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Purpose: To test patients from southern India for the presence of mutations that most commonly cause Leber congenital
amaurosis (LCA) in northern America.
Methods: A review of the literature identified 177 unique LCA causing mutations in eight different genes: aryl
hydrocarbon receptor interacting protein-like 1 (AIPL1), crumbs homolog 1 (CRB1), cone-rod homeobox (CRX),
guanylate cyclase 2D (GUCY2D), nephronophthisis 6 (NPHP6), retinol dehydrogenase 12 (RDH12), retinal pigment
epithelium-specific protein 65 kDa (RPE65), and retinitis pigmentosa GTPase regulator interacting protein 1
(RPGRIP1). Allele-specific ligation assay and bidirectional sequencing were used to test 38 unrelated LCA patients from
southern India for 104 of these mutations, which contribute to more than 30% of the LCA cases in a northern American
population.
Results: Only one participant was found to harbor one of the 104 mutations in the allele-specific assay (homozygous
RPE65 Tyr368His). A mutation that was not part of the assay (homozygous RPE65 Tyr143Asp) was incidentally detected
in a second patient when an equivocal signal from one allele on the assay was followed up with automated DNA
sequencing.
Conclusions: Mutations that contribute to 30% of the LCA cases in northern America were detected in only 2.6% of LCA
cases in our cohort from southern India. There were no instances of IVS26 c.2991+1655 A>G in NPHP6, the most
commonly detected mutation in LCA. These data suggest that LCA in India is caused primarily by a different set of
mutations in the same genes associated with disease in northern America, or by mutations in other genes that have not yet
been discovered. Therefore, mutation-specific assays developed for European and northern American cohorts may not be
suited for testing LCA patients from India or other ethnically distinct populations.

Leber congenital amaurosis (LCA; OMIM 204000) is a
term used to describe a heterogenous and typically autosomal
recessive group of inherited retinal dystrophies characterized
by: severe visual impairment at birth; normal-appearing
retina; and profoundly reduced electroretinogram. Thirteen
genes have been associated with LCA: aryl hydrocarbon
receptor interacting protein-like 1 (AIPL1) [1], crumbs
homolog 1 (CRB1) [2], cone-rod homeobox (CRX) [3],
guanylate cyclase  2D (GUCY2D; RETGC1) [4], inosine
monophosphate dehydrogenase 1 (IMPDH1) [5], Leber
congenital amaurosis 5 (LCA5) [6], lecithin retinol
acyltransferase (LRAT) [7], nephronophthisis 6 (NPHP6;
CEP290) [8], retinol dehydrogenase 12 (RDH12) [9], retinal
degeneration 3 (RD3) [10], retinal pigment epithelium-
specific protein 65 kDa (RPE65) [11], and retinitis
pigmentosa GTPase regulator interacting protein 1
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(RPGRIP1) [12], tubby like protein 1 (TULP1) [13,14]. The
frequency of disease-associated mutations among eight of
these genes has recently been assessed in large populations of
patients, using a range of technologies [15-18]. Many of the
variations detected in these studies were only rarely observed,
but nearly 100 different variations were detected in two or
more unrelated LCA patients [18].

In one study, mutations in GUCY2D, RPE65, and CRX
were detected in LCA patients from India, although at lower
frequency than previously reported in cohorts from northern
America [19]. In another study, mutations in RPE65 were
similarly detected in a smaller proportion of LCA patients
from India than in northern America [20]. Finally, a 2006
[10] study of RD3 identified a mutation in an Indian family,
but found no examples in LCA patients from northern
America. Although these studies have explored the role of
some previously discovered LCA genes in causing disease in
patients from India, no comprehensive investigation of
multiple genes has been performed on this population. We set
out to determine the frequencies of mutations associated with
LCA in the Indian population by testing 38 unrelated LCA
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patients from India for 104 previously identified mutations in
eight genes. In a 2007 study [18] of 642 northern American
LCA patients, 49 of these 104 mutations cumulatively
contributed to more than 30% of LCA cases.

