
considered the longest 3′ UTR of this gene as defined by the
RefSeq annotation. The result of this procedure is a set of
41 cell lines in the format of mRNA and miRNA absolute
quantities. With this approach, we obtained a good correla-
tion between the absolute quantifications of the DU145 cell
line from microarrays versus RNA-seq (R = 0.56).

Seed::MRE hybridization probabilities

The mature miRNA sequences were obtained from miR-
Base release 20 (June 2013) (26), which contains 1872 hu-
man precursor and 2578 mature miRNAs. The mRNA se-
quences were obtained from NCBI RefSeq release 49 (27),
which contains 31 830 human mRNAs. We defined the seed
sequence as nucleotides 2–8 of the mature miRNAs (28). We
computed the free energies of the duplexes seed::MRE (Mi-
croRNA Recognition Element), �G, using the MC-Fold
software (29), which incorporates the energy contributions
of non-canonical base pairs that can possibly form at mis-
match positions. The energies of the duplexes were normal-
ized assuming a Boltzmann distribution, and converted into
a hybridization probability, HP:

HP(seed :: MRE) = e −�G(seed::MRE)
kT∑

h∈heptamers e −�G(seed::h)
kT

,

where the sum is done over all 47 heptamers, k is the Boltz-
mann constant, and T the temperature of the system (to
simplify, here we fixed kT = 1).

MiRBooking algorithm

The Gale-Shapley (stable marriage) algorithm consists of
iterations of miRNAs proposing MREs until a stable state
is reached. Given a cell’s conditions, we first established the
list of MREs, i.e. the mRNA target sites for which at least
one miRNA seed is complementary (maximum of two mis-
matches), sorted by the absolute abundance of their corre-
sponding mRNA in these conditions. For each MRE, we es-
tablished the list of its complementary miRNA seeds sorted
by their abundance in these conditions, and then sorted by
hybridization probabilities of the seed::MRE duplexes. At
the beginning of the algorithm, all MREs are free. MiRNA
seeds following the sorted order then propose each MRE.
The free MREs are assigned a number of miRNA copies
equals to:

Q(seed, MRE) =
min (q(MRE) × log∝(q(seed)) × HP(seed :: MRE), q(seed)) ,

where q(MRE) is the initial absolute abundance of the
MRE’s corresponding mRNA in conditions, q(seed) is the
current absolute abundance of the miRNA (i.e. at each as-
signment we subtract Q(seed,MRE) from the current abun-
dance of the miRNA), and HP is the hybridization prob-
ability of the seed::MRE duplex. Sorting is purely an algo-
rithmic trick to speedup the algorithm. It is possible because
the preferences are mutually equivalent, HP(seed:MRE) =
HP(MRE::seed), and it makes the algorithm runs faster
than by forming and breaking matches. The log of miRNA
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abundance was prototyped after the observed miRNA di-
lution by target abundance in a Michaelis–Menten kinetics
model (18). The region considered occupied when a miRNA
is matched to a MRE has a length of 46 nucleotides centered
on the miRNA, as this has been reported to be the minimum
footprint span of the RISC (14).

The algorithm iterates until no more seed::MRE pair can
be made. The final solution is stable because there is no al-
ternative seed::MRE pair in which both the miRNA and
MRE can be individually better off than they would be with
their assigned partner, in terms of their relative abundance,
hybridization probabilities, and dilution. The algorithm is
deterministic and returns a single solution for each input
conditions.

Computing miRNA-induced silencing on each gene

We assume the miRNA-induced silencing on a given
mRNA to be proportional to the sum of the contributions
of all miRNA copies occupying the multiple copies of this
mRNA, and we compute it as the sum of each HP multi-
plied by a MRE location factor, W:

miSC(mn) =
∑

x∈seeds;y∈MREs
HP(x :: y) × W(y),

where C is the cellular context; m is the mRNA expressed at
n copies in C; x is the seed and y the MRE; HP(x::y) is the
hybridization probability of forming the duplex x::y; and,
W(y) is a contribution factor due to the location of y in m:
W(y) = 0.1 if y is in the 5′ UTR or coding region (CDS),
and W(y) = 1.0 if y is in the 3′ UTR, as this model is in
agreement with experimental observations (30). HP(x::y) is
calculated from the free energy of folding, �G, of the duplex
x::y.

