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Background: Gastric cancer (GC) is the 5th most common cause of cancer in the world and the 3rd largest 
cause of cancer-related death. It is usually associated with a variety of cancers, of which cholangiocarcinoma 
(CCA) combined with GC accounts for about 1.6%. This study sought to examine the hub genes and role of 
lipid metabolism in the development and diagnosis of GC and CCA. 
Methods: To screen potential hub genes, The Cancer Genome Atlas (TCGA) data sets, including the GC 
(STAD, dataset of GC) and CCA (CHOL, dataset of CCA) data sets, were used to conduct a differentially 
expressed gene (DEG) analysis and an enrichment analysis of the DEGs. A weighted-gene co-expression 
network analysis (WGCNA) was conducted to identify the significant gene module and then find the hub 
genes in the module. To verify the 4 hub genes, we conducted a differentiation analysis of the 4 genes in 
GC and CCA and found that there were differences. A survival analysis of the hub genes was performed and 
mutations were mapped. Additionally, tumor immune microenvironment (TIME) and immune analyses were 
performed to evaluate how lipid metabolism affects the development of GC with CCA.
Results: The principal component analysis showed that both GC and CCA had distinct up-regulated and 
down-regulated genes, which are involved in a variety of metabolic processes. Upon WGCNA, the turquoise 
and blue modules were meaningful, and the hub genes were identified from these 2 modules. Four hub 
genes were identified: amyloid beta precursor protein binding family B member 1 (APBB1), Homo sapiens 
armadillo repeat containing X-linked 1 (ARMCX1), DAZ interacting zinc finger protein 1 (DZIP1), and 
methionine sulfoxide reductase B3 (MSRB3). In survival analysis, increased expression of the 4 hub genes was 
associated with inferior survival outcomes, with variations in all 4 genes. Additionally, we demonstrated that 
genes related to lipid metabolism had an effect on immune function.
Conclusions: APBB1, ARMCX1, DZIP1, and MSRB3 affect the development of GC and CCA and can be 
used as biomarkers. The expression of lipid metabolism genes is related to the TIME of patients with GC 
and CCA.
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Introduction

Gastric cancer (GC) is the 5th most common cancer 
and the 3rd leading cause of death in the world (1). The 
incidence rate is the highest in Asia and lowest in Africa (1). 
Cholangiocarcinoma (CCA) is rare, but it may be found 
after an initial diagnosis as GC. In 1.1–4.7% of GC cases, 
at least 1 other primary tumor can be found (1). The most 
common tumors associated with GC are colon cancer, lung 
cancer, and hepatocellular carcinoma. CCA is relatively 
rare, and is found synchronously in 1.6% of all GCs (2). 
However, the incidence rate of CCA is rising (2).

The  r i s k  o f  GC and  CCA i s  a s soc i a t ed  w i th 
deoxyribonucleic acid (DNA) replication defects, DNA 
methylation, and chromosomal and microsatellite instability. 
Surgery alone is the standard of care for early-stage GC, 
while surgery and chemotherapy with or without radiation 
therapy is used for advanced-staged GC and CCA (2,3). 
However, even after aggressive therapy, recurrence rates 
are high (4). Additionally, the mortality rate is high because 
most patients are diagnosed relatively late (4). Thus, it is 
necessary to understand the molecular mechanism involved 
in the carcinogenesis to determine prognostic biomarkers 
and potential treatment targets.

High-throughput sequencing technology provides a new 
perspective on the genomic, transcriptome, and epigenome 
characteristics of cancer. Systems biology can effectively 
analyze complex human diseases, especially in large-scale 
cancer data sets (5). The weighted-gene co-expression 
network analysis (WGCNA) is an accurate and efficient 
multigene analysis method, and it is possible to construct 
a scale-free network to investigate the correlation between 
different genomes and genes. WGCNAs have been used to 
identify the clinical modules and hub genes of cancer (6).

