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Introduction
The number of disciplines ending with the suffix “omics” is 
constantly increasing. However, the major ones remain to be 
genomics, transcriptomics, proteomics, and metabolomics. The 
genome is known as the entry point into the sciences of the 
“omics,” whereas the metabolome is considered to be the end 
point of the pyramid.1 Genomics is the study of the genome, 
with its complete set of genes, whereas proteomics focuses on 
the proteome, with its entire set of proteins produced or modi-
fied by an organism. Transcriptomics deals with the study of 
messenger RNA. Metabolomics, a relatively newer member of 
the “omics” family, consists of the complete set of the metabo-
lites found in a biological fluid or matrix. It is the comprehen-
sive and systematic profiling of metabolite concentrations and 
their systematic response to different factors.2 Through multi-
ple analyses, a metabolic profile of a biological sample can be 
acquired, and that can be used to identify groups of diseases 
and to determine a comprehensive mechanism of the pathol-
ogy. Metabolic changes due to certain diseases can be detected 
in biological fluids before the clinical symptoms develop, gen-
erating useful fingerprints. Further along, these characteristic 
fingerprints of the pathology may then serve as metabolic bio-
markers, in which various diseases can be detected through the 
analysis of tissues or biofluids.3–5 This lends way to the impor-
tance of biomarkers in medicine.

Unlike metabolomics, genomics and proteomics lack the 
information needed for an understanding of the cellular 
function in living systems, because both sciences do not pro-
vide information on the dynamic metabolic status of the 
organism.6 Metabolomics has an advantage over the other 

“omics” technologies as it is the most predictive of the phe-
notypic properties of a biological system.7,8 The metabolites 
are the downstream products of numerous biochemical inter-
actions and can be a very sensitive measure of an organism’s 
phenotype, making metabolomics very useful in the perturba-
tions and interactions of genetic and environmental fac-
tors.3,9,10 In addition, metabolomics elucidates the nature and 
identity of the processes themselves rather than just examin-
ing the compounds, and the relatively small number of metab-
olites makes it easier to analyze the data.11 Table 1 shows the 
main features of the major “omics”-related platforms.

The 2 major components of a biomarker identification strat-
egy are the analytical technique and the statistical analysis.20 
Nuclear magnetic resonance (NMR) spectroscopy and mass 
spectrometry are suitable techniques for metabolomics. Both 
have different analytical strengths and weaknesses but give com-
plementary information.2,3 In both techniques, robust statistical 
data analysis is necessary due to the complex nature of the mul-
tivariate data sets. Mass spectrometry can provide metabolite 
identification with high sensitivity. The analysis of nonvolatile 
metabolites has mainly been utilized for metabolic profiling in 
which multiple classes of metabolites are determined in one 
analysis. However, matrix effects, ionization suppression and 
enhancement, can be affected by the presence of other chemical 
species and cause inconsistent results in the analysis.21 Sample 
preparation is also extensive, and the sample is destroyed in the 
process. In contrast, NMR does not require preselection of anal-
ysis conditions, and sample preparation is more straightfor-
ward.21,22 Furthermore, NMR is nondestructive, thereby allowing 
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further analysis of the same sample, if needed.23 In addition, each 
separate resonance observed in an NMR spectrum is specifically 
assigned to an individual compound, while simultaneously pro-
viding comprehensive structural information. The information 
gathered via NMR lends insight to the mechanisms of biochem-
ical disease processes and drug metabolism.24 It is paramount 
that the analysis has high reproducibility, confirming that the 
metabolic effects detected by the instrument are much higher 
than the analytical variability. Nuclear magnetic resonance–
based metabolite profiling allows a “snapshot” of the metabolite’s 
molecular dynamics and mobility, simultaneously detecting the 
wide range of metabolites in the sample.2

Advancement in metabolomics has included biomarker 
determination indicative of disease and clinical diagnostics.2 In 
addition, NMR-based metabolomics has also shown the 
potential for monitoring the progression of toxicological effects 
and the identification of biomarkers of toxicity.24 Pioneer 

biomarkers such as creatinine, glucose, and cholesterol have 
been utilized to assess kidney function, diabetes, and lipid 
metabolism.20 A human metabolome database, with detailed 
information on small-molecule metabolites, has already been 
established and is available to the public at no cost, and it con-
tains 41 993 metabolite entries, with both water and lipid solu-
ble metabolites.25

Several studies have utilized hydrogen-1 NMR (1H NMR) 
spectroscopy to analyze various body fluids such as plasma, 
blood, and urine. Blood samples are composed of a complex 
mixture of high- and low-molecular-weight metabolites, rang-
ing from fatty acids/lipoproteins to amino acids. This wide 
range of metabolites can compromise spectral quality and often 
requires special NMR pulse sequence or multiple sample extrac-
tions. In contrast, under normal conditions, urine requires mini-
mal sample preparation and contains very low concentration of 
macromolecules. The most common metabolites identified in 

Table 1. A summary of the main features of the major “omics”-related platforms (genomics, transcriptomics, proteomics, and metabolomics) 
including their advantages and disadvantages.12–19

“OMICS” TARGET12 TEChNIqUE AdvANTAGES dISAdvANTAGES

Genomics Genes (~35 000)
The study of an 
organism’s genome.

