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The oral bacterium Porphyromonas gingivalis has special
nutrient requirements due to its asaccharolytic nature
subsisting on small peptides cleaved from host proteins.
Using proteases and other virulence factors, P. gingivalis
thrives as a component of a polymicrobial community in
nutritionally favorable inflammatory environments. In this
regard, P. gingivalis has a number of strategies that subvert
the host immune response in ways that promote its
colonization and facilitate the outgrowth of the surrounding
microbial community. The focus of this review is to discuss at
the molecular level how P. gingivalis subverts leukocytes to
create a favorable environment for a select community of
bacteria that, in turn, adversely affects the periodontal tissues.

Introduction

Chronic periodontitis is an oral inflammatory disease leading
to the destruction of the tissues that support the teeth (periodon-
tium) and is associated with increased risk for certain systemic
disorders.1,2 Recent metagenomic, metatranscriptomic, and ani-
mal model-based mechanistic studies indicate that periodontitis
is characterized by polymicrobial synergy and dysbiosis.3-8 Por-
phyromonas gingivalis is a gram-negative asaccharolytic bacterium,
which expresses a variety of virulence factors (Table 1) and has
long been implicated in periodontitis.9 In a mouse model of peri-
odontitis, oral inoculation with P. gingivalis leads to low-level
colonization of this bacterium as well as to dysbiosis, an elevation
of certain populations in the oral bacterial community leading to
inflammatory bone loss.10 Remarkably, P. gingivalis is unable to
elicit disease by itself in germ-free mice despite colonizing this
host, suggesting that disease pathology requires the presence of a
polymicrobial community.10 This community-wide dysbiotic
effect of P. gingivalis, while present at relatively low colonization
levels, has led to its characterization as a keystone pathogen, that

is, an organism with a disproportionately large effect on its envi-
ronment relative to its abundance.11,12 Contrary to the findings
of some of the early culture-based microbiological studies, more
recent investigations based on culture-independent molecular
methods show that P. gingivalis is a quantitatively minor constit-
uent of human periodontitis-associated biofilms.3,13,14 Whether
P. gingivalis can act as a keystone pathogen in human periodonti-
tis has not been specifically addressed, although this would
require an interventional study (e.g., to specifically target P. gingi-
valis and assess its effect on the microbiome and the disease). In
this regard, in non-human primates which naturally harbor P.
gingivalis in the subgingival biofilm, a gingipain-based vaccine
causes a decrease both in P. gingivalis counts and in the total sub-
gingival bacterial load (as well as inhibits bone loss),15 suggesting
that the presence of P. gingivalis benefits the entire microbial
community.

The pathogenicity of periodontitis and the virulence of P. gin-
givalis require a susceptible host. Susceptibility is influenced by
host genotype (immunoregulatory defects or immunodeficien-
cies), stress, diet, or risk-associated behavior such as smoking.16–21

Moreover, the virulence of P. gingivalis is influenced by its envi-
ronment, involving host-related factors or other bacteria (such as
accessory pathogens that assist P. gingivalis in terms of coloniza-
tion and metabolic activities).5 Consistent with this, several P. gin-
givalis virulence proteins including gingipains, FimA fimbriae,
HtrA protease and lipid A phosphatase have been shown to be reg-
ulated by environmental factors such as temperature and
hemin.22-25 Moreover, the metabolic profiles of P. gingivalis (and
other periodontal bacteria) are significantly altered when com-
pared in healthy versus diseased sites from the same patient.4 For
instance, virulence gene expression (e.g., encoding for gingipains,
collagenase, and hemagglutinin proteins) is modified, yet the pre-
cise expression pattern for the different genes varies from patient
to patient suggesting that environmental factors play a role in
shaping P. gingivalis virulence. Here, we review strategies utilized
by P. gingivalis to compromise host immune function, which in
turn can cause compositional and quantitative shifts to the oral
microbiome toward a pathogenic phenotype.