Lipid metabolism reprogramming has always been 
regarded as a new method for identifying malignant 
tumors, and there is increasing evidence from clinical and 
experimental studies that lipid metabolism disorder plays a 
key role in tumorigenesis (7,8). The pathogenesis of gastric 
cancer is complex and diverse, in which lipid metabolism 
plays a crucial role. Increasing the synthesis of new lipids or 
the uptake of exogenous lipids can promote the rapid growth 
of cancer cells and the formation of tumors. Lipids are not 
only the structural basis of biofilm, but also signal molecules 
and energy. It is worth noting that lipid metabolism can 
induce drug resistance of gastric cancer cells by reshaping 
the tumor microenvironment. Highly proliferative human 
CCA cells rely on lipid and lipoprotein uptake to promote 

fatty acid catabolism, suggesting that inhibiting fatty acid 
oxidation and/or lipid uptake may be the treatment strategy 
of this subclass of CCA (2,3). Some studies have shown that 
good control of blood lipid levels can improve the tumor 
immune microenvironment (7,8). The tumor immune 
microenvironment (TIME) reflects the immune landscape 
of the tumor microenvironment, which is very important 
in the occurrence and development of tumors (6). Immune 
cells play a key role in cell reprogramming. Immune 
cells can modify the microenvironment of tumor cells by 
secreting various biological factors, impacting tumorigenesis 
(8,9). Thus, studying the immune microenvironment 
of lipid metabolism-related genes (LMRGs) is of great 
significance in tumor risk assessment and biomarker 
screening.

As such, we examined hub genes and role of lipid 
metabolism in the development and diagnosis of GC 
and CCA. This study used WGCNA to analyze the 
pathogenesis of GC and CCA. The ribonucleic acid 
(RNA) sequencing data of the GC and CCA samples were 
downloaded from TCGA, and the differentially expressed 
genes (DEGs) between GC, CCA, and normal tissues 
were analyzed to determine their expression and function 
levels. A Gene Ontology (GO) analysis was conducted 
to examine the functional enrichment of the DEGs. A 
WGCNA of the DEG matrix identified the modules 
related to the clinical characteristics of patients with GC 
and CCA. The hub genes identified by the bioinformatics 
analysis were verified by a survival analysis. Finally, we 
analyzed the immune microenvironment of GC and CCA 
as well as how genes related to lipid metabolism impact 
tumorigenesis. It is different from previous reports 
that our research explored the common hub genes of 
gastric cancer and CCA. We present the following 
article in accordance with the STREGA reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-3530/rc). 

Methods

Data collection and pre-processing

The RNA-sequencing data and clinical information of 
patients were obtained from the “Genomic Data Commons 
(GDC) TCGA Stomach Cancer (STAD)” and “GDC 
TCGA Bile Duct Cancer (CHOL)” data sets, hosted by 
the Xena website of the University of California at Santa 
Cruz (http://xena.ucsc.edu/). The RNA-sequencing data 

https://atm.amegroups.com/article/view/10.21037/atm-22-3530/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-3530/rc
http://xena.ucsc.edu/
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included 415 GC samples and 35 normal tissue samples, 
and 36 CHOL samples and 9 normal tissue samples. The 
workflow of the study is shown in Figure 1. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). 

Identification of DEGs and statistical analysis

The “limma” package in R language (version 4.1.2) was used 
to identify the DEGs between STAD, CHOL, and normal 
tissues. A DEG was defined as a DEG with a log2(fold change) 
value >1 and a P value <0.01. The volcano map of the DEGs 
was drawn using the “ggplot2” software package.

Functional enrichment of DEGs

After using “org.Hs.eg.db” package (version: 3.10) to 
convert the DEG identifiers, “clusterprofiler” software 

package (version: 3.14.3) was used to perform the function 
enrichment analysis of the DEG based on GO dataset. The 
GO terms with a P value <0.05 were considered statistically 
significant.