Microarray technology13 Entire human genome has been 
mapped.
Can reveal chromosomal 
abnormalities, mutations, etc.12

Microarray data can be too 
large and too complicated 
to analyze (increased 
likelihood of false 
positives).12

Transcriptomics Messenger RNA 
(mRNA)
The study of the 
transcriptome

Real-time quantitative 
polymerase chain 
reaction, microarrays, 
and “next-gen” dNA 
sequencing12

Reflects only the genes that are 
actively expressed.

Measures changes in 
mRNA substance, not 
protein, causing a lack of 
consensus around the 
interpretation of microarray 
data.12

Can be complicated by the 
fact that relatively small 
changes in mRNA 
expression can produce 
large changes in the total 
amount of the 
corresponding protein.

Proteomics Proteins
The study of the set 
of all expressed 
proteins in an 
organism14

(>100 000)

Two-dimensional 
electrophoresis with 
mass spectrometry13

Provides a dynamic reflection of 
both genes and the environment and 
holds promise for a tool in biomarker 
discovery.15

Mapping of the human 
proteome is still ongoing
Proteomes of mammalian 
systems are complex and 
display a wide dynamic 
range of protein 
concentrations and can 
contain 1-100 000 copies of 
a single protein.16

Lacks ability to accurately 
detect low-abundance 
proteins17

Metabolomics Metabolites
The study of 
metabolite profiles in 
a system (cell, tissue, 
or organism)18

(~5000)

Nuclear magnetic 
resonance spectroscopy
Mass spectrometry12

The final downstream product of 
gene transcription, and therefore 
changes in the metabolome are 
amplified relative to the 
transcriptome and proteome.
The metabolite is closest to the 
phenotype of the biological system
Contain the smallest domain (5000 
metabolites), and hence easier to 
analyze.
Fastest system to react to stimuli or 
change.19

Mapping of the human 
metabolome is still ongoing
high setup costs and need 
for multiple analytical 
platforms.
Raw data require 
transformation to a suitable 
format prior to processing.
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urine are those associated with major endogenous pathways 
along with their intermediates, such as citrate, succinate, 
-oxaloacetate, and α-ketoglutarate.23 Moreover, metabolic phe-
notyping has provided the development of patient stratification 
and personalized medicine.26 Urine samples are also more con-
venient as they can be readily obtained noninvasively from clin-
ical patients. For disease characterization, urine is often the 
preferred sample because of its role as the major secretion of 
xenobiotics20 and its metabolite-rich nature.27 In addition, urine 
contains the metabolic signatures of many biochemical 
pathways.28

Hydrogen-1 NMR spectroscopy of urine samples has 
proven to be an eligible analytical and diagnostic tool.3,29 Early 
detection of various diseases is crucial and can sometimes only 
be analyzed at the molecular level by investigating the chemical 
interactions of metabolites. The advancement in urinary 
metabolomics has paved the way for potentially early detection 
and disease characterization, especially in the studies of urinary 
tract infections (UTIs), kidney transplant rejection, diabetes, 
malignancies, and inborn errors of metabolism.30 These appli-
cations will be discussed in detail below, following the section 
on methodological considerations.

Methodological Considerations
Sample preparation

For logistical reasons, urine samples are generally frozen imme-
diately after collection and analyzed later. According to a study 
by Rist et al, the freezing procedure plays a major role in sam-
ple preparation, due to its effects on the variation of the spec-
tral data. The study recommended a freezing temperature of 
−20° C and storage at lower temperatures within 1 week. 
Samples frozen on dry ice, in comparison with liquid nitrogen, 
showed the largest deviations. This was proven to be depend-
ent on pH differences introduced by the range of CO2 concen-
trations brought on by the freezing procedure used.31 Urinary 
pH has proven to cause spectral variability between similar 
samples, particularly in the chemical shift of citrate.32 Similarly, 
according to Lauridsen et al, urine samples should be stored at 
or below −25°C. They have shown that samples stored at this 
temperature for up to 26 weeks show no significant change in 
their 1H NMR spectra. At about 4°C, formation of acetate can 
be observed due to microbial contamination.33 After a 4-week 
period, the degree of change in metabolite concentrations was 
influenced by the various methods of sample preparation and 
storage used. The significant deviations of metabolite concen-
trations that were observed were largely due to bacterial con-
tamination, which significantly altered the metabolic profile of 
urine over time.

The sample preparation for 1H NMR analysis is fast and 
straightforward. However, one has to be careful regarding the 
pH of the samples. The pH of normal human urine samples 
generally falls in the range of 5.5 to 6.5. Under physiological 
stress, the pH of urine further varies, falling in the range of 4.6 