Optimization

MiRBooking has two parameters, τ and α. τ is a threshold
on the HP, so that HP(seed::MRE) ≥ τ . A large value of τ
results in miRBooking matching miRNAs and MREs with
higher complementarity. α is the base of a logarithm, which
dilutes the number of miRNA copies assigned to a mRNA
when they match during the running of the stable marriages
algorithm. A large value of � distributes smaller numbers of
miRNA copies to more MREs (larger dilution).

We executed miRBooking to obtain the miRNA::mRNA
interaction networks in two different cellular conditions:
DU145 and PC3. Then, we overexpressed miR-1 and miR-
133a by changing their abundance to 100 000 copies, and
executed miRBooking again to obtain the modified net-
works. Then, we compared the computed miS and mea-
sured mRNA expression determined by microarray data
(Gene Expression Omnibus GSE26032) (31). The microar-
ray sample contained the log2 ratio of the expressed mRNA
intensities before and after the miRNA overexpressions.
Since the platform used to derive the RNA abundance of
our cell lines differs from that used for these microarrays,
we only considered the genes that were mapped in both.
To reduce the impact of the noise, we fixed the log2 fold-
change thresholds between −0.2 and 0.2. We defined the
genes affected by the miRNA overexpression those with a

log2 fold-change smaller than −0.2. We obtained 9098 and
8582 data points, respectively, when combining the four ex-
periments. We ran miRBooking using series of combina-
tions of τ and α: τ ∈ [0.0050, 0.0055 . . . 0.2000], α ∈ [2, 4, . . .
and 224]. The predictions’ accuracy was evaluated using the
Matthews Correlation Coefficient (MCC), and the optimal
was reached with τ ∈ [0.0175 . . . 0.0185] and α = 512. We
used an additional sampling over values of t by increments
of 0.00001 to optimize further in the optimal range deter-
mined in the first sampling to determine that the optimal
values were in the interval [0.0179 . . . 0.0185], and we chose
τ = 0.0179, the minimum value in this range.

Validation and comparison

pSILAC. We evaluated and compared the accuracy of
the miRBooking algorithm with that of the most popular
miRNA target prediction programs. A comparison of seven
methods (and some of their variations) was made in 2009
(32). Similarly, we compared the most recent versions of
four of these previously benchmarked methods. We used the
external dataset and benchmarks based on pSILAC data
(13,32). This dataset is composed of five miRNA overex-
pression experiments in Hela cells (let-7b, miR-155, miR-
16, miR-1 and miR-30). The protein fold change values in-
duced by these miRNA overexpressions were determined
experimentally using the pSILAC method at 8 and 32 h af-
ter overexpression (13).

Luciferase. Second, we compared the programs using a
data set derived from a luciferase screening assay, where
expression levels of a luciferase reporter gene with the 3′
UTR of P21 were measured before and after the over-
expression of 266 different miRNAs in Hela cells (7).
This screen allowed us to evaluate the predictive power
of the programs in overexpression of the miRNAs and
reporter gene. The data set is composed of 128 positives
and 138 negatives based on observed luciferase fold-change
(<1 and ≥1, respectively). For the miRBooking virtual
experiments, we used the P21 3′ UTR reporter flanked by
the Renillia luciferase sequence as described (luc-P21 3′
UTR; Supplementary Figure S1) (7). The abundance of the
overexpressed miRNAs was set to 100K copies, whereas the
luc-P21 3′ UTR reporter was set to 100 copies. The effect
of each overexpressed miRNA on the luc-P21–3′ UTR
were measured in individual virtual experiments performed
in HeLa cell conditions. We computed and compared
the silencing values in normal HeLa cell and miRNA
overexpression conditions, and considered positives
(downregulation) the miRNAs for which miSHeLa(luc-
P21-‘UTR100) < miSHeLa+miRNA↑100K(luc-P21-‘UTR100),
and negatives the miRNAs for which miSHeLa(luc-P21-
‘UTR100) ≥ miSHeLa+miRNA↑100K(luc-P21-‘UTR100). For
the other evaluated programs, we considered positives the
miRNAs predicted to downregulate CDKN1A (RefSeq ID
NM 000389).

