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A B S T R A C T

Background and objectives: Social and behavioral non-pharmaceutical interventions (NPIs), such as

mask-wearing, social distancing and travel restrictions, as well as diagnostic tests, have been broadly

implemented in response to the COVID-19 pandemic. Epidemiological models and data analysis affirm

that wide adoption of NPIs helps to control the pandemic. However, SARS-CoV-2 has extensively dem-

onstrated its ability to evolve. Therefore, it is crucial to examine how NPIs may affect the evolution of

the virus. Such evolution could have important effects on the spread and impact of the pandemic.

Methodology: We used evo-epidemiological models to examine the effect of NPIs and testing on two

evolutionary trajectories for SARS-CoV-2: attenuation and test evasion.

Results: Our results show that when stronger measures are taken, selection may act to reduce disease

severity. Additionally, the timely application of NPIs could significantly affect the competition between

viral strains, favoring the milder strain. Furthermore, a higher testing rate can select for a test-evasive

viral strain, even if that strain is less infectious than the detectable competing strain. Importantly, if a

less detectable strain evolves, epidemiological metrics such as confirmed daily cases may distort our

assessment of the pandemic.

Conclusions and implications: Our results highlight the important implications NPIs can have on the

evolution of SARS-CoV-2.

Lay Summary: We used evo-epidemiological models to examine the effect of non-pharmaceutical inter-

ventions and testing on two evolutionary trajectories for SARS-CoV-2: attenuation and test evasion.

Our results show that when stronger measures are taken, selection may act to reduce disease severity.
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INTRODUCTION

Social and behavioral non-pharmaceutical interventions (NPIs)

have been broadly applied to contain the COVID-19 pandemic.

These interventions include use of face masks, implementation

of social distancing, closure of educational institutions, individ-

ual movement restrictions and quarantining cases confirmed

using RT-PCR or serological testing. The role of NPIs in control-

ling the COVID-19 pandemic has been studied extensively [1].

Epidemiological models have been used to assess the impact

of these NPIs on the pandemic, aiming to forecast the levels of

infection [2], hospitalization [3] and mortality [4]. Both theoretic-

al models and data analysis affirm that wide and early adoption

of interventions, such as limiting social contacts and wearing

face masks, helps to control the pandemic [1]. However, SARS-

CoV-2 has broadly demonstrated its ability to evolve [5]: it has

been suggested that a mutation conferring ability to infect

humans [5] preceded its transmission to humans from bats [5].

Similar to other RNA viruses [6], the mutation rate of SARS-

CoV-2 is estimated at �10�6 per site/cycle, relatively high [7]

(although lower than Influenza [8]). Additionally, there is already

significant variation in the viral population [9] due to a high rate

of recombination [5], a very high number of copies produced in

each infection [7], a rapid replication cycle (around 10 h [7]) and

the large effective size of the SARS-CoV-2 population. This vari-

ation can potentially lead to adaptive evolution [9], as seen be-

fore, e.g. in Influenza [10], HIV [11] and Ebola [12].

Because the virus only recently emerged in humans, further

adaptation of SARS-CoV-2 to its new host is likely. Indeed, new

strains have recently emerged carrying mutations that may in-

crease transmission, lower detectability, and perhaps even re-

duce vaccine efficiency [9]. Importantly, by limiting the

transmission of the virus, NPIs may exert strong selection on

SARS-CoV-2 [13]. Hence, it is crucial to examine how NPIs could

affect the evolution of the virus. Such evolution may have im-

portant effects on the spread and control of the pandemic. To

examine how the virus may evolve in response to NPIs, we have

developed evo-epidemiological models that track both the infec-

tion status of the human hosts and the strain of the infecting

virus. We use these models to examine how NPIs are expected

to affect two evolutionary trajectories for SARS-CoV-2: attenu-

ation and test evasion.