P. gingivalis manipulation of leukocytes
The almost exclusive niche of P. gingivalis is in the oral cavity

where it hijacks leukocytes altering their migration and defense
functions, and elicits inflammation to obtain nutrients from tis-
sue breakdown.26,27 The oral cavity is home to approximately
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600 species of bacteria.28 Unlike other mucosal tissues, the oral
mucosa contains no tight junctions or mucus layer to keep
microbes at bay. Instead, the gingival epithelium is charged with
a steady gradient of IL-8, a cytokine that signals the migration of
neutrophils through the junctional epithelium at an astonishing
rate of 30,000 PMNs per minute.29,30 The neutrophils create a
wall-like defense system, making up the primary cellular defense
in healthy oral tissues.31 P. gingivalis positions itself within the
sub-gingival pocket due to the strict requirements of an anaerobic
lifestyle. It is here that the bacterium will necessarily encounter a
neutrophil. Upon contact with the surrounding epithelium, P.
gingivalis secretes a serine phosphatase (SerB) which suppresses
IL-8 production by dephosphorylating serine-536 of the p65
subunit of NF-kB, thereby preventing nuclear translocation and
transcription of the IL8 gene (Fig. 1A).32 Chemokine paralysis
resulting from IL-8 inhibition can disrupt neutrophil migration
into gingival tissues (Fig. 1A).27,33 Studies in the oral gavage
model of mouse periodontitis have confirmed the capacity of P.
gingivalis to inhibit the expression of neutrophil-recruiting che-
mokines,10 as predicted by the local chemokine paralysis
model.27,32 Although transient (inhibited expression occurs only
during the first days following P. gingivalis oral inoculation), this
subversive activity can delay the recruitment of neutrophils and
allow initial biofilm formation in the relative absence of neutro-
phil defenses. The reduction in neutrophil migration has recently
been shown to disrupt an IL-17 regulatory feedback loop,
thereby unleashing IL-17-mediated inflammation that drives dys-
biosis.34 Whether the transient inhibition of neutrophil migra-
tion leads to enhanced IL-17 expression in P. gingivalis
microenvironments to contribute to dysbiosis is a distinct yet

unproven possibility. Once a mature pathogenic biofilm develops
that is capable of resisting neutrophil defenses, the recruitment of
neutrophils can promote inflammation thereby contributing to
the escalating dysbiosis.26 Extensive in vivo microscopy studies
have revealed hierarchical chemokines that facilitate neutrophil
migration to a pinpoint locale containing bacteria or microbe-
associated molecular patterns.35 In gingival tissues, IL-8 directs
neutrophils to the leading edge of the junctional epithelium, far
away from the depths required for growth of P. gingivalis.
Although transmigrating neutrophils initially follow the IL-8 gra-
dient, they then have to move toward gradients existing in the
infected or inflamed tissue. Such gradients involve chemoattrac-
tants derived from bacteria (e.g., N-formyL-methionyL-leucyL-
phenylalanine) or from local activation of complement (C5a
fragment).36 Intriguingly, P. gingivalis expresses Arg-specific gin-
gipains (cysteine proteases) that cleave C5 and release biologically
active C5a, independently of the canonical activation of the com-
plement cascade.37 This activity enables P. gingivalis to induce a
subversive crosstalk between the C5a receptor (C5aR; CD88)
and Toll-like receptor (TLR)-2 (Fig. 1B).26 This C5aR-TLR2
crosstalk causes degradation of the signaling adaptor MyD88,
thereby allowing decoupling of microbicidal activity from the
inflammatory response which is mediated by an alternative path-
way involving the MyD88-adapter-like (Mal) molecule and
phosphoinositide 3-kinase (PI3K). The same Mal-PI3K pathway
also causes inhibition of the small GTPase RhoA, thereby block-
ing actin polymerization and phagocytosis of bacteria.26 Inhibi-
tion of TLR2 or C5aR counteracts P. gingivalis control of the
neutrophil allowing the cell to regain effective immune clearance
of the bacteria. This very precise manipulation of the neutrophil

Table 1. Virulence factors of P. gingivalis involved in immune subversion.

