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Background
Recent studies indicate that the immune system under-
goes gradual age-related shifts in cell populations, which

Abstract

Background: Despite several reports on age-related phenotypic changes of the immune system's
cells, studies that use a multipoint age comparison between the specific and innate immune cell
populations of prototypical Thl- and Th2-type polarized mouse strains are still lacking.

Results: Using a multipoint age comparison approach, cells from the two major immune system
compartments, peripheral blood and spleen, and flow cytometry analysis, we found several principal
differences in T cell and professional antigen presenting cell (APC) populations originating from a
prototypical T helper (Th) | mouse strain, C57BL/6, and a prototypical Th2 strain, BALB/c. For
example, regardless of age, there were strain differences in both peripheral blood mononuclear
cells (PBMC) and spleens in the proportion of CD4+ (higher in the BALB/c strain), CD8+ T cells
and CDI1Ib+/CDI Ict+ APC (greater in C57BL/6 mice). Other differences were present only in
PBMC (MHC class Il + and CD 19+ were greater in C57BL/6 mice) or differences were evident in
the spleens but not in circulation (CD3+ T cells were greater in C57BL/6 mice). There were
populations of cells that increased with age in PBMC and spleens of both strains (MHC class II+),
decreased in the periphery and spleens of both strains (CD| Ib+) or did not change in the PBMC
and spleens of both strains (CD8+). We also found strain and age differences in the distribution of
naive and memory/activated splenic T cells, e.g., BALB/c mice had more memory/activated and less
naive CD8+ and CD4+ T cells and the C57BL/6 mice.

Conclusion: Our data provide important information on the principal differences, within the
context of age, in T cell and professional APC populations between the prototypical Thl mouse
strain C57BL/6 and the prototypical Th2 strain BALB/c. Although the age-related changes that
occur may be rather subtle, they may be very relevant in conditions of disease and stress.
Importantly, our data indicate that age and strain should be considered in concert in the selection
of appropriate mouse models for immunological research.
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lead to functional changes of the immune responses. The
compensatory modulations, including lymphocyte altera-
tions, were recently defined as immunosenescence. This is
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a complex process of multiple reorganizational and devel-
opmentally regulated changes rather than a simple unidi-
rectional decline in all immune functions [1,2].
Nevertheless, for the most part, the activity of the immune
system declines with age, with the most pronounced alter-
ations found in cell-mediated immunity (CMI), especially
in the T cell functions, which are related to thymic involu-
tion [3-8]. Although decline in adaptive immunity repre-
sents a major problem for the aged, evidence accumulated
within the last decade indicates that aging also has a pro-
found impact on innate immunity [9].

Despite the maintenance of normal CD3+ cell numbers
with age, there is a considerable decrease in CD4- and
CD8-mediated responses [10,11]. One major reason for
CMI decreases with age is the substantial reduction in the
representation of naive T lymphocytes with a concomitant
increase in memory T cells. This is a consequence of com-
pensatory homeostatic proliferation in response to the
reduced numbers of naive cells and the influence of
cumulative exposure to pathogens and environmental
antigens [12,13]. A second key age-related change is the
alteration of the activation potential of memory T cells
[14,15], leading to hyporesponsivity [16]. Also, there is an
increased oligoclonal expansion of nontransformed T cell
populations [17,18].

Additional shifts have also been documented in other
cells of the ageing immune system, such as changes in the
levels of CD4+ cells and proportion of CD4+/CD8+ pop-
ulations in peripheral tissues [19,20]. The most consistent
finding associated with a repressed immune response has
been a decrease in the proportion of CD4+ T cells [21,8].
The appearance of multiple CD8+ T cell clonal expansions
is one of the most dramatic qualitative changes in the
memory cell population during ageing [22].

There is an agreement that ageing results in perturbation
of peripheral blood B cells in two important ways. First,
the number of newly made B cells that migrate to the
spleen from the bone marrow is reduced [23,24]. Second,
there is an accumulation of B lineage cells in the splenic
compartments [23,24]. Many of these effects may be a
consequence of functional defects intrinsic to the B cells
[25,26], but others may be secondary to age-related
changes in CD4+ T cells. Indeed, aged CD4+ T cells are
less efficient at inducing germinal center formation and
promoting somatic hypermutation [27,25]. This possibly
reflects a shift from T helper 1 cell (Th1) to Th2-type
cytokine patterns associated with age in mice and humans
[28]. The factors that determine whether a proliferating
CD4+ T cell in mice and humans will differentiate into a
Th1 or Th2 cell are not fully understood. However, the
consequences of inducing Th1 versus Th2 profiles are pro-
found: the selective production of Th1 cells leads to CMI,
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whereas the production of predominantly Th2 cells pro-
vides humoral immunity. Recent studies have shown that
the interaction of the most powerful APC, dendritic cells
(DC), directly with pathogens through toll-like receptor
(TLR)-dependent mechanisms or with innate lym-
phocytes represents a major control mechanism for adap-
tive immunity, including Th polarization [29-31].