Attenuation

An important epidemiological feature of the virus is the high fre-

quency of asymptomatic infections [14]. It is suggested that

asymptomatic individuals are infectious [15] and can transmit

the disease but are less infectious than those who are symp-

tomatic [15]. Due to limited resources, the COVID-19 testing

policy in many countries does not include routine screening of

asymptomatic individuals, unless they have been in direct

contact with a confirmed case or are routinely exposed to

infected individuals (e.g. health workers). Thus, these asymp-

tomatic cases largely go undetected. Asymptomatic infection

allows the individual to maintain their normal routine and social

contact levels throughout the entire course of the infection,

thus potentially producing many secondary infections. The ten-

dency to develop asymptomatic infection is affected both by the

individual characteristics, such as prior health status [16], and

by the virus itself. As asymptomatic cases are less likely to be

diagnosed and isolated, we hypothesized that a decrease in the

frequency of symptomatic cases can be favored by selection,

leading to the evolution of an attenuated pathogen [17]. For ex-

ample, a mutation causing decreased viral load may cause a

higher frequency of asymptomatic cases and milder disease.

However, asymptomatic individuals are likely less infectious

[15], and if the relative transmissibility of asymptomatic cases is

low enough, the more virulent strain may evolve. We use the

term ‘virulence’ to describe the severity of disease produced by

the virus [18, 19]. Increased awareness to the epidemic and ap-

plication of NPIs may select for further increase in the frequency

of asymptomatic infections. NPIs change the overall infection

rate by reducing the number of contacts per individual, hence

we expect that NPIs will have an important role in determining

the outcome of competitions between attenuated and virulent

strains.

Test evasion

An active COVID-19 infection can be diagnosed using an RT-

PCR test [20] on a nasopharyngeal swab specimen, detecting

specific sites in the viral genome, or a rapid antigen test [21].

The detected sites were chosen such that they are critical for

virus function [22]. COVID-19 tests have been evaluated for

their sensitivity, the expected fraction of infected individuals

who receive a positive test result, and specificity, the fraction of

uninfected individuals who erroneously receive a positive test

result [20]. The conditions under which individuals are tested

may differ between and even within different countries [23].

Given that individuals who receive a positive test result are iso-

lated until recovery, largescale testing can exert strong selection

pressure on the virus. While a false negative result on a COVID-

19 test can also be caused by human error in test administra-

tion [24], we assume that the human factors are similar for both

strains. The detectability of the virus may be directly under se-

lection, potentially favoring two classes of mutants: (i) mutants

presenting atypical infections [25], including affecting different

age groups (e.g. children) or different tissues [25] (e.g. gastro-

intestinal system, heart and liver infections). Undiagnosed

COVID-19 patients may not be quarantined even when sick—

heart disease, e.g. is not usually infectious—and therefore

might infect others, including healthcare workers and other
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patients. (ii) As tests are used to determine who must be quar-

antined, studies have shown that mutations in the viral genome

could affect the accuracy of RT-PCR-based detection assays [22]

and antigen tests [26]. Viruses with modifications in the RNA

sequence used for the test could be favored by natural selec-

tion. Although tests can be modified to detect different viral

strains, we assume a delay between the evolution of the virus

and a wide availability of adapted tests. We hypothesize that

when testing is frequent and NPIs are significant, selection

could favor strains that are harder to detect, even at the cost of

lower transmissibility.

MODEL

We use an SEIR compartmental epidemic model. The model fol-

lows two viral strains simultaneously spreading in an initially

susceptible population (Fig. 1). We define non-isolated individ-

uals (Ia) to be those who are infectious but not isolated from

disease onset until recovery, e.g. because they are asymptomat-

ic. We define pre-isolated individuals (Ip) to be those who are in-

fectious and may be asymptomatic or exhibit mild symptoms

for several days, after which they exhibit clinical manifestation

of the disease (Is) and are therefore isolated. We neglect births

and deaths due to non-disease related causes and assume no

superinfection and total cross-immunity, such that recovered

individuals from either strain are immune to both strains. For

COVID-19, the latter is likely true in some strains for at least

several months [27]. Thus, we divide the host population to sus-

ceptible individuals (S), individuals exposed to one of the

strains (E1; E2 for Strain 1 and Strain 2, respectively), infected

individuals, including non-isolated (In
1, In

2), pre-isolated (I
p
1; I

p
2),

and isolated individuals (Is
1; I

s
2) and ‘removed’ individuals

(R1;R2), which effectively include both recovered individuals

and fatalities. The initial conditions for the two viral strains are

identical, and we consider a small number of exposed and

infected individuals. Strain 1 is the ‘virulent’ strain, and Strain 2

is ‘attenuated’, resulting in weaker symptoms and a higher frac-

tion (ai) of non-isolated cases (a2 > a1).