to 8.0. To minimize the pH-related variation in NMR chemi-
cal shifts, buffer solutions are added to urine.33 Frozen urine 
samples are thawed on ice and are vortexed for 30 seconds 
before use. Aliquots of 500 µL of the samples are then trans-
ferred into Eppendorf tubes and treated with 250 µL of 0.33 M 
phosphate buffer prepared in D2O (pH = 7.4). A buffer con-
centration of 0.33 M is sufficient to minimize pH-related vari-
ations in the NMR chemical shifts for most urine samples. 
Lauridsen et  al,33 suggested using a 1.0 M phosphate buffer 
solution for more concentrated urine samples. The deuterated 
solvent (D2O) allows for deuterium locking, in which the mag-
netic field is better controlled. For sample analysis using inter-
nal standard solutions (such as Chenomx ISTD, Chenomx 
Inc., Edmonton, Canada), the samples are vortexed and centri-
fuged at 1200g for 15 minutes after adding approximately 
70 µL of the Chenomx ISTD solution to 630 µL of urine sam-
ples into the Eppendorf tubes. A volume of 600 µL of the 
supernatant is then transferred into a 5-mm NMR tube for 
analysis.33–35 Similar methodology can be adopted with the use 
of other more common internal standards such as 
Trimethylsilylpropanoic acid (TSP) or 4,4-dimethyl-4-silap-
entane-1-sulfonic acid (DSS). DSS is less sensitive than TSP 
to variations in pH of the sample. However, given its more 
hydrophobic nature, its resonance can be broadened due to 
binding with macromolecular structures such as proteins in the 
sample.36

Nowadays, given the availability of automatic sample prepa-
ration and robotic liquid handling technologies, large-scale 
studies can be carried out for high-throughput applications.37 
Moreover, with the combined use of flow injection (FI) probes 
and liquid handling systems, it is possible to perform “tubeless” 
NMR using 96-well plates. Samples can be identified by 
unique barcode, prepared for analysis by a robot handling 
96-well plates, and finally transferred to the FI probe for NMR 
analysis. Such large-scale metabolomics studies have already 
been reported in the analysis of urine samples, which allowed 
the sampling and 1H NMR data collection of approximately 
100 samples per day, with an acquisition period of 5 minutes 
per sample.2

Water suppression

Sample collection for urine metabolomics is a very convenient 
and noninvasive method. However, the large concentration of 
water in urine makes it difficult to see metabolites that are pre-
sent at a very low concentration, resulting in a distorted spec-
trum. Water suppression has become necessary to address this 
setback. Water presaturation is often applied to samples to 
mitigate the effects of excess water. In this technique, a trans-
mitter is set to the water frequency, and a selective pulse is used 
to saturate the water resonance. However, solvent suppression 
can sometimes have unintended effect on the spectrum by 
causing a damping effect on the peaks of the neighboring clus-
ters, which may result in artificially lower concentrations.34 
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The water suppression techniques commonly used in metabo-
lomics are briefly discussed in the following section.

NMR data acquisition and analysis

For urinalysis by NMR, 1-dimensional (1D) NMR techniques 
with presaturation of water signal are mostly widely used. 
There are several water suppression techniques available for 
metabolomics applications.38 The experimental details of these 
techniques have been discussed in detail in a recent review arti-
cle.39 One dimensional nuclear Overhauser enhancement 
spectroscopy pulse sequence with water presaturation is the 
most recommended technique. One drawback of using presat-
uration would be in the quantification of urea. The pulse train 
in a typical hard pulse–based water suppression by gradient tai-
lored excitation (WATERGATE) may negatively impact the 
urea signal due to lack of sufficient selectivity. In a study by Liu 
et al,40 the authors used water suppression enhanced through t1 
effects (WET) for water suppression and chose its pulses to be 
long enough so that it had sufficient selectivity to exert mini-
mal impact on the urea signal. The pulse duration was also kept 
short to make sure that no significant proton exchange takes 
place between water and urea.40

Other techniques such as excitation sculpting would entirely 
eliminate the water signal from the spectrum, but the intensity 
of the signals resonating adjacent to water signal is greatly 
affected.38 The next step is to identify metabolites in urine 
samples, which can be achieved by the NMR spectral analysis. 
Some of the common metabolites, eg, lactate, alanine, acetate, 
citrate, creatine, creatinine, trimethylamine N-oxide (TMAO), 
hippurate, and formate, can be identified by looking at their 
chemical shift values. However, the identification of other 
metabolites, which are in low concentration and are overlap-
ping with other high-concentration metabolites, is particularly 
challenging. The identification process mainly involves com-
parison of the 1D and 2-dimensional (2D) spectral data of the 
metabolites with that of NMR metabolites repositories such as 
the Human Metabolome Database,25 the Biological Magnetic 
Resonance Data Bank (BMRB),41 and the Birmingham 
Metabolite Library (BML).42 The 2D J-resolved spectroscopy 
( JRES), correlation spectroscopy (COSY), total correlation 
spectroscopy (TOCSY), and heteronuclear multiple bond  
correlation (HMBC) data of reference compounds in these 
databases will be valuable in the detailed comparison and iden-
tification of metabolites. A detailed methodology on the 
metabolite identification using 1D (1H, 13C) and 2D ( JRES, 
COSY, TOCSY, and HMBC) has been discussed in recent 
review articles by Everett and colleagues.43–46

The issue of normalization is something that needs to be 
given a serious consideration given the dilution issues faced 
when analyzing urine specimens. Normalization is routinely 
used to account for the dilution effect of each sample as well as 
variation from different batch of measurement.47 This is espe-
cially important in urine samples given the different water 

intake of individuals. Normally, each metabolite peak integral is 
normalized to the creatinine level based on the assumption that 
the creatinine level is an indicator of the metabolite concentra-
tions in urine.47 However, creatinine normalization has been 
questioned because factors such as muscle mass, age, and gender 
were found to affect the normal urine creatinine level.47  Another 
commonly used method is the total area/integral normalization, 
which assumes the total integral of all metabolites in a sample 
to be a constant throughout all samples. However, this method 
is not applicable if drug metabolites also appeared in the sample. 
A different approach, named probabilistic quotient normaliza-
tion, has been proposed recently.48 This method calculates a 
most probable dilution factor (eg, the median of the quotients) 
among all the metabolite variables, which is then utilized to 
perform normalization of all variables in the sample.