WGCNA

WGCNA package (version: 1.70-3) was used to construct 
the DEG networks. First, ineligible genes and samples were 
removed using the “good samples genes” function to filter 
the expression matrix in the WGCNA. Second, the samples 
were clustered using the “flash cluster” tool in R. Third, 
the Pearson correlation coefficient matrix was calculated 
for the paired gene comparison. Fourth, using the “picks of 
threshold” function, the appropriate soft threshold power 
(β) was selected to ensure that the network was scale-free. 
Finally, the “power” function was used to construct the 
adjacency matrix.

Figure 1 Flowchart of the data analysis. GDC, Genomic Data Commons; TCGA, The Cancer Genome Atlas; STAD, stomach 
adenocarcinoma; CHOL, cholangiocarcinoma; WGCNA, weighted-gene co-expression network analysis; GEO, Gene Expression Omnibus.

GDC TCGA
Stomach
Cancer
(n=450)

GDC TCGA
Bile duct
Cancer
(n=45)

Data pre-processing: 
principal component analysis

Identify differential expressed gene in STAD 
up-regulated: 3,445, down-regulated: 3,279

Identify differential expressed gene in CHOL 
up-regulated: 3,377, down-regulated: 6,182

Combine two datasets according to gene and 
identify 2 hub modules (blue and brown)

Combine datasets was also 
differentially expression 

analyzed

Logistic regression to identify 4 hub genes

Validation of hub genes in the expression level 
(GEO)

Immune infiltrating analysis

Genetic alterations of 4 hub genes

WGCNA analysis

Survival analysis



Gong et al. Hub genes in GC with CCAPage 4 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(15):834 | https://dx.doi.org/10.21037/atm-22-3530

Identification of clinically significant modules and hub 
genes

First, we described the characteristics of each gene 
expression module. Second, we calculated the correlation 
between the characteristic genes and clinical characteristics 
to determine which modules had clinical significance. The 
linear relationship between gene expression and clinical 
features had significance (GS). If the GS was closely related 
to the module members (MMs), it was defined as the 
correlation between the module feature genes and single 
gene expression profiles, and the hub genes of the module 
were related to CHOL’s STAD. These hub genes were 
candidate hub genes. Since there were >20 related hub 
genes, we used a logistic regression to further screen the 
most important hub genes.

Validation of hub genes

The Gene Expression Profiling Interactive Analysis 
(GEPIA) website was used to study the expression levels 
of hub genes in the CHOL STAD sample (http://gepia.
cancer-pku.cn/). The ability of the hub genes to predict 
survival was evaluated by a Kaplan-Meier analysis using 
the “survival” software package (version: 3.2-7). First, we 
obtained the DEG expression profiles and the prognostic 
data of the tumor samples of STAD and CHOL from 
TCGA. Second, we determined the median expression 
value of each gene. The samples were assigned to the 
“high expression” or “low expression” group according to 
whether the expression level of a specific gene was above 
or below the median. A log-rank test was used to evaluate 
the significance of the survival difference between the high 
expression group and low expression group. If the test was 
associated with a P value <0.05, the gene was considered an 
effective hub gene.

Next, we screened the differences in hub gene expression 
between the normal and STAD and CHOL tissues 
according to the data of colon adenocarcinoma and rectal 
adenocarcinoma in TCGA and the Genotype Tissue 
Expression Project (GTEX) on the GEPIA website. The 
expression level was standardized by its mean value, and a 
difference with a P value <0.05 was considered statistically 
significant. By using the “ggpubr” software package (version: 
0.4.0) and the GSE66229 data set (STAD) and GSE26566 
data set (CHOL) in Gene Expression Omnibus (GEO) 
database, the expression differences between STAD with 

CHOL and normal tissues were analyzed to further verify 
the hub genes (https://www.ncbi.nlm.nih.gov/geo/). The 
independent sample test was adopted as the standard.