Susceptible individuals become exposed through contact

with an infected individual. Let b be the transmission rate for

pre-isolated individuals. The distinction between the transmis-

sion rates of the different classes of infected individuals is cen-

tral: non-isolated individuals are assumed to be less infectious

than those who are pre-isolated, e.g. due to lower viral load,

and the transmission rate can be very low for isolated cases,

due to a low contact rate. The parameter l defines relative

transmission rate of non-isolated infected l � bð Þ individuals in

comparison to pre-isolated individuals bð Þ.

Figure 1. Evo-epidemiological model. Our model follows two viral strains simultaneously spreading in an initially susceptible population. Susceptible (S) indi-

viduals become exposed (E) after contact with an infected individual with rate b; l � b for pre-isolated and non-isolated individuals, respectively. Exposed indi-

viduals (E) undergo an incubation period during which they are not infectious. After an average incubation period of Z days, exposed individuals become

infected, and are either non-isolated (In) or pre-isolated (Ip) or, with probability a and ð1� aÞ, respectively. Non-isolated individuals (Ia) are infectious but

not isolated from disease onset until recovery, e.g. because they are asymptomatic. Pre-isolated individuals (Ip) are infectious and may be asymptomatic or ex-

hibit mild symptoms for several days, after which they exhibit clinical manifestation of the disease (Is) and are therefore isolated. Isolated and non-isolated

cases become recovered (R) after an average of Ds and Da days, respectively.
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The basic model is described by the following equations

ði ¼ 1; 2Þ:

dS

dt
¼ � S

N
� b � I

p
1 þ l � In

1 þ I
p
2 þ l � In

2

� �
(1)

dEi

dt
¼ S

N
� b � I

p
i þ l � In

i

� �
� Ei

Z
(2)

dI
p
i

dt
¼ ð1� aiÞ �

Ei

Z
� I

p
i

Dp
(3)

dIs
i

dt
¼ I

p
i

Dp
� Is

i

Ds
(4)

dIn
i

dt
¼ ai �

Ei

Z
� In

i

Dn
(5)

dRi

dt
¼ In

i

Dn
þ Is

i

Ds
(6)

Note that S; E1; E2; I
p
1; I

p
2; I

s
1; I

s
2; I

n
1; I

n
2;R1;R2 � 0 and S þ E1 þ

E2 þ I
p
1 þ I

p
2 þ Is

1 þ Is
2 þ In

1 þ In
2 þ R1 þ R2 ¼ N, where N is the

constant host population size.

Basic reproduction number and stability analysis

The basic reproduction number R0 of an epidemic can be inter-

preted as the expected number of secondary cases produced by

a typical infected individual in a completely susceptible popula-

tion [28]. It is associated with the transmissibility of the epidem-

ic in a new host population. We define Ri
0; ði ¼ 1; 2Þ as the

basic reproductive number for each of the viral strains in our

system.

We applied the next-generation approach [29] to compute

the basic reproduction number. The infected compartments are

E1; E2; I
p
1; I

p
2; I

s
1; I

s
2; I

n
1; I

n
2. The next-generation (i.e. transition) ma-

trix is defined as FV�1, where F describes the production

of new infected and V describes transitions between

infected states. The matrix has two non-zero eigenvalues,

corresponding to the reproductive numbers for each strain:

Ri
0 ¼ 1� aið Þ�Dp � b|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

pre�isolated

þai � Dn � l � b|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
non�isolated

(see details in

Supplementary data). Only the pre-isolated and the non-

isolated compartments contribute to R0, as individuals in the

other compartments do not produce new infections. This can

be interpreted as the probability that a given individual is either

pre-isolated aið Þ or non-isolated ð1� aiÞ, multiplied by the num-

ber of days from beginning of infectiousness until recovery

ðDp; Da for pre-isolated and non-isolated, respectively) and the

transmission rate (b; l � b for pre-isolated and non-isolated, re-

spectively). In the case of the test-evasive strain, we assume

that a proportion p of the population is tested for SARS-CoV-2

infection every day and that the test-evasive strain incurs a cost

of infectiousness, c > 0, such that its transmission rate is reduced

by a factor of ð1� cÞ. The reproduction number for each strain is

R1
0 ¼

1� aið Þ � b
p � di þ 1

Dp

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

pre�isolated

þ ai � l � b
p � di þ 1

Dn

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

non�isolated

; R2
0 ¼

1� aið Þ � b � ð1� cÞ
p � di þ 1

Dp

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pre�isolated

þ

ai � l � b � ð1� cÞ
p � di þ 1

Dn

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

non�isolated

(see details in Supplementary data). The numer-

ators are the expected numbers of secondary infections per day,

and the denominators are the sums of removal rates from each

infected compartment, where p � di is the daily detection rate.

