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Abstract: The impact of graphene work function (WF) on the electronic structure at the
graphene/organic interface has been investigated. WF manipulation of graphene is realized using
self-assembled monolayers (SAMs) with different end groups. With this method, the upper surface of
the functionalized graphene remains intact, and thus precludes changes of molecular orientation and
packing structures of subsequently deposited active materials. The WF of NH,-SAM functionalized
graphene is ~3.90 eV. On the other hand, the WF of graphene increases to ~5.38 eV on F-SAM.
By tuning the WF of graphene, an upward band bending is found at the ZnPc/graphene interface on
F-SAM. At the interface between Cgy and NH-SAM modified graphene, a downward band bending
is observed.
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1. Introduction

Graphene is a promising alternative to transparent electrodes in organic electronic devices [1-8],
and its electronic, optical, and thermal properties have been extensively studied in recent years.
Although graphene-based organic electronic devices have been successfully fabricated by many groups,
the devices” performance has remained low compared to conventional devices in which indium tin
oxide (ITO) was used [9-12]. In order to achieve enhanced device performance, the interfacial electronic
structure at electrode/active materials must be optimized [13-22]. For example, when the work function
(WF) of the cathode is lower than the electron affinity (EA) of electron transport materials, the electron
injection or collection at the cathode is improved [23]. On the other hand, anode materials with high
WEF are highly desirable for organic light emitting diodes (OLEDs) [24].

The insertion of an interfacial layer is one of the most commonly used surface functionalization
methods to manipulate the WF of electrodes. Poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)
(PEDOT:PSS) facilitated the extraction of holes at the active layer/anode interface [25]. Moreover,
because of its deep-lying electronic state, MoO3 has been utilized for hole injection enhancement in
related devices [26-28]. In other cases, surface modification with low WF interfacial layers [29-31],
including LiF and CsCOs3, was employed to decrease the WF of the electrode for better electron injection.
In addition to the insertion of an interfacial layer, the manipulation of the graphene WF can also
be realized using plasma treatments. O; or SFy plasma treatments have been used to increase the
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WEF of graphene, which was attributed to the presence of oxygenated or fluorinated species on the
graphene basal plane [32-34]. Although the effective manipulation of the graphene WF was realized
with the interfacial layer or plasma treatments, the molecular orientation and packing structures of
subsequently deposited active materials were inevitably disturbed. Our previous studies revealed
that CIAIPc molecules adsorbed on graphene with their molecular m—plane nearly parallel to the
graphene basal plane. However, for the growth of Cl1AIPc on bare ITO without graphene modification,
the molecular orientation is random [35]. It is worth noting that changes of molecular orientation
and packing structure have influenced the interfacial electronic structure, and orientation-dependent
molecular electronic structures have been recently reported [36—40]. For surface modification with
interfacial layers or plasma treatments, there are two factors that can have impacts on the interfacial
energy levels. The first is the WF change of graphene after functionalization, and the second is the
change of molecular orientation and packing structure. For better understanding the impact of the
graphene WF on the electronic structure at the graphene/active material interface, a novel interfacial
engineering approach has to be developed which separates the impact of the graphene WF change
from that of molecular orientation and packing structure changes.

Recently, n-type and p-type doping of graphene using self-assembled monolayers (SAMs) with
different end groups has been demonstrated [41,42]. In general, n-type doping led to an upward shift in
the graphene Fermi level, while a downward shift of the graphene Fermi level was induced by p-type
doping. This indicated that the WF tuning of graphene can be realized using SAMs with different
end groups. More importantly, SAMs were constructed on SiO, substrates. After the formation of
SAMs, graphene was transferred on the top of SAMs, leaving the upper surface of SAM functionalized
graphene intact as pristine graphene. Without the insertion of an interfacial layer or plasma treatments,
the molecular orientation and packing structures of subsequently deposited active materials remained
unchanged, which helped to separate the impact of the graphene WF from molecular orientation and
packing structure changes. Using SAM modified graphene, we have successfully tuned the Fermi level
of graphene without disturbing molecular orientations and packing structures of active materials on
top. Model systems of graphene/organic molecule interfaces have been constructed, which simplifies
factors affecting the interface energy levels compared with previous works.

In the present study, we demonstrated the manipulation of the graphene WF using different SAMs.
As revealed by ultraviolet photoelectron spectroscopy (UPS) results, the Fermi level of graphene shifted
upward on NH,-SAM, and the WF decreased to ~3.90 eV; in the case of graphene on F-SAM, its Fermi
level moved downward, and the graphene WF increased to ~5.38 eV. The influence of the graphene
WE on the interfacial energy levels was been investigated. An upward band bending was observed at
the interface between ZnPc and F-SAM functionalized graphene, while a downward band bending
was found for the growth of C¢y on NH,-SAM functionalized graphene.