Given the complex nature of urine samples, the 1H NMR 
spectrum of urine shows well-resolved peaks only for a few 
metabolites. Such metabolites can be quantified by manual 
integration. However, metabolites that are found in low con-
centration are generally overlapping with other metabolites 
that are present in high concentration. As a result, other more 
robust quantification methodologies such as targeted profil-
ing49 and/or Bayesian deconvolution50 have been developed for 
such purposes. Targeted profiling relies on database of com-
pounds modeled to behave like the pure spectra of the indi-
vidual compounds under comparable experimental conditions 
of pH and ionic strength. A Lorentzian peak shape model of 
each reference compound is generated from the database infor-
mation and superimposed on the actual spectrum. The linear 
combination of all modeled metabolites gives rise to the total 
spectral fit, which gives an estimate of peak areas of experimen-
tal spectral peak. Using this information, concentrations of 
various metabolites can be estimated. Analysis of samples using 
target profiling allows both identification and quantification of 
individual compounds. Chenomx NMR Suite is a commercial 
software that provides a comprehensive database of metabo-
lites (>350 compounds) making use of targeted profiling51 and 
has been used in many metabolomics studies for the analysis of 
biofluids including urine.52 On the contrary, the Bayesian 
model makes extensive use of prior information on the charac-
teristic spectral pattern of each metabolite. It also accounts for 
shifts in the position of peaks commonly seen in NMR spectra 
of biological samples. It is an “R”-based public domain soft-
ware package, “Bayesian AuTomated Metabolite Analyzer for 
NMR spectra (BATMAN),” which deconvolutes peaks from 
1D NMR spectra and automatically assigns them to specific 
metabolites from a target list, obtaining concentration esti-
mates. It applies a Markov chain Monte Carlo algorithm to 
sample from a joint posterior distribution of the model param-
eters and obtains concentration estimates with reduced error 
compared with conventional numerical integration and com-
parable with that of manual deconvolution.50–52

Data analysis in metabolomics is usually performed via 
unsupervised or supervised analysis. Unsupervised analysis 
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involves the application of statistical models without prior 
knowledge of the sample identity or classification assignment. 
This is often times done to see if the data separate into certain 
patterns or clusters. This is usually the first step in data pattern 
exploration. Principal component analysis (PCA) is represent-
ative of the unsupervised method and is commonly applied to 
reduce the dimensionality and examine the structure of the 
data set.53–55 Scores plot is generated to assess the clustering of 
different samples, with the corresponding loadings plot dem-
onstrating the variables accounting for the most variation in 
the specified principal component. In supervised analysis, 
information of sample class labels (eg, disease and control) is 
utilized in building the statistical models. One commonly used 
supervised analysis is partial least squares discriminant analysis 
(PLS-DA) which maximizes the covariance between predictor 
variables (eg, metabolite intensities from NMR measurements) 
and the response variables (eg, the classes of each sample).53 
SIMCA (soft independent modelling of class analogies) form-
ing the basis of the readily available software SIMCA-P is 
commonly used in metabolomics analysis.56 The strategy of 
SIMCA-P is to rely almost exclusively on PCA, and for clas-
sification, on its supervised versions, partial least squares (PLS) 
or principal component regression (PCR). (For 2-class prob-
lems, PLS and PCR are equivalent.)54,55

One of the important steps in metabolomics data analysis is 
identifying which of the original features in the spectra are rel-
evant and meaningful in the final outcome. A genetic algo-
rithm–based optimal region selection algorithm has been 
developed specifically for such feature extraction.54 An impor-
tant advantage of this is that it retains spectral identity: the new 
features being functions (typically the averages) of adjacent 
spectral data points and hence readily interpretable. Such an 
algorithm has been part of a statistical classification strategy 
used in several studies involving NMR data.57–62 A schematic 
diagram of the metabolomics workflow is depicted in Figure 1.

Other special considerations

There are also some other special considerations that need to 
be taken into account with this technique. High-protein diets 
such as fish have proven to cause increases in creatinine con-
centrations, which can cause distortion in some 1H NMR 
spectra.64 A study by Lenz et al65 has suggested that endoge-
nous urinary profiles are affected by cultural and severe dietary 
influences, emphasizing that variation in profiles can occur 
between different populations. The study compared the urinary 
metabolic profile of the Swedish and the British population, in 
which they found that high levels of TMAO were observed in 
Swedish population, due to their fish diet. This effect was also 
consistent in a study by Dumas et al,66 in which a similar trend 
was observed in Japanese population, where fish diet is also 
dominant. This variation is an important factor that needs to 
be considered when interpreting NMR spectral profiles for 
diagnostic purposes. Similarly, Zuppi et  al67 tested subjects 

living in different parts of Europe and found that a diet rich in 
carbohydrates resulted in increased excretion of citrate, lactate, 
and glycine.