METHODS
The study received approval from the Ethical Review Board
of Aravind Eye Care System in India, and the Institutional
Review Board of the University of Iowa (Iowa City, IA).
Informed consent was obtained from all participants. Patients
were examined at the Aravind Eye Hospital (Madurai, India),
a regional facility serving a large area of southern India. As
such, patients and controls recruited for this study represent
an unselected sampling of the South Indian population. A total
of 41 unrelated individuals were enrolled in this study as
probands after a diagnosis of LCA. Probands were from 6
months to 12 years of age at enrollment (mean 5.0 years SD
±3.3), 24 female and 17 male, and in good health. Diagnosis
of LCA was based on the following criteria: 1) severely
reduced vision in both eyes that was recognized within two
years of birth; 2) relatively normal appearance of the retina;
3) profoundly reduced or nonrecordable ISCEV
electroretinogram; and 4) absence of symptoms that would
suggest another disease. When possible, relatives were also
assessed and included in the study for assessment of
inheritance phase. A total of 84 family members were
enrolled, this included: 74 parents (0 affected; 33 male, 41
female; mean age 32.2 years SD±7.5), and 12 siblings (2
affected, 1 female aged 2 and 1 male aged 7; 10 unaffected, 6
male, and 4 female; mean age 10.7 years SD±4.0). Although
each proband was unrelated, consanguinity was identified
from histories in the families of 34 of 41 probands (83%).
Additionally, 25 unrelated healthy individuals were used as
control study subjects.

DNA preparation: Peripheral blood (approximately
10 ml) was collected using vacutainer EDTA (EDTA) tubes
(Becton-Dickinson, Franklin Lakes, NJ), and DNA was
extracted by salt precipitation [21]. Blood samples were
obtained from 41 unrelated affected individuals with LCA.
However, the concentration of the DNA obtained from three
of these participants was inadequate for the allele-specific
ligation assay. Consequently, only 38 individuals were
studied with both the allele-specific ligation assay and
bidirectional sequencing of NPHP6, as will be described.

Allele-specific ligation assay: LCA-associated mutations
in GUCY2D, RPE65, CRB1, AIPL1, CRX, RDH12, and
RPGRIP1 have been well characterized in northern American
populations [18]. A total of 177 previously reported mutations
in these genes were identified in a review of the literature. A
multiplexed allele-specific assay was designed to detect 138
of these mutations using the SNPlex platform (Applied
Biosystems, Foster City, CA). Four of the 138 probes were
subsequently found to be benign polymorphisms [18], or
evidence for disease causing status was inconclusive

(RPGRIP1 ARG812GLN). These probes were therefore
excluded from analysis. Of the remaining 134 plausible
disease-causing alleles, technical limitations in the probe sets
meant the assay was unable to reliably detect either allele for
31 single nucleotide polymorphisms (SNPs). Consequently,
genotypic data from 103 SNPs were included in our analysis
(Table 1).

DNA sample preparation, allele-specific ligation, and
post-ligation amplification were performed in 96 well plates
according to the manufacturer’s instructions (SNPlex,
Applied Biosystems). PCR products were analyzed with a
3730 DNA sequencer and GeneMapper software (Applied
Biosystems). Allele status was initially assigned using custom
software developed at the University of Iowa, and allele
assignments were then confirmed manually. In some cases,
genotypes could not be reliably assigned because of low probe
signal strength (below 500 units for both normal and mutant
alleles). In total 51 of 3,914 genotypes (1.3%) were excluded
for this reason.

Positive results from the allele-specific assay were
verified by bidirectional sequencing of an amplimer spanning
the mutation in question. Confirmed mutations were assessed
in relatives of the probands to establish phase. Approximately
150 ng of each patient's DNA was used as template in a 30.0 µl
PCR containing the following: 3.0 µl 10X buffer (100 mM
Tris-HCl pH 8.3, 500 mM KCl, 15 mM MgCl2), 9 mM of each
dCTP, dATP, dGTP, and dTTP, 9 pmole of each primer
(Integrated DNA Technologies, Coralville, IA), and 0.9 units
of DNA polymerase (Biolase, Irvine, CA). Samples were
denatured for 5 min at 94 °C and incubated for 35 cycles under
the following conditions: 94 °C for 30 s, 57 °C for 30 s, 72 °C
for 30 s in an MJ Research DNA thermocycler (BioRad,
Waltham, MA). PCR products were purified with the
QIAquick PCR purification kit (Qiagen, Valencia, CA).
Sequencing was by dye-termination chemistry on an ABI
3730 DNA sequencer (Applied Biosystems), with subsequent
sequence analysis using Sequencher (Gene Codes
Corporation, Ann Arbor, MI).