2. Materials and Methods

2.1. Preparation of NH»-SAM and F-SAM on SiO,

The SiO; substrate was treated with O, plasma for 15 min to generate a hydrophilic surface for
the formation of NH,-SAM and F-SAM (their molecular structures are shown in Figure S1). After O,
plasma treatments, SiO, substrates were treated with piranha solution for 20 min, and then washed
using deionized (DI) water. Finally, they were dried by nitrogen flow. In the case of NH,-SAM, 0.8 mL
3-aminopropyltriethoxysilane (33% solution in toluene by volume, Sigma-Aldrich) was added into a
sealed vial together with clean SiO, substrates under nitrogen environments. The vial was then heated
to 80 °C and kept for 2 h before being thoroughly washed with toluene, methanol (HPLC grade, Fisher
Scientific) and DI water. The functionalized SiO, wafer was then immerged in DI water for more
than 12 h at room temperature (RT), which is helpful to complete the hydrolysis of residual ethoxy
groups. Finally, NH,-SAM functionalized SiO; substrates were dried with nitrogen flow. For the
formation of F-SAM, clean SiO; substrates were placed in a sealed vial filled with 0.5 mL 1H, 1H,
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2H, 2H-perfluorooctyltriethoxysilane (Sigma-Aldrich). The sealed vial was then heated in an oven at
120 °C for 1 h. After, F-SAM functionalized SiO, wafers were rinsed by toluene, methanol, and DI
water to remove the physically adsorbed F-SAM precursor molecules. Finally, they were dried by
nitrogen gas.

2.2. Graphene Growth and Transfer

The growth of graphene on copper foil was in a custom designed low-pressure chemical vapor
deposition (LPCVD) system [43]. A combined gas flow of Ar, Hy, and O, was introduced into the
LPCVD chamber when the pressure reached 0.01 Pa. The Ar and H; flow rates were kept at 600 sccm
and 100 sccm during growth, which was calibrated with flow meters; the O, flow rate varied from 0 to
0.1 sccm in different growth stages. Thermal treatments at 1050 °C to copper foil lasted for 1 h and
kept for 2 h for better crystallinity before 0.5 sccm methane was introduced into the LPCVD chamber.
In order to obtain graphene with good quality and large size, the growth of graphene lasted for 1 h,
and then the system was cooled to RT. Graphene samples were transferred to SiO,, NH,-SAM/SiO»,
and F-SAM/SiO, substrates by commonly used method using poly(methyl methacrylate) (PMMA).
In order to remove organic residues and contaminants during the transfer process, graphene/SiO,,
graphene/NH,-SAM, and graphene/F-SAM were thoroughly cleaned by acetone vapor. After, all
graphene samples were loaded into a quartz tube with base pressure greater than 5 X 1072 Pa, and
then heated to 150 °C for 15 min under H, environment.

2.3. Characterizations

A multifunctional ultrahigh vacuum (UHV) VT-SPM system (Omicron Instruments, Uppsala,
Germany) was used for in situ UPS and X-ray photoelectron spectroscopy (XPS) measurements.
The base pressure in the analysis chamber was greater than 3 x 107! mbar. For UPS measurements,
HeI(21.2 eV) was the excitation source. A -5V sample bias was applied during WF measurements.
XPS measurements were performed with an Al K« source. Before deposition, ZnPc and Cgy were
thoroughly degassed overnight, and then thermally evaporated onto graphene, NH,-SAM modified
graphene, and F-SAM modified graphene in the growth chamber. The deposition rate for ZnPc and Cgg
was 0.1 and 0.2 nm/min, respectively. The nominal thicknesses of ZnPc and Cgy were determined with
the attenuation of Si 2p peak after deposition. Using a Renishaw inVia Raman Microscope, (Renishaw,
Gloucestershire, UK) Raman spectra were acquired. The wavelength of the excitation laser was 514 nm.
During measurements, focused laser spot of ~1 um, power of ~1 mW and integration time of 10 s
were chosen.