Precision, sensitivity and AU-ROC curves

To answer what programs identify the best the highly af-
fected genes after changing the conditions, we used the Pre-
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cision and Recall model, as well as the Area Under the Re-
ceiver Operating Characteristic curve (AU-ROC). The ac-
curacy of a predictive method can be evaluated as a com-
bination of precision and recall measures, and is based on
the prediction of the genes found downregulated after the
overexpression of various miRNAs. The precision is given
by the ratio TP/(TP + FP), and the recall by TP/(TP + FN),
where TP is for True Positives; FP, False Positives; and, FN,
False Negatives.

For the AU-ROC curves, we defined that a given gene is
highly affected if its fold-change is below some threshold,
t, log2(fold-change) < t. We evaluated three t values: ≥1.0,
−0.7 and −0.5. The targets were ordered using the scores re-
turned by each method. The p-values were provided by the
R verification package, and computed using the Wilcoxon
test. We wanted to test all miRNA target prediction ap-
proaches. However, none based on Gene expression corre-
lation or seed-expression hybrid method provided enough
predictions to be evaluated in the genome-wide context of
the pSILAC dataset composed of 15 734 miRNA::target
pairs: 86 positive pairs when t = −1.0; 257 when t = −0.7
and 514 when t = −0.5.

We tested Lasso (33), but it required an appropriate train-
ing on HELA cell expression data that are not available or
straightforward to generate. The inclusion of an inappro-
priate training would lead to misinterpretation of the re-
sults. We tried the three different datasets provided by the
authors, but none allowed us to make predictions on more
than 20 genes. We experienced a similar story with the hy-
brid method HOCTAR (34). We thus decided to investi-
gate with two different sequence-matching methods with
and without their respective sequence conservation and site
accessibility features. We evaluated miRbooking by order-
ing gene expression fold-change.

Synchronous silencing

For each mRNA (leader) in DU145 cells (7416 genes), we
systematically assigned 100 to 6000 copies by increments
of 100, and computed the miS on all other mRNAs (fol-
lowers). Then, we computed the correlation between the si-
lencing applied to the followers and the abundance of the
leaders. This resulted in a non-symmetrical square correla-
tion matrix of 7416 × 7416 entries. We applied a hierarchi-
cal clustering over the leader and follower mRNAs using
a Ward linkage. The mRNA cluster analysis was made us-
ing high enrichments of GO terms derived from the David
Bioinformatics Platform (35).

RESULTS

Determining the microtargetome using the stable marriage
algorithm

We used expression data from real-time PCR and microar-
ray experiments to derive absolute abundances of 41 cell
lines (23,24). We precomputed all possible 7-mer duplexes,
corresponding to 27 seeds × 27 MREs, and analyzed the
distribution of the numbers of mismatches at different HP
(Supplementary Figure S2A). The subset of seed::MRE
matches equal or over the optimal HP threshold (see ‘Ma-
terials and Methods’ section) are constituted of ∼30% and

∼70% perfect- and 1-mismatch duplexes, respectively. These
represent almost all perfect-seed matching duplexes, but
only about 10% of the 1-mismatch duplexes. Interestingly,
in the microtargetomes of three different cell lines (DU145,
PC3 and HCT116) computed by miRBooking, we found
the reverse ratio of perfect- and 1-mismatch duplexes (Sup-
plementary Figure S2B), i.e. ∼70% of the matches are per-
fect. This ratio corroborates those observed in maps derived
from HITS-CLIP and PAR-CLIP (14,15).

The miRBooking model implements an important prop-
erty of the microtargetome: the number and diversity of
miRNAs occupying a mRNA are determined by sequence
complementarity, but also by stoichiometry, i.e. all the
MREs and all the miRNAs expressed. The stable mar-
riage algorithm intrinsically implements the stoichiometry.
As a result, given cellular conditions the algorithm assigns
greater diversity and amounts of miRNA copies to more
abundant mRNAs. Indeed, the balance between transcrip-
tion and translation rates, as well as miRNA occupancies
determine the actual expression variations of associated
proteins.