Let S�; E�; In�; Ip�; Is�; R� be the numbers of hosts in the

S; E; In; Ip; Is; R compartments at the disease-free equilibrium.

The disease-free equilibrium (In� ¼ Ip� ¼ Is� ¼ 0) is locally un-

stable [30] to the introduction of new exposed or infected indi-

viduals if Ri
0 > 1 for i ¼ 1 or i ¼ 2. Using parameters adjusted

to realistic SARS-CoV-2 values (Table 1), and specifically a trans-

mission rate b � 0:35; we ensure that the disease-free equilib-

rium in our model is locally unstable, allowing the outbreak of

the epidemic for both strains.

Ri
0 can be used to quantify the expected number of secondary

cases when a viral strain infects a single host in an otherwise fully

susceptible population. In the basic model, R2
0 > R1

0 if

l � Dn > Dp. Substituting with the model parameters (Table 1),

this is equivalent to l > 0:5. This is a necessary but insufficient

condition for the attenuated strain to evolve [36] (Fig. 1). Since

we examine a system where the two strains ‘compete’ over the

same finite population of susceptible individuals, cannot be

determined solely from the reproductive number [37, 38]. In this

case, the difference in the early spread of each strain at the onset

of the epidemic [38] can determine the winning strain (Figs 1–3).

Numerical solution

To analyze the model, we use parameter values estimated from

COVID-19 literature (Table 1) and solve Equations (1)–(6) numer-

ically using Python with NumPy and SciPy [39, 40]. For the initial

conditions, we assume a population of mostly susceptible individ-

uals ðS0 � NÞ, with a small number of exposed individuals, div-

ided equally between the two strains (the attenuated strain can

also evolve from rarity, see Supplementary Fig. S1). New hosts

are not introduced, so after enough time has passed, the popula-

tion reaches a disease-free equilibrium (In� ¼ Ip� ¼ Is� ¼ 0). At

this equilibrium, S� þ R�1 þ R�2 ¼ N, meaning all individuals are

either susceptible or have recovered from the disease.

Competition coefficient

Note that the total number of hosts infected by strain i during

the entire duration of the epidemic is the number of hosts
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recovered from strain i at the disease-free equilibrium, R�i .

Thus, we compute the ratio of R�i and the initial number of

hosts infected with strain i, Wi ¼ R�
i

In
i
ð0ÞþI

p

i
ð0ÞþIs

i
ð0ÞþEið0Þ

, which is

equivalent to the Wrightian fitness [41] of strain i. The

competition coefficient of the attenuated strain is defined to be

w ¼ W2=W1. This competition coefficient is equivalent to the

relative fitness of the attenuated strain compared with the viru-

lent strain. When w > 1, the attenuated strain outcompetes the

Table 1. Model parameters with estimated values

Parameter Description Estimate Source

N Total population size 8 804 190 NYC population size (2020), US Census

Bureau [31]

b Transmission rate in pre-isolated infected

individuals

0.35–1.2 Li et al. [2]

a1; a2 Fraction of non-isolated infections 0.35 Sah et al. [14]

l Relative infectiousness of non-isolated

infected individuals

0.65–0.75 Byambasuren et al. [15]

Dp Number of days in the pre-isolated phase 3 Casey et al. [32]

Dn Number of days in the non-isolated

phase

6 Byrne et al. [33]

Ds Number of days in the isolated phase 14 Byrne et al. [33]

Z Length of incubation period, or number

of days in the exposed phase

5 McAloon et al. [34]

p Daily tests per thousand people 0.01–25 Coronavirus (COVID-19) Testing—

Statistics and Research—Our World in

Data [35]. Accessed 30 December 2020

d1; d2 Detectability of detectable and test-evasive

strain, respectively (true positive rate)

d1 ¼ 0.9 Arevalo-Rodriguez et al. [20, 21]