Slupsky et al68 investigated the effects of diurnal variation, 
gender, and age in urinary metabolomic profiles. Their results 
showed that gender and age affected metabolites related to 
energy metabolism, whereas diurnal variation affected metabo-
lites and dietary components associated with circadian rhythms. 
In a different study by Psihogios et al,69 they determined the 
most influential metabolites responsible for the differences in 
gender groups, which included citrate, creatinine, TMAO, and 
an unidentified compound. Overall, Rasmussen et al suggest it 
is important to perform diet standardization before dietary 
intervention in metabolomics study. This will help reduce 
intrasubject and intersubject variability.70

Applications
Urinary tract infections

Urinary tract infections are the second most common type of 
infection in the human body. Due to anatomical reasons, the 
chance for contracting this infection in women is greater than 
50%. Urinary tract infection is commonly diagnosed through 
the examination of a patient’s cultured urine sample. This tra-
ditional method is labor-intensive and time-consuming, taking 
approximately 24 hours for culturing and additional time for 
identification. The dipstick methods have shown to relay false-
negative/false-positive results.

In multiple studies by Gupta et al,71 1H NMR spectroscopy 
has been utilized for identifying and quantifying the common 

Figure 1. Schematic diagram of metabolomics workflow in the 

urinalysis.43,60,63

1d indicates 1-dimensional; 2d, 2-dimensional; ANOvA, analysis of variance; 
NMR, nuclear magnetic resonance; PCA, principal component analysis; PLS-dA, 
partial least squares discriminant analysis.
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uropathogens of UTI (Escherichia coli, Klebsiella pneumoniae, 
Pseudomonas aeruginosa, and Proteus mirabilis). This metabolic 
approach has been successfully demonstrated as a viable tool in 
diagnosing UTI pathology. In a study of 617 urine samples 
from suspected patients and 50 samples from healthy volun-
teers, UTI was detected from the quantification of 6-hydrox-
ynicotinic acid (6-OHNA), which is metabolized from 
nicotinic acid by the bacterium, P aeruginosa. Similarly, the 
production of 1,3-propanediol from glycerol metabolism was 
also used to detect UTI caused by K pneumoniae, along with 
the production of 4-methylthio-2-oxobutyric acid (MOBA) 
from methionine metabolism, found in P mirabilis. The most 
common UTI-causing bacterium, E coli, metabolizes lactose to 
lactate, which can also be detected through 1H NMR, as is 
evident in the spectrum in Figure 2. The results demonstrated 
the power of 1H NMR for developing quick identification of 
microorganisms in chronic and severe UTI. Bacterial identifi-
cation from 1H NMR was found to have very high specificity 
(97%) relative to the conventional culture method.71 In a simi-
lar pilot study by Bezabeh et al,72 33 urine samples were col-
lected from children (1-16 years old) with and without UTI 

and analyzed by NMR. The results showed 9 patients to have 
elevated levels of TMAO and 8 patients with elevated levels of 
creatine. In another study by Wan Lam et al,73 88 samples from 
UTI patients and 61 samples from controls were analyzed by 
1H NMR, and the results showed urine acetic acid/creatinine 
level was the most discriminatory marker for bacterial UTI.

Kidney transplant rejection

In renal transplants, symptoms are often not detected until 
there is already a marked impairment in renal function. Acute 
rejection has been reported to cause a 20% reduction in 1-year 
survival of the allograft.74 Frequent biopsies are necessary to 
test for kidney transplant rejections. These procedures are often 
expensive and are inconvenient for the patient. Through the 
advancement of metabolomics, 1H NMR is able to detect 
organ rejection by analyzing urine samples through noninva-
sive means.

In 2 pilot studies by Rush et  al,75 significant differences 
were observed in the spectra between patients with apparent 
graft dysfunction and those with relatively normal allograft 
function. Patients with graft dysfunctions due to transplant 
rejection had increased TMAO and dimethylamine (DMA) 
levels in their urine. Detecting subclinical rejection using 1H 
NMR could pave the way for early treatment.

In a similar study by Le Moyec et al, urine and plasma sam-
ples from 39 renal transplant patients were collected and ana-
lyzed with 1H NMR spectroscopy. When compared with the 
levels of creatinine, the relevant resonances for identifying renal 
function were from TMAO, citrate, alanine, and lactate. The 
urine spectra from those who required hemodialysis showed an 
ischemic pattern of elevated TMAO, lactate, and alanine. The 
results showed that a combination of measured metabolites can 
be used in the follow-up of transplant patients and manage-
ment of cyclosporine A dosage.76

In a study by Foxall et  al,77 urine samples were collected 
from 33 renal allograft transplantation patients for 14 consecu-
tive days following transplant and were analyzed using 1H 
NMR spectroscopy. As shown in Figure 3, their results revealed 
that during the early phase of post-transplantation, the high 
levels of urinary excretion of the low-molecular-weight metab-
olites (TMAO, DMA, lactate, acetate, succinate, glycine, and 
alanine) seemingly correlated with occurrences of graft dys-
function. More specifically, the urinary concentration of 
TMAO was statistically significantly higher in patients with 
graft dysfunctions than the patients with good graft function. 
This was suggested to be due to the effects of graft dysfunc-
tions on the renal medulla, which resulted in its higher secre-
tion of TMAO from the damaged cells. Their goal was to see 
if there was an increase in TMAO excretion in the individuals 
with graft dysfunction. The results revealed that during the 
early phase of post-transplantation, the high levels of urinary 
excretion of the low-molecular-weight metabolites seemingly 
correlated with occurrences of graft dysfunction. Early diagno-
sis is vital for early intervention therapy, thereby improving 