We mapped the genome of the hub genes, including 
the mutation, copy number variation, and messenger RNA 
expression Z-score (rnaseqv2 rsem), using the data of the 
STAD and CHOL samples in the data set in the TCGA 
pan cancer map. We also used the mutation mapping tool 
to describe the mutation of each hub gene. We used the 
cBioPortal to access and analyze the data (http://www.
cbioportal.org/).

Selection of the subgroups and the TIME evaluation

First, the univariate Cox regression analysis showed 
that 11 genes were associated with the prognosis of 
CHOL complicated with STAD. According to the 
expression matrix of the 11 genes, the R software package 
“consensusclusterplus” (version: 1.58.0) was used. For 
consistency clustering, the expression data (estimation) 
algorithm was used to estimate the stromal cells and immune 
cells in the malignant tumor tissues, and the stromal score, 
immune score, and tumor purity were calculated.

Immune analyses

A TIMER immune-infiltration analysis was conducted to 
evaluate the abundance of 6 immune infiltrating cells [i.e., 
B cells, dendritic cells, macrophages, neutrophils, cluster 
of differentiation (CD)4 T cells, and CD8 T cells]. Data, 
including data for 28 immune infiltrating cells and related 
genes, were obtained from the molecular feature database, 
and the concentration of 28 immuno-invasive cells in the 
tumor samples was evaluated by a single sample gene set 
enrichment analysis (SSGSEA). 

Results

Pre-processing of data

Our findings were obtained from 415 GC samples,  
35 normal tissue samples, 36 CCA samples, and 9 normal 
tissue samples. It is common practice to distinguish between 
the two main components of tumor samples and normal 
samples (8). After a principal component analysis, we found 
that both CHOL and STAD had obvious clusters (see 
Figure 2A-2C).

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://www.cbioportal.org/
http://www.cbioportal.org/
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Identification of DEGs in the STAD with CHOL samples 
and the GO enrichment analysis

In 44 normal samples,  36 CHOL, and 415 STAD 
samples, a total of 908 DEGs were identified, including  
450 upregulated genes and 458 downregulated genes. 
STAD volcanic plot is 2D and CHOL volcanic plot is 2E 
(see Figure 2D,2E). To explore the potential biological 
function of the DEGs in the STAD, we conducted an 
enrichment analysis (see Figure 2F). The upregulated 
DEGs were mainly involved in extracellular regions and 
small molecule metabolism. In contrast to oxyacetic acid 
metabolism and organic acid metabolism (see Figure 2F), 
the downregulated DEGs were mainly involved in the 
development of the nervous system, cell projection, and 
neurogenesis. These results are consistent with the known 
STAD dysfunction in STAD and CHOL patients; thus, 

our results appear to be reliable.

WGCNA and identification of critical modules

A WGCNA was used to build a network based on the 
DEG expression matrix and clinical data from the STAD 
and CHOL samples. We performed a cluster analysis and 
checked the quality of the STAD and CHOL samples. All 
the samples were in the cluster and within the threshold 
range (height <200). Thus, there were no outliers that 
needed to be removed. The WGCNA applied the following 
6 clinical variables (see Figure 3A): disease status (normal or 
tumor), gender (female or male), pathological stage (I–IV), 
sample type (primary tumor or normal solid tissue), age, 
weight, and survival time. The STAD sample containing 
CHOL was divided into the tumor sample and the normal 
sample (10). 