Virulence factor Action and consequences Refs.

Gingipains (HRgpA, RgpB, Kgp) Degradation of host defense molecules including antimicrobial peptides and the
central complement component C3; generation of nutrient peptides from host
protein degradation

76-78

Arg-specific gingipains (HRgpA and RgpB) C5 convertase-like activity generates C5a, involved in subversive C5aR-TLR2
crosstalk; inflammation and evasion of leukocyte killing.

26,79

HRgpA gingipain Captures C4b-binding protein, a negative regulator of complement; prevention of
complement activation

80

Lys-specific gingipain (Kgp) Proteolytic shedding of CD46 complement regulatory protein from epithelial cells;
renders host cells susceptible to complement attack, potential for tissue damage
and inflammation.

81

Lipid A 1- and 40-phosphatases Lipid A modifications; generation of LPS structures that evade or antagonize TLR4
and are resistant to cationic antimicrobial peptides

49,53,82

SerB (serine phosphatase) Suppresses IL-8 production by dephosphorylation of the Ser536 of NF-kB p65
preventing nuclear translocation and transcription

32

Peptidylarginine deiminase Host and bacterial protein citrullination; alteration of host protein function
disrupting tissue homeostasis; generation of neoepitopes leading to induction of
autoantibodies in rheumatoid arthritis

83,84

Nucleoside diphosphate kinase ATP hydrolysis; suppression of ATP-induced epithelial cell apoptosis; enhanced
intracellular persistence

85,86

FimA fimbriae Binds CXCR4 and induces CXCR4-TLR2 crosstalk; cAMP signaling and inhibition of
nitric oxide-dependent killing

44,87

Required for P. gingivalis oral colonization and b1 integrin-mediated invasion of and
survival within gingival epithelial cells

73,88

Mfa1 fimbriae Binds DC-SIGN for invasion of and survival within dendritic cells. 55,89

Hemagglutinins Nonfimbrial adhesins that agglutinate erythrocytes and promote adherence to host
tissue including endothelial cells; induce platelet aggregation (hemagglutinin A).

90
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bequests P. gingivalis a safe
niche rich with food, yet the
subversion of the neutrophil
causes the disruption of
host protective mechanisms
that benefits the entire oral
bacterial community (more
below).

The macrophage is also
amenable to P. gingivalis
exploitation (Fig. 2A).
While few are found in
healthy gingival tissues,
macrophages are most nota-
ble for their rapid response
to inflammatory insult and
as such are thought to play
a principal role mediating
an immune response as well
as inflammation resolution
in oral tissues.38,39 The
macrophage is a profes-
sional phagocyte, well
known for its efficient
uptake of cellular debris or
invading pathogens. Nor-
mally, a bacterium is sensed
by the macrophage via pat-
tern recognition receptors
and quickly phagocytosed
into an acidic phagolyso-
some capable of killing the
bacteria; during this pro-
cess, an inflammasome can
form leading to the induc-
tion and release of inflam-
matory cytokines IL-1b and
IL-18.40 Instead of waiting
for macrophage phagocyto-
sis to occur, P. gingivalis
takes the initiative to hijack
lipid rafts that form on the
macrophage cellular mem-
brane.41,42 With its fimbriae
and a complex of accessory
proteins, P. gingivalis causes
co-association of CXCR4
and TLR2; the resulting sig-
naling crosstalk inhibits
nitrogen oxide production
in a manner dependent
upon cAMP-dependent
protein kinase A activation
(Fig. 2A).43,44 Fimbriae