NPHP6 IVS26 c.2991+1655 mutation screening: In the
northern American population, the single most common LCA-
associated mutation is a deletion within intron 26 of NPHP6
(IVS26 c.2991+1655). Therefore a screen of this mutation
was conducted in parallel to the SNPlex assay. The presence
or absence of the c.2991+1655 mutation in intron 26 of
NPHP6 was assessed by bidirectional sequencing of genomic
DNA from each unrelated affected individual. Only those also
studied through the SNPlex assay (n=38) were included in this
report. Reaction conditions and sequence analysis were as
described in the previous section, except annealing conditions
were as follows: 30 s, with 65 °C for the first cycle, reducing
in temperature increments over the next nine cycles to 60 °C,
followed by 25 cycles at 60 °C.

Molecular Vision 2009; 15:1781-1787 <http://www.molvis.org/molvis/v15/a188> © 2009 Molecular Vision

1782

http://www.molvis.org/molvis/v15/a188


TA
B

LE
 1

. G
EN

O
TY

PE
S F

O
R
 D

EL
IB

ER
A

TE
LY

 A
SS

ES
SE

D
 A

LL
EL

ES
.

G
en

e
M

ut
at

io
n

N
L

   
   

   
   

 M
ut

   
   

   
   

   
  G

en
e

M
ut

at
io

n
N

L
   

   
   

   
 M

ut
   

   
   

   
   

  G
en

e
M

ut
at

io
n

N
L

   
   

   
   

 M
ut

H
et

H
om

H
et

H
om

H
et

H
om

AI
PL

1
V

A
L7

1P
H

E
38

0
0

G
U

C
Y2

D
M

ET
1I

LE
38

0
0

RP
E6

5
G

LY
40

SE
R

38
0

0
M

ET
79

TH
R

37
0

0
LE

U
41

PH
E

38
0

0
A

R
G

44
G

LN
38

0
0

TR
P8

8S
TO

P
37

0
0

 
TY

R
17

3i
ns

6t
A

C
G

C
C

C
   

   
   

  3
8

0
0

G
LY

46
de

l1
G

38
0

0
C

Y
S8

9A
R

G
37

0
0

A
R

G
31

3C
Y

S
38

0
0

A
R

G
91

G
LN

38
0

0
A

LA
19

7P
R

O
38

0
0

LE
U

32
5P

R
O

37
0

0
A

R
G

91
TR

P
38

0
0

 
LY

S2
42

de
l3

A
A

G
   

   
   

   
   

 3
8

0
0

SE
R

44
8S

TO
P

38
0

0
G

LU
10

2S
TO

P
38

0
0

TR
P2

78
ST

O
P

38
0

0
A

R
G

54
0C

Y
S

38
0

0
A

R
G

12
4S

TO
P

38
0

0
LE

U
29

3P
R

O
38

0
0

A
R

G
66

0S
TO

P
38

0
0

A
LA

13
2T

H
R

37
0

0
A

R
G

30
2L

EU
38

0
0

TY
R

74
6C

Y
S

38
0

0
TH

R
16

2P
R

O
37

0
0

IV
S3

 1
G

>A
38

0
0

G
LU

75
0S

TO
P

34
0

0
A

SN
20

5d
el

2a
aC

A
38

0
0

C
RB

1
PH

E1
44

V
A

L
38

0
0

A
R

G
76

8T
R

P
38

0
0

A
R

G
23

4S
TO

P
38

0
0

TH
R

28
9M

ET
38

0
0

TH
R

83
9A

LA
38

0
0

TY
R

23
9A

SP
37

0
0

C
Y

S3
83

TY
R

38
0

0
LE

U
95

4P
R

O
38

0
0

V
A

L2
87

PH
E

38
0

0
C

Y
S6

81
TY

R
38

0
0

SE
R

98
1d

el
1G

38
0

0
TY

R
31

8A
SN

38
0

0
G

LU
71

0G
LN

38
0

0
C

Y
S9

84
TY

R
38

0
0

C
Y

S3
30

TY
R

38
0

0
M

ET
74

1T
H

R
38

0
0

M
ET

10
09

LE
U

38
0

0
LE

U
34

1S
ER

36
0

0
 

PR
O

74
8d

el
3c

C
A

T 
   

   
   