Figure 2 Identification of DEGs in normal, stomach, and cholangiocarcinoma. (A) Sample size of PCA. (B,C) The main components 
were analyzed by tSNE. STAD PCA is B and CHOL PCA is C. (D,E) Volcanic structure, the blue points represent the downregulated 
genes, the gray points represent the significant genes, and the red points represents the upregulated genes. STAD volcanic plot is (D) and 
CHOL volcanic plot is (E). (F) A GO analysis of the functional enrichment of the upregulated genes. The size of the points reflect the 
number of enrichment genes in a given ontological term, and the color represents the type of enrichment. DEGs, differentially expressed 
genes; PCA, principal component analysis; tSNE, T-distributed stochastic neighbor embedding; FDR, false discovery rate; STAD, stomach 
adenocarcinoma; CHOL, cholangiocarcinoma; GO, Gene Ontology.
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To build a scalable network, we used a soft threshold 
power β set to 7. The independence level was set to 0.9, and 
the average connectivity was close to 0. We clustered DEGs 
for same DEGs of grouping with the same expression 
module and merged the module with a <0.25 height 
difference (11). This process resulted in the following 
3 co-expression modules: turquoise, blue, and brown (see  
Figure 3B,3C).

The characteristic gene of the blue module [correlation 
(COR) =0.31, P=4.8×10−5] and turquoise module (COR 
=0.19, P=3.7×10−6) was significantly positively correlated 
with STAD and CHOL (see Figure 3D). These correlations 
were confirmed by hierarchical clustering, heat map, and 
adjacency analyses (see Figure 3E). The results suggested 
that the cyan and blue modules may contribute to the 
tumorigenesis of CHOL and STAD. Thus, the turquoise 
and blue modules were analyzed based on hub genes (12).

Identification of candidate hub genes from the turquoise 
and blue modules

In the turquoise and blue modules, the MMs and GS scores 
were strongly positively correlated. The selection criteria 
for the hub genes were relatively lower than the standard 
cut-off threshold (MM >0.8). In the turquoise module, 
the genes identified reached the thresholds of a “cor.gene” 
module membership >0.75 and a “cor.genetraitsignicac” 
>0.6. In the blue module, the genes met the thresholds of 
a “cor.gene module membership” >0.75 and a “cor.gene 
traitsential” >0.7.

Hub gene expression and correlation with survival

Based on the expression data and clinical information of 
the STAD containing CHOL tumor samples in TCGA, 
we studied the potential association between the expression 

Figure 3 WGCNA analysis of the DEGs in GC with cholangiocarcinoma. (A) Clinical characteristics and cluster tree of STAD data and 
CHOL samples. (B) Deggs’s tree view depends on the 1-tom dissimilarity measure. Each branch represents a gene, and each color represents 
a common expression form. (C) The number of genes in the 3 modules. (D) Heat map of the correlation between the modular signature 
gene and the clinical features of the CHOL patients. (E) Heat map values of gene module for the correlation coefficient and characteristic. 
WGCNA, weighted-gene co-expression network analysis; DEGs, differentially expressed genes; GC, gastric cancer; STAD, stomach 
adenocarcinoma; CHOL, cholangiocarcinoma.
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of 37 genes identified in the turquoise module and 9 genes 
identified in the blue module and patient survival. The 
details of TCGA participants are shown in Tables 1,2. To 
further analyze the relationship between the genes in the 
module and survival status, a forest plot was generated (see 
Figure 4A). There were over 20 candidate hub genes, and 
we conducted a logistic regression to identify 4 important 
hub genes. The turquoise module genes APBB1, ARMCX1, 
and MSRB3 were associated with prognosis, as was the blue 
module gene DZIP1. The increased expression of these 
genes was associated with inferior overall survival (OS), the 
OS details of four genes was as follow: low level APBB1 
had hazard ratio (HR) 1.46 (95% CI: 1.08, 1.97) with P 
value 0.01 compared with high level, low level ARMCX1 
had HR 1.48 (95% CI: 1.10, 2.00) with P value 0.01, low 
level DZIP1 had HR 1.62 (95% CI: 1.20, 2.19) with P value 
<0.001 and low level MSRB3 had HR 1.54 (95% CI: 1.14, 
2.08) with P value <0.001 (see Figure 4B). Thus, we defined 
these genes as the “final” hub genes.