Figure 1. Manipulation of neutrophil function by P. gingivalis. (A) Model of chemokine paralysis. Under homeostatic
conditions, oral bacteria are kept at bay by steady recruitment of neutrophils following a gradient of IL-8 production
by the gingival epithelium. P. gingivalis can manipulate the IL-8 gradient by secreting SerB, an enzyme that dephos-
phorylates the p65 subunit of NF-kB thereby inhibiting translocation into the nucleus and preventing IL-8 transcrip-
tion. The result is chemokine paralysis that disrupts the recruitment of neutrophils into the junctional epithelium
and control of the outgrowth of oral bacteria. (B) Model of Neutrophil subversion by P. gingivalis that leads to dysbi-
otic inflammation. Due to C5a ligand generation by Arg-specific gingipains coupled with potent TLR2 agonists (e.g.,
lipoproteins), P. gingivalis is able to co-activate C5aR and TLR2 resulting in Smurf1-dependent MyD88 degradation
thus preventing an antimicrobial response. This signaling event also induces Mal- and PI3K-dependent inhibition of
RhoA, thereby preventing phagocytosis while the same subversive pathway mediates inflammatory responses. In
total, P. gingivalis can successfully decouple antimicrobial killing from a nutritionally favorable inflammatory
response in neutrophils. This mechanism provides bystander support to neighboring bacteria.
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activation of CXCR4 also
leads to induction of the high-
affinity conformation of com-
plement receptor 3 that P. gin-
givalis exploits for safe
intracellular entry.45,46 Once
inside the macrophage, P. gin-
givalis has additional methods
to disrupt cellular processes
that mediate bacterial killing.
In this regard, it was recently
shown that the lipid A moiety
of the LPS structure can elicit
TLR4-independent, nonca-
nonical activation of the
inflammasome.47 P. gingivalis
LPS is heterogeneous and con-
tains several different lipid A
moieties which can cause dif-
ferential signaling through
TLR4.48 Remarkably, a P.
gingivalis mutant fixed in its
expression of a lipid A moiety
that functions as a TLR4
antagonist was found to evade
activation of the noncanonical
inflammasome, thereby enha-
ncing its intracellular survival
in macrophages (Fig. 2A).49

In contrast, a P. gingivalis
mutant expressing only the
TLR4 agonist lipid A predict-
ably induces noncanonical
inflammasome activation cha-
racterized by production of
IL-1b and loses the ability to
survive in the macrophage.49

Noncanonical activation of
the inflammasome by the LPS
of gram-negative bacteria
involves the participation of
caspase 11.50 In the nonca-
nonical mechanism, intracel-
lular LPS directly binds and
activates caspase 11.51 In con-
trast, TLR4 antagonist lipid A
binds caspase 11 but does not
induce caspase 11 oligomeri-
zation required for its activa-
tion.51 This explains why P.
gingivalis equipped with
antagonistic or evasive lipid A
interferes with the activation
of both TLR4 and the caspase
11-dependent non-canonical
inflammasome. Importantly,

Figure 2. P. gingivalis exploitation of macrophages and dendritic cells. (A) P. gingivalis hijacking of the macrophage.
P. gingivalis associates with lipid rafts on macrophages and causes the co-aggregation of CXCR4 and TLR2 with its
FimA fimbriae and associated proteins. The result is an inside-out signaling event that causes complement receptor
3 (CR3) to undergo a conformational change to a ‘high affinity’ structure. P. gingivalis then utilizes CR3 for macro-
phage internalization. In addition to the inside-out singaling, TLR2 and CXCR4 cause activation of cAMP and subse-
quent PKA-dependent inhibition of inducible nitrogen oxide synthase (iNOS) ultimately preventing the bacterial
killing ability of the macrophage. An additional mechanism by which P. gingivalis can increase its survival within the
macrophage involves its capacity to inhibit non-canonical inflammasome activation and hence pyroptosis, a proin-
flammatory mechanism of lytic cell death that protects the host against infection. Since the caspase 11-dependent
noncanonical mechanism of inflammasome activation is triggered by intracellular LPS, it is likely that P. gingivalis, or
at least its LPS, escapes to the cytosol. (B) P. gingivalismanipulation of dendritic cell entry. P. gingivalis has a unique
fimbrial protein, Mfa1, that specifically interacts with DC-SIGN on the dendritic cell surface. This binding phenome-
non allows P. gingivalis to gain entry into the dendritic cell where it can survive andmay be visualized within a vacu-
ole. P. gingivalis-manipulated dendritic cells can also harbor other bacterial species as well. It is currently unclear
whether P. gingivalis has to escape the vacuole in order to survive as is the case with other cell types.
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the lipid A phosphatase activity responsible for lipid A alterations
was shown to be critical for the oral colonization capacity of P.
gingivalis.52 Moreover, the regulation of the lipid A moiety also
shapes the community of oral bacteria as discussed below.53