Figure 2. Effective NPIs facilitate the evolution of the attenuated virus. This figure presents the conditions for evolution of either the attenuated or the virulent

strains under constant NPIs. High impact NPIs (right side) facilitate the evolution of the attenuated strain, while low impact NPIs (left side) facilitate the evo-

lution of the virulent strain. The attenuated strain can also evolve if non-isolated individuals are infectious enough relative to pre-isolated individuals (l is

high, top side). Here, a1 ¼ 0:35, a2 ¼ 0:95.
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virulent strain, and so the frequency of the attenuated strain

increases; when w < 1, the virulent strain outcompetes the

attenuated strain. That is, the attenuated strain is expected to

evolve when w > 1.

RESULTS

Attenuation

We first consider competition between a virulent strain and an

attenuated strain, where the attenuated strain has a lower frac-

tion of symptomatic cases compared with the virulent strain

(a2 < a1). The two strains ‘compete’ for the same population

of susceptible hosts. We define ‘effective transmission rate’ for

each of the strains such that bi
eff ¼ ai � l � bþ ð1� aiÞ � b. We

model the impact of NPIs as a reduction in the transmission

rate, and a higher impact of NPIs is associated with a lower

transmission rate (see Supplementary data). The difference in

effective transmission rates between the two strains is Dbeff ¼
b1

eff � b2
eff ¼ b � a2 � a1ð Þ � 1� lð Þ: Under the assumptions of

this analysis (a1 < a2; l < 1), Dbeff is always positive.

Because the attenuated strain benefits from a higher fraction of

non-isolated hosts, a2, it has more opportunities for transmis-

sion compared with the virulent strain, as infected hosts are

less likely to be isolated. The disadvantage of the attenuated

strain is a lower effective transmission rate, as the relative trans-

mission rate of non-isolated hosts is lower compared with pre-

isolated hosts ðl < 1Þ. We consider constant NPIs as a fixed

reduction in the transmission rate (b) during the entire inter-

vention. Thus, when the impact of NPIs on the transmission

rate is weak, the virus spreads rapidly, and the susceptible

population is quickly infected by the more virulent Strain 2. In

contrast, when the impact of NPIs on the transmission rate is

strong, the epidemic lasts longer (i.e. the curve is ‘flattened’),

allowing the attenuated Strain 1 more time to spread.

Additionally, when the transmission rate is reduced, the differ-

ence in the effective transmission rates between the two strains

Dbeff is smaller. Indeed, Fig. 2 shows that selection for the atte-

nuated strain increases with the impact of NPIs and with the

relative transmission rate of the attenuated strain ðlÞ. We note

that for a given l and impact of NPI, the threshold for evolution

of each strain (Fig. 2, contour line) is independent of a2, the

fraction of non-isolated infections caused by the attenuated

strain (Supplementary Fig. S2).

NPIs have been implemented with various schedules, deter-

mined by epidemiological metrics [42], economic pressures

[42], public opinion [42] and in some cases have probably

started later than planned [43]. Therefore, we explored the

effects of temporal application of NPIs on the competition be-

tween attenuated and virulent strains. In our analysis, the re-

productive number (R0) for the attenuated strain is higher

than for the virulent strain, but the effective transmission rate

is lower. Since the two strains are competing over the same fi-

nite population of susceptible individuals, the competition

can be determined by an advantage in the number of infected

during the early stages of the epidemic. Figure 3 shows the ef-

fect of the number of days between the outbreak and start of

NPIs on the competition between the two viral strains.

Overall, if NPIs are implemented earlier, then the attenuated

strain is more likely to evolve. As above (Fig. 2), weaker NPIs

Figure 3. Earlier start of NPIs favors the evolution of the attenuated strain. Each curve corresponds to a different relative transmission rate by non-isolated

individuals, l. The colored areas below each curve show the regions in which the attenuated strain evolves. The areas above each of the curves show the

regions in which the virulent strain evolves. Here, a1 ¼ 0:35, a2 ¼ 0:95.
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favor the virulent strain, while stronger NPIs favor the attenu-

ated strain.