Using the GEPIA website, we confirmed that there were 
significant differences in the expression of all these hub 
genes in the normal and CHOL bearing STAD tissues (see 
Figure 4C). To further validate the genes related to survival, 

we used the GEO data sets GSE66229 and GSE26566 to 
identify the significant survival-related genes for STAD 
and CHOL, respectively (see Figure 5A,5B). The results 
of TCGA analysis were consistent with those of the GEO 
analysis.

Mutation landscape of hub genes

According to the data of the STAD patients with CHOL in 
TCGA, the OncoPrint view of the hub genes in the cBioPortal 
database was used to visualize the mutation of the 4 hub genes. 
In some STAD patients, there were 4 hub gene mutations 
(29%). In a small number of CHOL patients (11%), there 
were 4 hub gene mutations. DZIP1 had the highest STAD 
mutation rate (8%), and the most missense mutations, and 
mutations leading to a higher expression of messenger RNA 
(see Figure 5C), while DZIP1 (4%) had the highest cholesterol 
mutation rate (see Figure 5D).

Clustering of 2 molecular subtypes based on LMRGs

According to the 11 prognostic genes generated by the 
univariate Cox analysis, the patients with STAD and CHOL 

Table 1 The demographic information for GDC TCGA stomach cancer 

Stomach cancer Dead (N=280) Alive (N=170) Total (N=450) P value

Tumor-normal, n (%) 0.32

Normal 25 (5.6) 10 (2.2) 35 (7.8)

Tumor 255 (56.7) 160 (35.6) 415 (92.2)

Age (years), mean ± SD 65.18±11.06 66.68±9.78 65.75±10.60 0.13

Gender, n (%) 0.18

Female 106 (23.6) 53 (11.8) 159 (35.3)

Male 174 (38.7) 117 (26.0) 291 (64.7)

Weight (kg), mean ± SD 67.55±22.59 65.21±18.72 66.63±24.59 0.24

Pathologic stage, n (%) <0.001

Stage I 47 (11.1) 15 (3.5) 62 (14.6)

Stage II 101 (23.7) 40 (9.4) 141 (33.1)

Stage III 96 (22.5) 82 (19.3) 178 (41.8)

Stage IV 20 (4.7) 25 (5.9) 45 (10.6)

Sample type, n (%) 0.32

Primary tumor 255 (56.7) 160 (35.6) 415 (92.2)

Solid tissue normal 25 (5.6) 10 (2.2) 35 (7.8)

GDC, Genomic Data Commons; TCGA, The Cancer Genome Atlas; SD, standard deviation.
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in the training cohort were divided into subgroups using the 
consistent clustering method (see Figure 6A-6C). When k=2, 
the optimal clustering stability was reached. In total, 332 
patients were clustered in group 1 and 163 patients were 
clustered in group 2. The heat maps showed the expression 
levels of the LMRGs in the two subtypes (see Figure 6D), 
and a significant difference in expression between cluster 
1 and cluster 2 was found. These results suggest that the 
LMRGs divide the STAD with CHOL patients into two 
molecular subtypes.

Two molecular subtypes exhibited different TIME and 
immune status

Additionally, we also performed immunoassays to explore 
the immune differences between the two molecular 
subtypes. The estimation algorithm showed that the 
immune score (P<0.05) and estimated score (P<0.05) of 
the patients with CHOL in group 2 were significantly 
lower than those of patients in group 1. Cluster 1 had a 
lower stromal score than cluster 2 (P<0.05). Additionally, 
the TIMER algorithm showed that cluster 1 had a greater 

number of B cells (P<0.05), macrophages (P<0.05), NK 
cells (P<0.05), CD4 T cells (P<0.05), CD8 T cells (P<0.05), 
endothelial cells (P<0.05), and natural killer cells (P<0.05) 
(Figure 6E,6F). These results showed that there were 
significant differences in the TIME and immune status 
between the two molecular subtypes.