   
  3

8
0

0
H

IS
10

19
PR

O
38

0
0

A
LA

36
0P

R
O

38
0

0
A

R
G

76
4C

Y
S

38
0

0
A

R
G

10
29

SE
R

38
0

0
TY

R
36

8H
IS

37
0

1
LY

S8
01

ST
O

P
38

0
0

G
LN

10
36

ST
O

P
38

0
0

A
LA

39
3G

LU
38

0
0

G
LY

82
7S

TO
P

38
0

0
IV

S9
–2

T>
A

38
0

0
G

LU
41

7G
LN

38
0

0
IL

E8
52

TH
R

38
0

0
IV

S1
6–

4A
>T

33
   

   
   

  0
   

   
   

  0
TR

P4
60

C
Y

S
38

0
0

A
SN

87
1i

ns
1a

a T
34

0
0

N
PH

P6
IV

S2
6 

c.
29

91
+1

65
5

38
   

   
   

  0
   

   
   

  0
G

LU
46

2S
TO

P
38

0
0

C
Y

S8
96

ST
O

P
38

0
0

RD
H

12
TH

R
49

M
ET

38
   

   
   

  0
   

   
   

  0
V

A
L4

73
A

SP
38

0
0

SE
R

10
25

IL
E

38
0

0
LE

U
99

IL
E

38
   

   
   

  0
   

   
   

  0
G

LY
52

8V
A

L
38

0
0

IL
E1

10
0A

R
G

38
0

0
G

LY
12

7S
TO

P
38

   
   

   
  0

   
   

   
  0

RP
G

RI
P1

A
SP

24
8H

IS
38

0
0

LE
U

11
07

A
R

G
38

0
0

H
IS

15
1A

SP
38

   
   

   
  0

   
   

   
  0

 
SE

R
50

2i
ns

4t
cT

G
TC

   
   

   
   

  3
8

0
0

LE
U

11
07

PR
O

35
0

0
SE

R
17

5P
R

O
37

0
0

A
R

G
58

0G
LY

36
0

0
TR

P1
29

3S
TO

P
38

0
0

TY
R

19
4S

TO
P

35
0

0
G

LY
74

6G
LU

38
0

0
A

SN
13

17
H

IS
38

0
0

A
LA

20
6A

SP
38

0
0

LE
U

85
6i

ns
2c

TT
38

0
0

C
Y

S1
32

1G
LY

35
0

0
TY

R
22

6C
Y

S
38

0
0

A
SP

87
7G

LY
38

0
0

G
LU

13
30

de
l1

G
37

0
0

   
  P

R
O

23
0A

LA
   

   
   

   
   

   
 3

8
0

0
 

G
LU

12
79

de
l3

G
A

G
   

   
   

32
0

0
IV

S1
0–

1G
>T

38
0

0
 

A
LA

26
9d

el
5C

C
C

TG
   

   
   

   
 3

8
0

0
IV

S8
–3

A
>G

37
0

0
C

RX
G

LU
17

3d
el

1G
38

0
0

IV
S5

–1
G

>A
38

0
0

IV
S1

5–
1G

>A
38

0
0

V
A

L1
80

de
l1

G
38

0
0

IV
S1

6–
1G

>A
38

0
0

TY
R

19
1d

el
1T

38
0

0
TY

R
19

5S
TO

P
35

0
0

G
LY

21
7d

el
1G

35
0

0

Th
e 

pr
es

en
ce

 o
r a

bs
en

ce
 o

f L
C

A
-c

au
si

ng
 a

lle
le

s 
as

 a
ss

es
se

d 
by

 S
N

Pl
ex

 a
lle

le
 s

pe
ci

fic
 li

ga
tio

n 
as

sa
y 

an
d 

bi
di

re
ct

io
na

l s
eq

ue
nc

in
g 

(N
PH

P6
 IV

S2
6 

c.
29

91
+1

65
5

on
ly

) a
re

 sh
ow

n 
by

 g
en

e.
 F

or
 e

ac
h 

al
le

le
 a

ss
es

se
d,

 th
e 

nu
m

be
r o

f p
ro

ba
nd

 sa
m

pl
es

 id
en

tif
ie

d 
as

 h
om

oz
yg

ou
s n

or
m

al
 (N

L)
, h

et
er

oz
yg

ou
s f

or
 a

 d
is

ea
se

 c
au

si
ng

 a
lle

le
(M

ut
 - 

H
et

) o
r h

om
oz

yg
ou

s f
or

 a
 d

is
ea

se
 c

au
si

ng
 a

lle
le

 (M
ut

 - 
H

om
o)