To exemplify the property, we defined a mRNA occu-
pancy, O, as the average of miRNA copies per mRNA copy.
Consider PTEN, which is expressed at 30 copies in DU145
cells. MiRBooking assigns to PTEN 15 miRNAs (one or
more copies of miR-494, miR-222–3p, miR-23a-3p, and
miR-23b-3p) (Figure 1A). In these DU145 cells, the occu-
pancy of PTEN is 0.50, ODU145(PTEN30) = 15 miRNAs/30
PTEN copies = 0.5 miRNA per copy. If PTEN’s abundance
doubles in these cells, then its occupancy increases to 1.02.

The modification of the abundance of a miRNA can
also modify the occupancies. For example, if we increase
the abundance of miR-19b in DU145 cells to 50 000
copies, the occupancy of PTEN increases to 0.90 (Fig-
ure 1B). By comparing miS values before and after the
overexpression of miR-19b, we can predict the down-
regulation of PTEN after the overexpression of miR-
19b: miSDU145(miR-19b↑50K)(PTEN30) = 1.32 is greater than
miSDU145(PTEN30) = 0.59.

Different cellular condition are likely to change the mi-
crotargetome. To exemplify this, consider the same abun-
dance of PTEN but in HCT116 cells. Both the occupancy
and miRNA species on PTEN differ when compared to the
microtargetome derived from DU145 cells. MiRBooking
matches six copies of miR-494, six copies of miR-19b-3p,
and one copy of miR-222-3p. MiR-19b and miR-222 were
not occupying PTEN in DU145 cells, and miR-628-3p and
miR-23a/b, which were, disappeared from the microtarge-
tome of HCT116 cells (not shown).

Validation and comparison of the accuracy of target predic-
tions

The stoichiometric feature of the microtargetome and the
miRBooking algorithm can be validated by reproduce ex-
perimental data. To make sure that the training set does not
bias the validation, we excluded it. To measure if consid-
ering stoichiometry and simulating the RNA competition
provide any gain in accuracy, we compared miRBooking
with other miRNA target prediction methods. We used two
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Figure 1. PTEN miRNA occupancies vary in different DU145 conditions. PTEN is represented by a line; coding region in black (CDS). Colored miRNA
copies represent each occupied MREs. (A) PTEN expressed at 30 copies attracts two copies of miR-494 (red squares; two sites), one copy of miR-628–3p
(purple square; one site), two miR-23a-3p (blue squares; two sites), and two copies of miR-23b-3p (green squares; two sites). This leads to occupancy of
0.5; or, 1.02 when PTEN is expressed at 60 copies. (B) In endogenous levels in DU145 cells miR-19b-3p is expressed at around 4600 copies, which leads to
a PTEN occupancy of 0.50; or, 0.90 when miR-19b-3p is overexpressed at 50 000 copies.

independent benchmark datasets: one is based on pSILAC
and the other on luciferase reporter data.

The accuracy of predictive methods is usually assessed
using two measures: precision and recall. The precision is
the fraction of retrieved instances that are relevant, while
recall (also called sensitivity) is the fraction of relevant in-
stances that are retrieved. In Figure 2, we can see that miR-
Booking is the only model with a precision over 50% in
the pSILAC dataset, whereas it has the highest precision in
the luciferase dataset (with a sensitivity of near 60%, which
is the second best). The model with the best sensitivity is
PITAALL, but at the price of having the worst precision in
both datasets. Many alternative approaches to target pre-
diction beyond seed matching were tested using miRBook-
ing without any improvement. These include: considering
the A in the mRNA’s first position (2); the accessibility of
the binding site defined by mRNA folding energies (36); site
cooperativity (2); and, the energy of folding of the entire
miRNA::MRE (37).

We also evaluated and compared the sequenced-based
methods using area under ROC curves (AU-ROC) on the
pSILAC dataset. We can see in Supplementary Figure S3
that miRBooking at different thresholds obtain larger area
under the curves and P-values than any other method.
We also observed that miRBooking’s AU-ROC curves in-
creased with higher values of the threshold. The other eval-
uated methods showed the opposite tendency. The sequence
matching methods performed better when no additional
features (e.g. conservation or accessibility) were included.
Noteworthy is the fact that the methods based on gene ex-
pression correlation could not be compared, as they did not
made enough predictions to provide statistics on the pSI-
LAC dataset.