The macrophage is not the only leukocyte type which P. gingi-
valis may call home; the dendritic cell is also susceptible to proac-
tive P. gingivalis internalization and manipulation. Dendritic
cells in healthy gingival tissues are scarce but very effective at sam-
pling the environment and responding rapidly to bacterial stimuli
(for a review see54). Once stimulated, the dendritic cell normally
becomes activated and matures into effector cell capable of elicit-
ing a polarized T-cell response.54 P. gingivalis uses its Mfa1 fim-
briae to interact with a C-type lectin in dendritic cells,
specifically the DC-specific ICAM-3 grabbing nonintegrin (DC-
SIGN) (Fig. 2B).55 This interaction is followed by P. gingivalis
internalization and survival within the dendritic cell which is fur-
ther manipulated in ways that appear to contribute to an athero-
genic phenotype and the systemic dissemination of P.
gingivalis.56 Although the association of P. gingivalis with sys-
temic disease is beyond the scope of the present review, it is of
interest to note that P. gingivalis has been detected in blood mye-
loid dendritic cells of patients along with several other species
including Helicobacter pylori, Pseudomonas spp., Moraxella catar-
rhalis, Klebsiella pneumonia, and Salmonella enterica.56 Although
uncertain, it is tempting to hypothesize that the manipulation of
dendritic cells by P. gingivalis might contribute to the intracellu-
lar survival of the other detected species. P. gingivalis causes sub-
optimal maturation of dendritic cells and modulates the effector
response from a T helper 1 (Th1)-biased to a Th2-biased
response, which may have local consequences in periodontitis.
This is because the Th1 response directs effective cell-mediated
immunity against periodontal bacteria.57 However, this notion
does not represent a consensus given the overall uncertainty
regarding the precise roles of T helper subsets in periodontal dis-
ease pathogenesis.58,59

As alluded to above, P. gingivalis may manipulate the adaptive
immune response, although it has not been conclusively deter-
mined whether it can directly subvert lymphocytes. A microarray
analysis in mice systemically exposed to P. gingivalis revealed a
predominant downregulatory effect on the expression of immune
response-related genes in CD4C and CD8C T cells.60 A more
recent study by an independent group provided a possible mech-
anism by which P. gingivalis may subvert T cell function61:
Upon systemic injection in mice, P. gingivalis causes the produc-
tion of high levels of IL-10 by CD11bC cells and CD4C as well
as CD8C T cells. IL-10, in turn, potently inhibits IFN-g produc-
tion by CD8C T cells and CD4C Th1 cells,61 which arguably
(see above) mediate protective cell-mediated immunity against
periodontal bacteria.62

Community-wide effects
P. gingivalis is unmistakably adept at intercepting host

immune function for its own benefit, but, as alluded to above,
the surrounding bacterial community can also benefit. To be pre-
cise, only those species that can both endure and exploit the
inflammatory environment can really take advantage of P.

gingivalis’ company. Many of these species behave as pathobionts
that further exacerbate inflammatory tissue destruction.16,63