Figure 4 compares the dynamics without NPIs (left) and with

NPIs that begin a certain number of days after the outbreak and

are lifted after a limited time (right). We find that NPIs signifi-

cantly affect the competition between the two strains, changing

the direction of selection on the virus and leading to the evolu-

tion of the attenuated strain (compare Fig. 4a and b). While

NPIs reduce the peak number of isolated cases (compare

Fig. 4c and d), a ‘second wave’ of infections may occur when

NPIs are over (Fig. 4d and f). Here, this ‘second wave’ is domi-

nated by the attenuated strain (Fig. 4f) that produces more

non-isolated infections compared with the virulent strain (com-

pare purple dashed line and orange solid line in Fig. 4d).

Test evasion

We consider the evolution of a test-evasive strain. Detectability

is defined here as the test sensitivity, or the true positive rate:

the probability that an infected individual will be correctly

detected by a single test. The detectability of the detectable and

test-evasive strains is d1; d2 respectively, where we assume

d2 < d1. All else being equal, the test-evasive strain will evolve

due to its lower detectability (Supplementary Fig. S3a).

However, lower detectability likely incurs a cost for the virus, as

the target sequences for SARS-CoV-2 tests are in regions essen-

tial for replication and other critical aspects of the viral life cycle

[22]. We assume this cost, c; is expressed in a decreased trans-

mission rate, such that b2 ¼ ð1� cÞ � b1 (see Supplementary

Equation S2.1). Thus, we examine a competition between a de-

tectable and a test-evasive strain that is less transmissible com-

pared with the virulent strain, c > 0.

Figure 5 shows that a higher testing rate (p) may select for a

test-evasive strain, even when reduced detectability incurs

decreased transmission. When the impact of NPIs is stronger

(right), the test-evasive strain evolves even when the testing

rate is low (solid line).

In Fig. 6, we examine the effects of decreased detectability on

epidemiological metrics. We explore two scenarios of epidemic

outbreaks: exclusively by a detectable strain (black lines), and

exclusively by a test-evasive strain (green lines). The number of

confirmed daily cases increases with the testing rate (Fig. 6c,

compare solid, dashed and dotted lines), while the number of

actual daily cases decreases (Fig. 6a, compare solid, dashed

and dotted lines). When the epidemic is driven by a test-evasive

strain (green lines), the daily number of confirmed cases and

daily percent of positive tests (Supplementary Fig. S5) increase

with the detectability of the test-evasive strain (Fig. 6c), while

Figure 4. Temporal application of NPIs favors the evolution of the attenuated strain. Without NPIs (left), the virulent strain takes over the viral population.

When NPIs are applied (right, shaded area), the virulent strain is more frequent among isolated (d), but the attenuated strain becomes more frequent in

exposed individuals during the NPIs (f), and after the NPIs end it is the dominant strain (b). Parameters: NPIs start on day 31 and end on day 150. l ¼ 0:6.

Impact of NPIs¼ 0.65.
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the daily number of actual cases decreases (Fig. 6a). Overall,

when testing rate is high and the epidemic is driven by a test-

evasive strain with low detectability (Fig. 6b and d), the number

of confirmed cases can be misleading: it is significantly lower

for the test-evasive strain, despite the number of actual cases

being higher.

Figure 5. High testing rate and effective NPIs favor the evolution of test-evasive strains. Conditions for the evolution of test-evasive strains despite a cost of

transmission (see Supplementary Fig. S3b for further decreased transmission). Each line corresponds to a different testing rate, p (p¼4, 6.3, 15 per 1K people

for low, medium and high testing rate, respectively). The colored areas below each line show the regions in which the test-evasive strain evolves. The areas

above each of the lines show the regions in which the detectable strain evolves. Test-evasive strains can also evolve if the detectability of the test-evasive strain

is low enough: given that the impact of NPIs is 0.5, a test-evasive strain with detectability d2 ¼ 0:7 (marked with ‘X’) would evolve when the testing rate is

high, but the more detectable strain would evolve when testing rate is low or medium. Here, a1 ¼ 0:65; a2 ¼ 0:65; l ¼ 0:6; c ¼ 0:01; d1 ¼ 0:9.