 a
re

 sh
ow

n.
 A

ny
 d

is
cr

ep
an

cy
 b

et
w

ee
n 

th
e 

su
m

 o
f t

he
se

 n
um

be
rs

 a
nd

 th
e 

38
 sa

m
pl

es
 a

ss
ay

ed
is

 d
ue

 to
 fa

ile
d 

al
le

le
 c

al
ls

.

Molecular Vision 2009; 15:1781-1787 <http://www.molvis.org/molvis/v15/a188> © 2009 Molecular Vision

1783

http://www.molvis.org/molvis/v15/a188


RESULTS
The presence or absence of 103 LCA-causing mutations was
successfully assayed with an allele-specific ligation assay
applied to 38 patients with LCA from southern India.
Genotype was determined in 3,755 of 3,914 tests, giving a
sensitivity of 95.9% for these alleles (Table 1; the 104th allele
was assayed only by bidirectional sequencing, please see
paragraph referring to NPHP6 below). Of these disease-
causing mutations previously found in the northern American
population, only one example was identified in the cohort
from South India.

Patient ILCA-65–1 was homozygous for the mutation
(Tyr368His TAT>CAT) in RPE65 (Figure 1). This patient
presented at the Aravind Eye Institute at 3 years of age with
a history of poor vision. On examination, visual acuity was
20/80 (6/24) in the right eye and 20/200 (6/60) in the left eye.
Both dark-adapted scotopic and light-adapted photopic
electroretinograms were nonrecordable. At age 9, pigmentary
changes were observed in the midperiphery of the the child’s
fundus. Unaffected parents and an affected sibling were
available for study. The affected sibling was examined at 2
years of age and had visual acuities of 20/120 (6/36) in the
right eye and 20/160 (6/48) in the left eye, extinguished
electroretinogram responses, and pigmentary retinopathy.
The presence of this mutation was confirmed with
bidirectional DNA sequencing and the phase established in
available samples from relatives. Both unaffected parents
were found to carry a heterozygous Tyr368His mutation,
while the affected sibling was homozygous for the Tyr368His
mutation.

In one instance, a mutation detected by the allele-specific
assay was not confirmed by subsequent DNA sequencing. A
Glu102STOP mutation in the RPE65 gene of one patient
(ILCA-100–1) was suggested by the allele-specific assay.
However, DNA sequencing showed this to be a false positive,
and identified a different RPE65 mutation that was not
included on our allele-specific assay (a homozygous
Tyr143Asp TAC>GAC; Figure 2). Patient ILCA-100–1 was
first presented at the Aravind Eye Institute at 4 months of age
with the mother’s complaint that the infant was not fixating
on the her face. The patient was full term at birth, with normal
delivery and no remarkable antenatal or perinatal problems.
At 3 years of age, the patient’s examination was consistent
with LCA: severe visual impairment with nonrecordable
electroretinogram in both eyes, normal anterior segment, and
abnormal pigmentation in all four quadrants of the fundus with
mild temporal pallor of the discs in both eyes. At age 4, on a
recent follow-up, the subject was found to have a visual acuity
of 20/120 (6/36) with both eyes open, and has achieved
otherwise normal developmental milestones. Again, family
history identified consanguinity, and both unaffected parents
were found to be heterozygous for the Tyr143Asp mutation.

The same cohort of 38 LCA patients were tested for the
c.2991+1655 A>G mutation in intron 26 of NPHP6 with
bidirectional DNA sequencing. No instances of this mutation
were detected.

DISCUSSION
LCA is a heterogeneous condition that is responsible for
severe vision loss at birth. In the past 10 years great progress
has been made in identifying the genes that are responsible for
this condition. Mutations in the eight genes we studied in the
South Indian population account for 64% of LCA in the
United States [18].