Other bacterial species may be outcompeted and disappear from
the escalating inflammatory environment. Consistent with the
requirement of intact C5aR signaling for successful evasion of
neutrophil killing by P. gingivalis in vitro, the organism fails to
colonize the periodontium of C5aR-deficient mice, whereas local
treatment of P. gingivalis-colonized mice with a C5aR antagonist
essentially eliminates P. gingivalis, reverses dysbiosis, and inhibits
development of periodontitis.10,64 The C5aR-dependent evasive
mechanism, as established in vitro, strictly requires a crosstalk
with TLR2 and activation of downstream PI3K signaling; consis-
tently, local inhibition of TLR2 or PI3K in the periodontium of
P. gingivalis-colonized mice similarly leads to near elimination of
this keystone pathogen and counteracts its earlier effect to
increase the total microbial load.26 It should be noted, however,
that additional cell types in the periodontal environment also
express the implicated molecules (C5aR, TLR2, and PI3K); their
inhibition, therefore, in cells other than neutrophils might con-
tribute to effects on P. gingivalis and the dysbiotic microbiota.
For instance, P. gingivalis induces and exploits PI3K signaling
also in gingival epithelial cells, where it inhibits apoptosis in a
PI3K-dependent mode to promote its intracellular persistence.65

In contrast to the dysbiotic effects of wild-type P. gingivalis, oral
inoculation of mice with a gingipain-deficient mutant that can-
not generate C5a has no influence on the microbiota.26 Addi-
tional P. gingivalis virulence factors, such as the LPS lipid A
moiety, can also cause alterations to the microbiota composition
and bone loss in animal models of periodontal disease.53 Indeed,
in contrast to wild-type P. gingivalis, mutant strains that are
unable to modify the lipid A moiety fail to colonize the periodon-
tal tissue in a rabbit model of periodontitis.53

Conclusion

Decades of research have identified a plethora of virulence fac-
tors of P. gingivalis, some of which are shown in Table 1. How-
ever, only recently have we started to understand how P.
gingivalis integrates its virulence properties into the collective
pathogenicity of the oral polymicrobial community. The emerg-
ing role of P. gingivalis involves the subversion of the host
immune response in ways that enhance the fitness of the commu-
nity in a nutritionally favorable inflammatory environment. It
should be noted, however, that the presence of P. gingivalis does
not necessarily prompt a pathological transition toward peri-
odontal disease; rather, this bacterium signifies a risk factor for
disease.2,66 Indeed, periodontally healthy individuals may also
harbor P. gingivalis albeit with reduced frequency relative to peri-
odontitis patients.3,67 The most likely explanations, which are
not mutually exclusive, involve changes in the status of the bacte-
rium or the host. For instance, there is considerable strain and
virulence diversity within the population structure of P. gingivalis
and, as alluded to above, at least some of its key virulence factors
(e.g.,, gingipains and lipid A phosphatases) are regulated by local
environmental conditions that are likely different among
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different individuals.68 From a broader point of view, a suscepti-
ble host is necessary for the development of periodontitis as
implied by cases of individuals who do not develop periodontitis
despite considerable biofilm accumulation at dentogingival
sites.69,70 In this context, there might be individuals who can
resist the capacity of P. gingivalis to convert a symbiotic micro-
biota into a dysbiotic one by virtue of their intrinsic immune sta-
tus (e.g., alterations in signaling pathways required for immune
subversion by P. gingivalis). Although this review focused on the
manipulation of leukocytes by P. gingivalis, it should be noted
that the capacity of this pathogen to subvert additional aspects of
host immunity and homeostasis (e.g.,, gingival epithelial cells,
complement, antimicrobial molecules) is also important and the
reader is referred to other reviews.71-74 Moreover, it should be
noted that P. gingivalis may additionally influence the periodon-
tal biofilm also through host-independent effects; for instance, its
gingipains were shown to qualitatively and quantitatively affect

the composition of polymicrobial biofilms in vitro.75 The eluci-
dation of mechanisms by which P. gingivalis promotes dysbiosis
has important translational implications. In this regard, host-
modulation strategies aiming to block receptors or signaling
pathways by which P. gingivalis elevates the pathogenicity of the
dysbiotic microbial community may offer promising options for
the treatment of human periodontitis.
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