Figure 2. Nuclear magnetic resonance spectra of lactose metabolism in 

urine.
Escherichia coli produces lactate, acetate, succinate, and ethanol through 
lactose metabolism. Lactate is the specific product in lactose metabolism by 
E coli; other bacilli (Pseudomonas aeruginosa, K pneumoniae, etc) do not 
produce lactate in urine.71
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graft outcome. This study highlights the importance of NMR 
spectroscopy in the investigation of metabolic perturbations 
posttransplantation.77

Diabetes

Twenty-nine million people in the United States are plagued 
with diabetes. Among those 29 million, 8 million are undiag-
nosed.78 In a study by Messana et al,29 33 urine samples from 
patients with type 2 diabetes mellitus (T2DM) and 20 control 
subjects were examined by 1H NMR spectroscopy. The results 
showed significantly higher levels of lactate, citrate, glycine, 
alanine, hippurate, TMAO, and DMA in diabetic patients.

In a related study by Doorn et al, the effect of thiazolidin-
ediones, a medication that lowers insulin resistance in muscles 
and fat, was investigated in patients with type 2 diabetes and 
healthy volunteers. The traditional method for identifying 
type 2 diabetes is through the measurement of plasma concen-
trations of glucose and hemoglobin A1c (HbA1c). However, 
significant downstream metabolic effects are overlooked. 
Nuclear magnetic resonance–based metabolic profiling pro-
vided a more comprehensive “snapshot” of the metabolic 
changes induced by thiazolidinediones. The study identified 
putative disease and gender-specific metabolites in urine. The 
findings agreed with those of Messana et al, with an increase 

in citrate and hippurate concentrations in the urine of T2DM 
patients.79 In a different study by Nicolescu et al, NMR data 
from nonbuffered urine samples of 72 controls and 94 patients 
with type II diabetes were subjected to a customized statistical 
classifier. Their results achieved 83% sensitivity, with 83.6% 
specificity and an overall accuracy of 83.2%. Their results were 
based on the nonglucose regions of the spectra (Figure 4). This 
protocol has the potential for the automated and clinical diag-
nosis of diabetes.80

Although most of the NMR work to date has focused on 
type 2 diabetes, there have been some studies dealing with type 
1 diabetes. In a study by Balderas et  al, urine samples from 
children with type 1 diabetes were investigated. Their findings 
showed that the diabetic group excreted larger amounts of car-
boxyethylarginine and fructosamine in their urine, which are 
glycation end products.81 In another study by Deja et al,82 the 
relationship between metabolite concentration in urine of 
patients with type 1 diabetes and their level of HbA1c was 
investigated. They collected urine samples from 30 children 
and teenagers between the ages of 4 and 19 years with type 1 
diabetes, while using 12 samples collected from healthy 9-year-
old children as controls. Their results proved that targeted 
analysis of low-molecular-weight compounds in urine can 
serve as a way to monitor the changes in diagnosed patients. 
The comparison between patients with low and high levels of 
HbA1c revealed the concentrations of the metabolites—ala-
nine, valine, acetate, pyruvate, and citrate—were significantly 
higher in the latter group. The elevation of these metabolites 
suggests that in patients with high HbA1c, the tricarboxylic 
acid cycle is the pathway that is commonly disturbed. Their 
results also revealed that patients with normal levels of HbA1c 
still had differences in their urine compound composition in 
comparison with the nondiabetic children. In retrospect, their 
study allows for an additional methodology to monitor the 
progression in patients with type 1 diabetes.82

Cancer

The 4 most common cancers occurring worldwide are lung, 
female breast, bowel, and prostate cancer (PCa). These 4 can-
cers account for about 4 in 10 of all cancers diagnosed world-
wide. Noninvasive diagnosis can be done through the utilization 
of modalities such as computed tomography, magnetic reso-
nance imaging, or positron emission tomography. However, 
definitive diagnosis relies on biopsies, which is invasive in 
nature. Currently, the general screening methods are not ideal, 
and early-stage tumors are often not detected due to their lack 
of symptoms. The diagnosis of patients frequently occurs dur-
ing the late stages of cancer development, resulting in very poor 
prognosis. Urinary metabolomics has been applied to lung, gas-
tric adenocarcinoma (GC), prostate, and bladder cancer (BCa). 
Based on the accumulated analyses of cancer marker metabo-
lites, it has been suggested that various cancers have common, 
yet distinct metabolic phenotypes that correspond to their per-
turbed biochemical pathway.83

Figure 3. Partial 500-Mhz single-pulse hydrogen-1 nuclear magnetic 

resonance spectra of normal human urine (A) and urine collected from 4 

patients on day 3 postrenal transplantation showing immediate 

functioning graft (B), urinary tract infection (C), renal tubular ischemia, (d) 