Discussion

In this study, the WGCNA method was used to analyze 
the pathogenesis of GC and CCA. The RNA-sequencing 
data of the GC and CCA samples were downloaded from 
TCGA, and the DEGs between the GC, CCA, and normal 
tissues were analyzed in relation to their expression and 
function levels. The GO database was used to analyze 
the functional enrichment of DEGs. The WGCNA of 
the DEG matrix identified modules related to the clinical 
characteristics of patients with GC and CCA. The hub 
genes found by the bioinformatics analysis were verified 
by survival rates, and an immunohistochemical GC and 
CCA analysis. Additionally, an in-depth analysis of the 
lipid metabolism genes was conducted to explore the effect 

Table 2 The demographic information for GDC TCGA bile duct cancer

Cholangiocarcinoma Dead (N=23) Alive (N=22) Total (N=45) P value

Tumor-normal, n (%) 1

Normal 5 (11.1) 4 (8.9) 9 (20.0)

Tumor 18 (40.0) 18 (40.0) 36 (80.0)

Age (years), mean ± SD 63.87±12.13 65.27±13.04 64.56±12.46 0.71

Gender, n (%) 1

Female 12 (26.7) 11 (24.4) 23 (51.1)

Male 11 (24.4) 11 (24.4) 22 (48.9)

Weight (kg), mean ± SD 81.43±23.42 81.91±19.57 81.67±21.38 0.94

Pathologic stage, n (%) 0.37

Stage I 12 (26.7) 14 (31.1) 26 (57.8)

Stage II 5 (11.1) 5 (11.1) 10 (22.2)

Stage III 0 (0.0) 1 (2.2) 1 (2.2)

Stage IV 6 (13.3) 2 (4.4) 8 (17.8)

Sample type, n (%) 1

Primary tumor 18 (40.0) 18 (40.0) 36 (80.0)

Solid tissue normal 5 (11.1) 4 (8.9) 9 (20.0)

GDC, Genomic Data Commons; TCGA, The Cancer Genome Atlas; SD, standard deviation.
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Figure 5 According to the STAD and CHOL geographical location data, 4 hub genes were verified and mutated. (A,B) The central genes 
were validated using geographic data sets (GSE 66229 and GSE 26566). (C,D) The bar charts and heat maps showed mutations in 4 hub genes. 
*, P<0.05; **, P<0.001; ***, P<0.0001; ****, P<0.00001; –, not applicable. STAD, stomach adenocarcinoma; CHOL, cholangiocarcinoma; 
GSE, Genomic Spatial Event.

of lipid metabolism on the pathogenesis of GC and CCA 
patients, and to analyze the immune microenvironments of 
GC and CCA patients.

This study provides a relatively novel  idea for 
combination of four cancer hub genes. We performed a 
bioinformatics analysis on an independent group of patients 
to identify biomarkers. Our results suggest that the poor 
prognosis of GC and CCA is related to the overexpression 
of APBB1, ARMCX1, DZIP1, and MSRB3. Our results of 
the functional enrichment analysis of the GC and CCA 
genes are consistent with previous reports (13,14). The 
metabolism of cancer cells plays an important role in the 
occurrence and development of tumors.

Through the WGCNA, we found that  centra l 
modules and hub genes play an important role in cancer 
development. We identified two key modules (i.e., the 
turquoise and blue modules), whose genes were associated 
with GC and CCA. Complex gene networks regulate the 