3. Results and Discussion

The UPS spectra for NH,-SAM and F-SAM on SiO, substrates are shown in Figure 1. The WF of
NH;-SAM and F-SAM are determined by the UPS spectra at the low kinetic energy region (Figure 1a);
the WF of NH,-SAM is ~3.46 eV, and it is ~5.56 eV for F-SAM on SiO, substrates, which agrees well
with the previously reported values [44]. Figure 1c—e shows the N 1s spectrum for NHp-SAM, F 1s and
C 1s spectra for F-SAM, respectively. For F-SAM on SiO, substrates, two peaks can be identified in the
C Is region. The peak located at ~292.8 eV derives from carbon atoms in CF, and CF; species; the peak
located at ~285.5 eV is attributed to carbon atoms from the alkyl chain of F-SAM. The XPS results
shown in Figure 1c—e confirm the successful formation of NH>-SAM and F-SAM on SiO, substrates in
the present study.
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Figure 1. UPS spectra at the (a) low kinetic energy region and (b) low binding energy region for
NH,-SAM and F-SAM on SiO, substrates, respectively; XPS spectra of (c) N 1s for NH,-SAM, and (d)
F 1s and (e) C 1s for F-SAM.

The UPS spectra for graphene on NH,-SAM, SiO,, and F-SAM are shown in Figure 2. Without
surface modification using SAMs, the WF of graphene is ~4.40 eV, showing good consistency with
previous reports [45]. In the case of graphene on the NH»-SAM, the WF decreases to ~3.90 eV, which is
evidenced by the shift of secondary electron cutoff toward the lower kinetic energy part. The decrease
of the sample WF suggests that electrons transfer from NH;-SAM to graphene and thus it upward shifts
its Fermi level. On the other hand, the sample WF change is in the opposite direction for graphene on
F-SAM. The secondary electron cutoff shifts to the higher kinetic energy part (Figure 2a), indicating
that the WF of graphene on F-SAM increases to ~5.38 eV. Because of the high electron accepting
characteristics of the CF3 group, electrons transfer from graphene to F-SAM and thus lowers its Fermi
level [41]. The manipulation of graphene Fermi level by SAM modification is further confirmed by
Raman results (shown in Figure S2). Upward shifts for both G and 2D peak can be observed for
graphene on F-SAM, whereas an upward shift for 2D and a downward shift for the G peak is found for
graphene on NH,-SAM. These shifts of characteristic Raman peaks suggest that doping of graphene
has been successfully realized using SAMs [46].
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Figure 2. UPS spectra at the (a) low kinetic energy region and (b) low binding energy region for
graphene on NH,-SAM, SiO,, and F-SAM.

As we mentioned in Section 1, the upper surface of functionalized graphene using SAMs remains
intact, and thus no change of molecular orientation and packing structures of subsequently deposited
active materials occurs, which helps to separate the impact of the graphene WF from molecular
orientation and packing structure changes. In the present study, two widely used organic molecules,
ZnPc and Cg, were chosen to investigate the impact of graphene WF changes. UPS spectra with the
increasing thickness of ZnPc up to 5.0 nm on graphene/F-SAM and graphene/NH,-SAM are displayed
in Figure 3. After the growth of 0.5 nm ZnPc on graphene/F-SAM, ZnPc related emission features begin
to emerge, with the highest occupied molecules orbital (HOMO) leading edge located at ~0.30 eV
below the substrate Fermi level. After 5.0 nm ZnPc has been deposited, the sample WF decreases from
~5.38 eV to ~4.32 eV (not shown here). We also observe the shift for the HOMO leading edge of ZnPc
to the high binding energy part, and it finally locates at ~0.76 eV (Figure 3a), suggesting an upward
band bending at the interface. However, the growth of ZnPc on graphene/NH-SAM differs from the
growth of ZnPc on graphene/F-SAM, and no notable vacuum level shift is observed with the increasing
coverage of ZnPc, which is evidence for vacuum level alignment at the ZnPc/graphene interface on
NH,-SAM. As shown in Figure 3b, after the growth of 0.5 nm ZnPc on graphene/NH,-SAM, we can
clearly observe that the HOMO leading edge is at ~1.04 eV. Despite the increasing peak intensity
with the increasing coverage, no binding energy shift for the HOMO leading edge of ZnPc is found.
After the deposition of 5.0 nm ZnPc, it still locates at ~1.04 eV below the Fermi level. Moreover,
similar behavior is observed with the increasing coverage of ZnPc on graphene/SiO, (Figure S2);
when the thickness of ZnPc is 5.0 nm, the HOMO leading edge is ~0.98 eV below the Fermi level.
Schematic energy level diagrams at the interface between ZnPc and graphene/F-SAM, graphene/SiO,,
and graphene/NH,-SAM are shown in Figure 4. As shown in Figure 2 and Figure S2, the electron
accepting characteristics of the F-SAM end group leads to the p-type doping and downward shifts the
graphene Fermi level. Therefore, the WF of F-SAM modified graphene increases to ~5.38 eV, which
is even higher than the ionization potential of ZnPc (~5.08 eV as shown in Figure 4). If we assume
that there is an interfacial vacuum level alignment, the HOMO of ZnPc locates above the graphene
Fermi level on F-SAM. In this case, there is no energy barrier for the spontaneous electron transfer from
ZnPc to the underlying F-SAM modified graphene. More charge transfer occurs at the interface region
compared to that of thicker ZnPc thin films, and hence the upward band bending occurs [47]. With the
growth of ZnPc on pristine graphene and NH,-SAM modified graphene, the Fermi level locates in the
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middle of ZnPc band gap, and hence charge transfer is impeded at the interface. As a result, there is
little or no shift of vacuum level as well as the HOMO leading edge of ZnPc.
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Figure 3. UPS spectra for the growth of ZnPc on (a) graphene/F-SAM and (b) graphene/ NH,-SAM.
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Figure 4. Energy level diagrams of (a) ZnPc/graphene on F-SAM, (b) ZnPc/graphene, and
() ZnPc/graphene on NH;-SAM.