and nonfunctioning graft (E).77

dMA indicates dimethylamine; GLC glucose; TMAO, trimethylamine N-oxide.
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Various studies have explored the applications of 1H NMR-
based metabolomics as a powerful early diagnostic tool. In a 
study by Carrola et al, 1H NMR-based metabolomics has been 
applied for the first time to investigate lung cancer metabolic 
signatures in urine. Their goal was to acquire information on 
lung cancer metabolism and its systemic effects. Seventy-one 
urine samples from cancer patients and 54 from a control group 
were collected and analyzed by 1H NMR. The spectral profiles 
were analyzed with PCA, PLS-DA, and orthogonal partial least 
squares discriminant analysis (OPLS-DA), and their results 
showed a significant discrimination between the 2 groups, as 
shown in Figure 5. The most intense signals originated from the 
metabolites: creatinine, TMAO/betaine, hippurate, citrate, 
α-ketoglutarate, and glycine. Hippurate and trigonelline were 
reduced and β-hydroxyisovalerate, α-hydroxyisobutyrate, 
N-acetylglutamine, and creatinine were elevated in the cancer 
patients. The PLS-DA model showed a 93% sensitivity and 
94% specificity. The study also tested for factors such as gen-
der and age since metabolic composition of urine was modu-
lated. The gender variation test showed negative Q2 values, 
which indicated poor predictive ability. In addition, when the 
classifier was based on age, the PLS-DA model showed poor 
predictive power (negative Q2), a low classification rate, speci-
ficity, and sensitivity. When the presence of the disease was 
used as the classifier for the PLS-DA modeling, the overall 
classification rate was 84%, indicating good separation.84

In a study by Chan et al, GC, the third most deadly cancer 
worldwide, was analyzed through 1H NMR urinary metabo-
lomics. Seventy-seven metabolite concentrations were detected 
and pairwise comparisons between GC patients, healthy sub-
jects, and patients with benign gastric disease were performed 
followed by the Benjamini and Hochberg correction methods. 
The results showed elevated levels of alanine in healthy sub-
jects compared with GC patients. Alanine was thus suggested 
to be a potential biomarker for GC.85 However, further studies 
with larger sample sizes are necessary to confirm a definitive 
biomarker for this disease.

Major advances have been made in both NMR and mass 
spectrometry in identifying metabolic changes in PCa that 
can serve as potential biomarkers.86 In PCa, the prostate-spe-
cific antigen (PSA) blood test is the most frequently used tool 
for PCa detection. However, it has its limitations. The PSA 
test has low specificity. Results can often lead to false-negative 
and overdiagnosis. Currently, researchers are looking at 1H 
NMR-based metabolomics of urine samples as a potential 
diagnostic tool.

In a study by Zaragoza et al, 113 urine samples were col-
lected from patients and were tested for PCa. The model accu-
rately classified 14 of 14 samples as controls and 36 of 50 as 
patients with PCa in the validation set (n = 64). They concluded 
that the presence of PCa could not be associated with a unique 
analyte, but rather it is most likely linked to the presence or 

Figure 4. hydrogen-1 nuclear magnetic resonance spectrum (400 Mhz) of a urine sample from a patient with type 2 diabetes showing the 2 input 

subregions and the 4 discriminatory regions identified by the optimal region selection algorithm.80
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changes in concentration of multiple metabolites. This set of 
metabolites is composed of phosphocholine, myo-inositol, 
spermine, glutamine, citrate, alanine, lactate, OH-butyrate, 
valine, and leucine. This study confirms the potential of 1H 
NMR spectroscopy as a noninvasive diagnostic tool for the 
detection of PCa.87 In addition, NMR-metabolomics has also 
shown promise in monitoring the progression of PCa. In a 
study by Sreekumar et al,88 in which they analyzed 110 urine 
samples, the results showed increased levels of sarcosine, an 
N-methyl derivative of glycine, during PCa progression to 
metastasis.

Bladder cancer, a common type of cancer, has been known 
to have a very high mortality rate, and early detection has 
been proven a vital component in survival. In a study by Shen 
et al, urine samples from 23 early-stage BCa and 21 healthy 
controls were prepared and analyzed with 1H NMR. Their 
results identified 3 upregulated metabolites (nicotinuric acid, 
trehalose, and AspAspGlyTrp) and 3 downregulated metabo-
lites (inosinic acid, ureidosuccinic acid, and GlyCysAlaLys) 
for BCa. Their results showed that these metabolites revert 
back to normal levels after tumor removal, confirming that 
they are a good representation of metabolomics features asso-
ciated with BCa. This study showed a high diagnostic 

performance for detecting BCa with area under curve (AUC) 
values of 0.919 and 0.934.89

In a study by Slupsky et  al, urinary metabolic profiling 
showed changes in metabolite concentrations that were spe-
cifically correlated with ovarian and breast cancer.90 They col-
lected urine samples from early- and late-stage breast and 
ovarian cancer patients and randomly from females with no 
known cancer. Their results revealed that numerous metabo-
lites decreased in concentration among those patients with 
ovarian or breast cancer when compared with the healthy 
group. They compared 67 metabolite concentrations from 
healthy subjects (n = 62), breast cancer patients (n = 38), and 
ovarian cancer patients (n = 40), and the results revealed sig-
nificant differences. However, the extent of the change dif-
fered for the breast and ovarian cancer patients. The unknown 
singlet found at 3.35 ppm, suggested to be methanol, was 
ranked as the most important metabolite for distinguishing 
the ovarian patients with 65% decrease in concentration rela-
tive to normal subjects, whereas in breast cancer patients, for-
mate was ranked first with a decreased metabolite concentration 
change of 43%. The potential of this technique as an effective 
screening tool was reaffirmed with its almost zero false nega-
tives (98% and 100% sensitivity) and a few false positives (99% 