occurrence and development of GC and CCA. We found 
that 4 hub genes (i.e., APBB1, ARMCX1, DZIP1 and 
MSRB3) were closely related to the OS rate of GC patients. 
ARMCX1 has been reported to have potential prognostic 
value for GC and may have clinical application value (13). 
However, further basic research needs to be conducted to 
clarify the specific mechanism of ARMCX1 in GC. Both 
ARMCX1 and ARMCX2 are involved in the biological 
pathways and processes related to the progression and 
treatment of GC. Additionally, DZIP1 is an independent 
prognostic factor of GC and may be involved in the 
progression of GC (14). DZIP1 is involved in the activation 
of the emergency phenotype and is related to the massive 
infiltration of a variety of immune cells. Additionally, the 
DZIP1 mutation may be related to a good prognosis in 
GC patients. Finally, the methylation of DZIP1, a DNA 
promoter, can be used as a target for future GC therapy. 
Additionally, patients with GC have increased expression 
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Figure 6 In the 2 sets, clustering was performed using CHOL and STAD data. (A-C) k=2 was determined as the best value for the desirable 
grouping; (D) Heat map showing the expression of lipid metabolism genes in the 2 subgroups; (E) Matrix score, immune score, and 
estimated score. (F) The abundance of the 6 filtered immune cells. CDF, cumulative distribution function; C1, Cluster 1; C2, Cluster 2; 
CHOL, cholangiocarcinoma; STAD, stomach adenocarcinoma. *, P<0.05; **, P<0.001; ****, P<0.00001; –, not applicable. 
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of MSRB3 which is associated with poor prognosis (15). 
Research on APBB1 in GC is limited, but it may be a 
potential biomarker of GC. Since the completion of this 
study on CCA biomarkers, we have not found any other 
relevant studies on these 4 CCA hub genes.

Consensus clustering is a reliable method for dividing 
samples into different subgroups based on gene expression 
matrices. According to the LMRG expression matrix of 
the GC and CCA patients, we first identified 2 molecular 
subgroups by consensus clustering. Next, an immune 
function analysis was carried out to examine the role of 
LMRGs in GC and CCA (16,17). Since the progress of a 
tumor is related to changes in the surrounding matrix, and 
the immune cell is the important component of the tumor 
matrix, the TIME plays the important role in the prognosis 
of the patient (18). Additionally, the abnormal metabolism 
of cancer cells will lead to a change in the metabolism 
of the TIME (19). TIME was different between the two 
subgroups that cluster 1 was more immunogenic. Cluster 1 
may benefit more because of greater abundance of CD8 T 
cells. In fact, recent trials (TOPAZ-1 and KEYNOTE-811) 
have shown that immunotherapy can improve clinical 
outcomes in patients with GC and CCA (20,21).

The estimation algorithm is an innovative method for 
calculating tumor purity and the ratio of immune cells 
and stromal cells in tumors according to gene expression 
values (22). The immune score produced by the estimation 
algorithm quantitatively shows the immune component in 
the tumor sample and reflects the TIME (23). The purity of 
a tumor is defined as the proportion of the malignant cells 
in the tumor tissue, and it is significantly correlated with 
the prognosis of the tumor (24). Consistent with previous 
findings, we found that patients with a better prognosis had 
a higher immune score. The cluster 1 immune score was 
higher than that of the cluster 2. Additionally, we also used 
TIMER to evaluate the immune status of these 2 molecular 
subsets, which was helpful in quantifying the 6 tumor 
infiltrating immune subsets. The TIMER analysis showed 
that the abundance of all the immune cells in Cluster  
1 increased significantly, which indicated that the immune 
cells in Cluster 1 were upregulated. In addition, four hug 
genes APBB1, ARMCX1, DZIP1, and MSRB3 were related 
with TIME of GC or CCA. 

In conclusion, this study conducted a WGCNA and 
found 4 hub genes implicated in GC and CCA: APBB1, 
ARMCX1, DZIP1, and MSRB3. These findings are helpful in 
fully understanding the gene network of GC and CCA (25).  
Through consensus clustering, 2 molecular subtypes were 

identified in GC and CCA based on the LMRGs. The 
immunoassays showed that abnormal lipid metabolism 
hinders the immune system. Further studies are warranted 
to determine how to best use this molecular information to 
improve clinical outcomes in GC and CCA. 
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