The growth behavior of Cg, a typical n-type organic semiconductor with relatively high ionization
potential [48], on pristine and SAM modified graphene was also investigated in the present study to
explore the impact of graphene WF changes. UPS spectra of the growth of Cgy on graphene/F-SAM
and graphene/NH;-SAM are shown in Figure 5. On graphene/F-SAM, we do not observe a vacuum
level shift during the deposition of Cgp, a clear sign of vacuum level alignment at the interface between
Ceo and F-SAM modified graphene. In addition, no binding energy shift of the C¢g HOMO leading
edge is found. After the deposition of 5.0 nm Cg, we can see that the HOMO leading edge of Cq is
~0.96 eV. The UPS results for the growth of Cgy on graphene/SiO, are similar to that on graphene/F-SAM.
There are no vacuum level and HOMO leading edge shifts during the growth of Cg (Figure S4). When
the thickness of Cg) increases to 5.0 nm, it locates at ~1.70 eV below the graphene Fermi level. Unlike
the growth of Cgp on pristine graphene and graphene/F-SAM, an unambiguous downward band



Nanomaterials 2019, 9, 1136 7 of 10

bending can be recognized after the growth of Cgy on graphene/NH;-SAM. The HOMO leading edge of
Cgp is ~2.06 eV when 0.5 nm Cg has been evaporated onto graphene/NH,-SAM, and an upward shift
to ~1.78 eV below the Fermi level is observed when the thickness of Cg( increases to 5.0 nm. Because of
the n-type doping of graphene, the WF of NH,-SAM modified graphene decreases to ~3.90 eV, which
is even lower than the EA of Cgp (~4.18 eV as shown in Figure 6). Supposing that there is a vacuum
level alignment, the energy position of the lowest unoccupied molecular orbital (LUMO) of Cg is
lower than the graphene Fermi level on NH;-SAM. Therefore, spontaneous electron transfer from
NH,-SAM modified graphene to Cg takes place upon deposition, resulting in the downward band
bending. The schematic energy level diagrams at the interface between Cgy and graphene/F-SAM,
pristine graphene, and graphene/NH,-SAM are shown in Figure 6.
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Figure 5. UPS spectra for the growth of Cgy on (a) graphene/F-SAM and (b) graphene/NH,-SAM.
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Figure 6. Energy level diagrams of (a) Cgo/graphene on F-SAM, (b) Cgp/graphene, and (c) Cgo/graphene
on NH,-SAM.
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4. Conclusions

The impact of graphene WF on interfacial energy levels between graphene and organic molecules
has been investigated by tuning its Fermi level using SAMs with different end groups. The WF of
graphene on NH,-SAM decreases to ~3.90 eV, and increases to ~5.38 eV on F-SAM. Spontaneous
electron transfer from ZnPc to F-SAM modified graphene occurs, which is induced by the downward
shift of the graphene Fermi level on F-SAM, leading to an upward band bending at the interface.
In contrast, we identify a downward band bending at the interface between Cgy and NH,-SAM
modified graphene, which can be attributed to the upward shift of the graphene Fermi level on
NH,-SAM. By using SAMs to manipulate the Fermi level of graphene, the electronic structure at
the graphene/organic interface is optimized without disturbing molecular orientation on top, which
facilitates the charge injection or collection at the electrode. This can greatly enhance the performance
of graphene-based organic electronic devices, and shed light on interfacial engineering approaches for
other kinds of transparent electrodes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/8/1136/s1,
Figure S1: Molecular structures of NH,-SAM and F-SAM,; Figure S2: Raman spectra for graphene on NH;-SAM,
SiO,, and F-SAM; Figure S3: UPS spectra during the sequential deposition of 5.0 nm ZnPc on graphene; Figure S4:
UPS spectra during the sequential deposition of 5.0 nm Cgy on graphene.
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