Figure 5. The 500-Mhz hydrogen-1 nuclear magnetic resonance spectra of urine from (A) a healthy (control) subject, and (B) a lung cancer patient.
Signal assignment: 1, α-hydroxybutyrate; 2, valine; 3, isobutyrate; 4, β-aminoisobutyrate; 5, methyl-β-hydroxybutyrate; 6, β-hydroxyisovalerate; 7, lactic acid and 
threonine; 8, α-hydroxyisobutyrate; 9, alanine; 10, N-acetylglutamine; 11, pyruvate; 12, succinate; 13, α-ketoglutarate; 14, citrate; 15, dimethylamine; 16, creatinine; 17, 
trimethylamine N-oxide and betaine; 18, scyllo-inositol; 19, glycine; 20, hippurate; 21, trigonelline; 22, p-hydroxyphenylacetate; 23, phenylacetylglycine; 24, histidine; 25, 
3-methylhisitidine; 26, formate; 27, trigonellinamide.84
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and 93% specificity) for ovarian and breast cancer, respectively. 
In comparison with mammography, which produces numer-
ous false positives and false negatives, this technique is faster, 
less costly, noninvasive, and more efficient for early cancer 
screening.90

Inborn errors of metabolism

Inborn errors of metabolism are rare genetic disorders in which 
the body is not capable of converting food into energy. The 
current screening tests are not able to detect all inborn errors of 
metabolism and may yield false-positive results. Hydrogen-1 
NMR–based metabolomics has been investigated as a potential 
diagnostic tool for this disorder. In a study by Constantinou 
et al, 47 urine samples from healthy newborns, 9 from new-
borns with phenylketonuria, and 1 from a child with maple 
syrup urine disease were tested from a Greek population. The 
spectra of the samples showed variation in phenylalanine, leu-
cine, valine, and isoleucine resonances. Principal component 
analysis and PLS-DA were performed to create accurate mod-
els for the discrimination between the samples.91 This method 
is quick and noninvasive, and further research can help solidify 
it as an ideal mass screening tool.

In a similar study by Wevers et al, 1H NMR spectroscopy was 
used to identify inborn errors of purine and pyrimidine metabo-
lism. For the inborn errors of pyrimidine deficiency, patients 
with dihydropyrimidine dehydrogenase deficiency showed ele-
vated levels of uracil and thymine, in comparison with healthy 
urine samples in which thymine was not detected and uracil was 
only observed in trace amounts. For the inborn errors of purine 
metabolism, patients with a deficiency of hypoxanthine-guanine 
phosphoribosyltransferase had increased levels of hypoxanthine 
and xanthine. In most cases, hypoxanthine was elevated. For the 
patients with a deficiency in purine nucleoside phosphorylase, 
increased concentrations of inosine, guanosine, and their deoxy 
forms were observed in the spectra.92

In a related study by Aygen et al,93 989 urine samples from 
newborns were collected and analyzed using 1H NMR spec-
troscopy. Forty-five pathological metabolites were discovered 
that were not present in the healthy samples. The study dem-
onstrated that 1H NMR can detect numerous metabolites in 
urine along with the enzyme defects that cause the inborn 
errors of metabolism. Based on the findings of this study, a 
statistical model of normality in the healthy population of 
newborns in Turkey was established, resulting in known distri-
butions of metabolites to help identify inborn errors.93 Future 
studies will focus on unknown “pathological peaks” in the 
spectra to explore the progression of metabolic phenotypes 
with time.

Conclusions
Although metabolomics can be considered to be still in its 
infancy (compared with other “omics” platforms such as 
genomics), it has seen significant progress over the past few 

years. However, many challenges still remain. Although an 
effort can be made to the extent possible to impose restrictions 
on the samples collected for a study (eg, diet), the more practi-
cal approach would be to have a standardized protocol whereby 
samples are collected under similar conditions. The standardi-
zation should be applied to every stage of the process, including 
patient recruitment, sample collection, transport, storage, prep-
aration, data acquisition, and analysis.2,36,94 Genetic factors, 
ethnicity, gender, age, and diet  all do affect the metabolome, 
and hence any classifier developed for diagnostic purposes has 
to be made robust by the inclusion of a diverse patient and 
control population.27,36,67,93 Moreover, sample sizes in such 
studies have to be significantly large to ensure the necessary 
statistical power and avoid any bias. In this regard, multicenter 
and multinational studies that will facilitate access to patients 
having genetically and ethnically diverse samples should be 
encouraged.

As shown in the above applications, metabolomics of urine 
has a potential to play a significant role in diagnostics and bio-
marker discovery. The metabolic profile of urine obtained by 
NMR spectroscopy could provide useful information related to 
the different processes and pathways that may not be function-
ing properly in the human body. Given the recent focus on 
noninvasive and personalized medicine, urinary metabolomics 
could play an important role in that regard. Over the past few 
years, there has been significant development in NMR tech-
nology related to both hardware and software pushing urinary 
metabolomics further into the clinical arena. On the hardware 
side, there have been considerable improvements in sensitivity 
of the technique, progress in making it highly automated and 
user-friendly. On the software side, there has been a significant 
development in the way data are acquired, analyzed, and pre-
sented. With robust, fast, and user-friendly methods of data 
analysis generating diagnostic output that both practitioners 
and patients can easily understand, urinary metabolomics is 
finding its way in the mainstream of clinical diagnostics.
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