Synchronous silencing

The stoichiometric feature of the microtargetome logically
implies the crosstalk modulation of gene expression, as ob-

served by many either as sponges (38) or competitive en-
dogenous RNAs (19). Essentially, given cellular conditions,
increasing the expression of a mRNA sequestered miRNAs
(by competition), leaving less to be distributed amongst the
others. All such cascading effects simulated by miRBook-
ing are summarized in Figure 3. The silencing level applied
to a given mRNA can be affected by changing the expres-
sion of another. The leader mRNA is the one that affects
the silencing of the other, whereas the follower is the one
that gets affected. An interesting attribute arising from this
model is that the leaders and followers do not need neces-
sarily to share common miRNAs. The effect can be prop-
agated indirectly through a network of other miRNAs and
mRNAs.

Using miRBooking simulations, we computed the corre-
lations between the abundance of a leader mRNA on the
miS it induces on follower mRNAs in five cell lines: DU145
(Figure 4A), and K562, HCT116, MCF7 and BT549 (Sup-
plementary Figure S3). Note that in the current miRBook-
ing model, the miS equation was not adjusted to fit exper-
imental values. Therefore, the goal here was to detect the
presence of links between leaders and followers, but not to
precisely quantify them. Remarkably, the hierarchical clus-
tering highlights the high expression of most leaders (right
side of the heat map with more white color), and the low ex-
pression of the followers (left side of the heat map with more
orange color). This separation between the highly and lowly
expressed groups is made more clear when plotting the ex-
pression level distributions of both, as shown in Figure 4B.

The miS of the genes in the groups labeled A to I in the
heat map highly correlate synchronistically (Figure 4A). For
instance, group B has the highest mean correlation (Rmean =
0.78). This group contains 292 mRNAs related to the GO-
terms ‘translational elongation’ and ‘ribosomal protein’ (P-
values < 10−62 and 10−49, respectively). It contains over 20%
ribosomal protein genes (RPGs) (63/292). Group A is the
largest highly correlated group in the low expression region
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Figure 4. MiRNA-induced silencing and mRNA abundance correlates.
(A) Correlation matrix between the abundance of leader genes and the miS
applied to all others in DU145 cells, from 0 (no correlation, orange) to 1
(perfect correlation, white). Hierarchical clustering separates the leaders in
two groups (left and right of the dotted line). Groups of leaders and fol-
lowers are shown in rectangles labeled A to I. (B) Messenger RNA abun-
dance density distribution of the two groups of leaders: lowly expressed
genes (pale gray curve) and highly expressed genes (dark gray curve). (C)
The cumulative distribution of the correlation between the abundance of
PTEN and that of all genes expressed (black), compared to the cumula-
tive distribution of the correlation between the abundance of PTEN and
that of its leaders and followers (red), in 41 cell lines and measured using
microarrays.

of the heat map. It is defined by 322 leaders, including 59
transcription factors (P-value < 10−11) and 622 followers,
including 97 transcription factors (P-value < 10−6). These
genes relate to the GO-term ‘regulation of transcription,
DNA-dependent’. The leaders and followers of the other
groups (C to I) are similarly coupled as those in groups
A and B. However, no significant enrichment in GO terms
was found for these groups. We found interesting that al-
though the miRNAs involved in the miS applied to each
gene vary from one cellular context to another (stoichio-
metric feature), the synchronistic relationships among the
genes is rather stable across the different cell lines (Figure
4A and Supplementary Figure S4).

To appreciate the contribution of leader and follower
genes to any particular one, consider the expression of
PTEN and the comparison of the cumulative distribution of
the correlations between its abundance and all other genes
expressed in 41 cell lines, with that between PTEN and the
genes identified as its leaders and followers by miRBooking.
Note that the cumulative distributions shown in Figure 4C
are based on experimental data alone. These data from 41
cell lines corroborate the synchronous regulation of PTEN
and its leader and follower genes (P-value = 10−16), as in-
ferred by miRBooking.