Figure 6. Effects of decreased detectability on epidemiological metrics. These results demonstrate the outcomes of two separate outbreaks: (i) exclusively by

a detectable strain (darker lines) and (ii) exclusively by a test-evasive strain (lighter lines), under three testing regimes (solid, dashed and dotted lines). (a, c)

The maximum number of actual and test-confirmed daily cases, respectively. (b, d) A timeline of these epidemiological metrics for a relatively high testing

rate and low detectability. Higher detectability of the test-evasive strain increases the daily number of confirmed cases (c, lighter lines) and decreases the daily

number of actual cases (a, lighter lines). The effect of detectability on the number of daily actual cases is associated with the cost of infectiousness, c, produc-

ing detectability thresholds (a, marked with ‘X’), above which the number of actual daily cases for the test-evasive strain is lower than for the detectable strain

(see Supplementary Fig. S4 for the effect of decreased detectability without cost of transmission). A higher testing rate increases the number of confirmed

cases (c, compare solid, dashed and dotted lines) and decreases the number of actual cases (a, compare solid, dashed and dotted lines). Overall, when test-

ing rate is high and the epidemic is driven by a test-evasive strain with low detectability (b, d), the number of confirmed cases is lower compared with an epi-

demic driven by a detectable strain, while the number of actual cases is higher. Here, Impact of NPIs ¼ 0:65, l ¼ 0:6; a1 ¼ 0:65; a2 ¼ 0:65;

d1 ¼ 0:9; c ¼ 0:01: For (b) and (d), d2 ¼ 0:6; p ¼ 15 per 1K people.
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DISCUSSION

We examined the expected selection pressures exerted by NPIs

and testing on disease severity and detectability of SARS-CoV-2.

We found that when stronger NPIs are applied, selection may

act to reduce disease severity. Additionally, the timely applica-

tion of NPIs could significantly affect the competition between

viral strains, favoring the milder strain. Furthermore, a higher

testing rate can select for a test-evasive viral strain, even if that

strain is less transmissible than the competing, more detectable

strain. Our results also show that if a test-evasive strain evolves,

reductions in epidemiological metrics such as confirmed daily

cases may be due to reductions in test sensitivity rather than

reductions in the actual number of cases.

Our model makes several simplifying assumptions. We as-

sume that individuals exhibiting clinical symptoms are isolated

and therefore do not transmit the virus. However, such individ-

uals may still be able to infect others, whether it is in a medical

facility, within the household, or due to non-compliance with

isolation guidelines. Nevertheless, practical strategies have

been put in place to reduce nosocomial transmission [44], and

evidence suggests that the overall risk of hospital-acquired

COVID-19 is low [44]. In our model, when the impact of NPIs is

low, the susceptible population is infected rapidly by the more

virulent strain. Our model could be extended by allowing indi-

viduals that recovered from one strain to become infected with

another strain, and in that case the attenuated strain may

evolve even when the impact of NPIs is weak. We assume that

the entire population is tested daily with a testing rate esti-

mated by realistic parameters (Figs 5 and 6). However, the aver-

age testing rate likely underestimates the rate for infected

cohorts, as individuals who experience symptoms or have been

exposed to a confirmed case are more inclined to be tested.

Applying a higher testing rate would make the evolution of the

test-evasive strain even more likely (Fig. 5).

The emergence of novel SARS-CoV-2 variants has raised

widespread concern [9]. SARS-CoV-2 is likely a pathogen of re-

cent zoonotic origin, and can therefore further adapt to its new

human host [45]. While adapting to its new host, the virus may

explore new evolutionary paths, possibly including paths where

the virus can become more virulent without significant costs.

Previous models of the evolution of SARS-CoV-2 have sug-

gested that the emergence of new variants should be expected

[9], and that interventions, such as social distancing [45] and

vaccination [9] could shape the evolutionary trajectory of the

virus. Models predict that as long as circulating strains cannot

infect recovered or immunized individuals, selection could shift

to favor prolonged infectious periods rather than increased

transmissibility [9], and could also affect virulence [9, 45]. Some

existing mutations have been said to increase infectiousness

[46]. It has been suggested that the Omicron variant causes a

milder disease [47], while it is also suspected of ‘immune

escape’, eluding the human immune response [48], such that

more recovered individuals remain susceptible to reinfection and

possibly causing a reduction in the effectiveness of vaccines [48].

The future evolutionary and epidemiological trajectories of the

virus are difficult to predict [49, 50], and it may evolve into var-

iants differing in their disease severity and transmissibility. Our

results show that NPIs and testing policies, primarily designed

and applied to control the spread of the pandemic, may also steer

the evolution of the virus towards attenuation and test-evasion.
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