In the current study, we explored the role of previously
discovered LCA mutations in a cohort of patients from
southern India by testing for the presence of 104 previously
reported mutations in eight LCA genes. While this particular
set of mutations has been associated with roughly 30% of LCA
cases in prior studies of patients from northern America, only
one proband in the cohort from southern India (ILCA-65–1)
was found to carry one of these 104 mutations previously
associated with LCA.

Figure 1. Clinical and molecular data for patient ILCA-65–1 and
family. The proband first presented for ophthalmic examination at 3
years of age. A: There were no recordable responses to light in the
electroretinogram. Examples shown are from the left eye for a dark-
adapted combined response and a light-adapted photopic response.
Arrowhead points to the timing of the 10-ms bright light pulse. B:
The family tree shows the proband (filled circle with arrow) and a
sibling as clinically affected and both parents as unaffected. C:
Bidirectional sequencing showed that the RPE65 Tyr368His
TAT>CAT mutation was homozygous in the affected proband (S1)
and affected sibling (S3), and was heterozygous in the mother (M)
and father (F). Reverse strand sequence around RPE65 Tyr368
(caNatct) is shown against an ethnic unrelated and unaffected control
normal (NL).
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Our SNPlex assay incidentally detected a plausible
disease-causing mutation in the RPE65 gene that was not one
of the 103 alleles included in the original assay design. A
homozygous Tyr143Asp mutation was identified in subject
ILCA-100–1. Segregation of the mutation with disease in the
family supports the Tyr143Asp mutation as the cause of
disease in this subject. Although we had not previously
observed Tyr143Asp in LCA, we have observed Tyr143Asp
as one of the disease-causing mutations in a patient
categorized as having early onset retinitis pigmentosa. The
relatively good vision for an LCA patient and early
pigmentary changes of ILCA-100–1 illustrate the potential for
overlap in these clinical categories when the cause of disease
can be traced to mutations in the same gene.

The lower prevalence of mutations in the cohort of
patients from India is likely due in part to the high rate of novel
mutations  that  are   detected  in  LCA  genes.  In  a  prior 
study,  77%  of   disease-causing  variations   that   were 
detected  were  only  observed  once  [18]. Consequently,  it
is   plausible that   as   for   patient   ILCA-100–1,   many
patients in our study have novel  mutations   in   GUCY2D,
RPE65      CRB1, AIPL1, CRX, RDH12, RPGRIP, or

Figure 2. Clinical and molecular data for patient ILCA-100–1 and
family. The proband first presented for ophthalmic examination at 4
months of age. When the proband was 3 years old (A), there were no
recordable responses to light in the electroretinogram. Examples
shown are from the left eye for a dark-adapted combined response
and a light-adapted photopic response. Arrowhead marks the timing
of the 10-ms bright light pulse. B: The family tree shows the proband
(filled circle with arrow) as clinically affected, and both parents are
unaffected. C: Bidirectional sequencing showed that the RPE65
Tyr143Asp TAC>GAC mutation was homozygous in the affected
proband (P) and was heterozygous in the mother (M) and father (F).
Reverse strand sequence around RPE65 Tyr143 (atNacta) is shown
against an ethnic unrelated and unaffected control normal (NL).

NPHP6 that were not included in the mutation-specific assay.
Alternatively, it is possible that a large proportion of LCA
cases from India are caused by mutations in novel or other
known LCA genes (LCA5 or RD3) [10,22]. Thus, our Indian
cohort of patients may be a useful resource for identifying
additional novel LCA genes or new mutations in known LCA
genes. Furthermore, our research suggests that mutation-
specific assays that are designed from studies of LCA patients
from one ethnic population are not the most efficient approach
for studying patients from different populations and ethnic
backgrounds.

The value of a detailed molecular screen of LCA patients
from the Indian population lies in genetic counseling,
improved diagnosis and prognosis, the support this gives to
gene discovery efforts, and, more recently, in identifying
patients for treatment. In both families with a molecular
diagnosis from this study, the mutation was in RPE65, so the
recent success of gene therapy for RPE65 presents a very real
hope of treatment in the future that will improve the vision of
these patients [23-25].
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