Regulatory synchronicity represents a programmable de-
vice that allows cells to link transcription and translation.
Ultimately, at the top of the hierarchy, a group of mRNAs
sufficiently abundant could synchronize the expression a
large fraction of all other mRNAs, e.g. group B in Figure
4. This group is enriched by RPGs which by themselves
represent a large fraction of the total mRNA abundance,
which has the potential to sponge an important fraction of
the total miRNA abundance. The RPG group is thus a se-
rious candidate to global mRNA regulation, which could,
for instance, self-establish a balance between the number of
transcripts and their translation for cellular homeostasis. In
Supplementary Figure S5, we can see that the members of
the RPG cluster have shorter sequences than the mRNAs in
RefSeq or expressed in DU145 cells. This is somewhat sur-
prising since these global leaders evolved to maximize their
competitive effects.

From these results, it would be interesting to investigate
the participation of the ribosomal RNAs in cellular home-
ostasis. Self-regulation between transcription and transla-
tion goes back to procaryotes, where these two main reg-
ulatory mechanisms are coupled and synchronized in cis
by operon and riboswitch mechanisms. This necessary syn-
chronization between transcription and translation during
the separation of procaryotes and eucaryotes could have
evolved through the miRNA-based regulatory mechanism.
The synchronized expression of mRNA groups offers in
trans the same functionalities as those of operons and ri-
boswitches, with malleability and programmable advan-
tages. We thus hypothesize a role of the ribosomal machin-
ery, and in particular of the RPGs, that links its size (abun-
dance) to the numbers of genes that can be expressed and
regulated in a given cell.
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Figure 5. MiRBooking computes the microtargetome from total miRNA and mRNA abundance. From total miRNAs and mRNAs of the cell, the miR-
Booking algorithm determines the microtargetome. It implements a fundamental property of the microtargetome: as the abundance of a mRNA increases,
its occupancy increases (blue triangle), but the effectiveness of any given miRNA decreases (yellow/red triangle).

DISCUSSION

We showed here that simulating RNA hybridization and ac-
counting for the stoichiometry of the RNAs expressed in
given cellular conditions leads to a significant improvement
in the accuracy of miRNA target predictions. Interestingly,
the sensitivity of the method in a benchmark constituted of
a luciferase assay dataset increased considerably compared
to that obtained from a pSILAC dataset. The difference be-
tween luciferase and pSILAC assays is that the overexpres-
sion of a reporter gene in the former escapes the competi-
tion. In general, the validation of miRNA::mRNA interac-
tions in luciferase or overexpression experiments represents
an artifactual situation that may not reflect the physiolog-
ical environments. Our model suggests that the low silenc-
ing effects measured in such experiments is due to the fact
that a highly expressed mRNA is already collectively tar-
geted by many other miRNAs. In physiological conditions,
the effect of increasing the abundance of a miRNA may be
more important on a lowly expressed gene. The level of si-
lencing applied to any gene highly depends on the cellular
context, and taking this feature into account in the design
of RNAi-based therapeutics is critical.

Three categories of miRNA prediction software were
benchmarked, and only sequence matching methods pro-
vided enough predictions to be compared using genome-
wide benchmarks. Surprisingly, sequence matching meth-
ods provided better results when additional features were
not considered. TargetScan gave better results in terms of
AU-ROC curves and p-values when the sequence conser-
vation was not used. We observed the same behavior with
PITA when the site accessibility parameter was not acti-
vated. This indicates that the initial objective of using these
features, i.e. to decrease the number of false positives, came
with a higher cost, that of increasing the rate of false nega-
tives.

The miRBooking model uses a stable marriage algorithm
that intrinsically implements the stoichiometric feature of
the microtargetome, summarized in Figure 5. This model
highlights a miRNA-induced synchronistic silencing mech-
anism that generalizes the concepts previously described in
the literature as miRNA sponges or competitive endoge-
nous RNAs. This phenomenon must be accounted for when
using RNA interference, as well as knockdown or knockout
experiments, as modifying the expression level of even a sin-

gle gene can have drastic effects on the expression of several
others.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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