Age-related shifts in cell population profiles may lead to a
different humoral or cellular immune response bias in
mice. In addition to age, genetics play a major role in the
shaping of the immune response. Thus, the CD4/CD8
ratio, B cell apoptosis, and pre-B cell expansion are under
genetic control in mice and humans [32-34]. Significant
strain differences have been found in hematopoietic pro-
genitor cell functions between B6, BALB and D2 mice [33-
35]. Multiple reports suggest a preferential bias for the
C57BL/6 mouse strain to develop Thl-type response,
whereas the BALB/c strain is biased towards a Th2-type
cytokine polarization to some infectious agents, including
Leishmania major, Pseudomonas aeruginosa, and Porphyro-
manas gingivalis [36-40].

Previous studies have focused on the genetic basis of
strain differences in peripheral blood cell populations
[41]. However, the other major component of the
immune system, the spleen, has been overlooked. Moreo-
ver, effects of ageing on APC have not received much
attention. Despite several reports on age-related changes
in the cells of the immune system (discussed in [2]), com-
prehensive studies that use a multipoint age comparison
between the leukocyte populations of mouse strains that
develop different immune responses, are still lacking.
Hence, our objective was to perform a detailed side-by-
side comparison of the age-related changes in peripheral
blood and splenic T cell and professional APC popula-
tions in prototypical Th1 and Th2 mouse strains, C57BL/
6 and BALB/c, respectively.

Results

Body and spleen weight changes with age in C57BL/6 and
BALBI/c mouse strains

There were no strain differences in 1- and 3-month-old
animals and, as expected, animals of both strains gained
weight with age. However, C57BL/6 mice gained weight
faster but plateaued earlier than their BALB/c counter-
parts. As a result, 5 and 10 month old C57BL/6 mice were
heavier (P < 0.05) than BALB/c mice (30.4 + 0.95 and 31.1
+ 0.42 g, versus 27.4 + 0.83 and 30.5 + 0.20 g, respec-
tively). At the age of 18 months, due to the continued rise
of body weight of the BALB/c strain (34.3 + 0.47 g) and
the plateau of the C57BL/6 strain (31.8 + 0.97 g), the
BALB/c mice were heavier (P < 0.05).
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Spleens of BALB/c were consistently heavier than the
C57BL/6 mice's spleens. For example, 3- and 5-month-old
mice's spleens weighted 3.6 + 0.14 vs. 2.2 + 0.09 and 3.0
+0.17 vs. 1.8 + 0.17 g/kg BW; BALB/c vs. C57BL/6, 3- and
5-month olds, respectively. With age, relative spleen
weight decreased in both strains with the most prominent
decline occurring in the C57BL/6 mice from 1 to 3
months (27% decrease: from 3.0 + 0.21 to 2.2 + 0.09 g/kg
BW).

Changes on the number of PBMC and splenocytes in
C57BL/6 and BALBIc mice at selected ages

In addition to all phenotypic differences due to strain and
age (described below), we also evaluated the effect of
strain on the number of PBMC and splenocytes in 3- and
5-month old mice. In accord with the spleen weight data,
BALB/c mice had more splenocytes than C57BL/6 mice. In
both strains, a moderate decrease in the number of splen-
ocytes was observed as the animals aged from 3 to 5
months (1.8 x 107vs. 0.9 x 107and 1.6 x 107 vs. 0.8 x 107;
cells/spleen, BALB/c vs. C57BL/6, 3- and 5-month old
mice, respectively). In circulation, the difference between
the two strains was present in both 3- and 5-month old
mice. In addition, a moderate increase in the number of
circulating PBMC was observed in both strains from 3 to
5 months of age (5.1 x 10°vs. 3.5 x 10°and 6.0 x 10°vs.
4.2 x 106; cells/ml, BALB/c vs. C57BL/6, 3- and 5-month
old mice, respectively).

Effects of age and strain on the cells of adaptive and
innate immunity

B cell-specific molecules expression

Percentage of peripheral blood B cells expressing CD19+
cells increased with age in both strains, peaking in 18-
month-old animals (Fig. 1A). There was a decline at 3 and
5 months of age, which was significant only in the BALB/
¢ strain PBMC (Fig. 1A). Overall, the PBMC of C57BL/6
mice had more CD19+ B cells than did BALB/c PBMC
(Fig. 1A). However, in the spleens, due to differences in
the kinetics of CD19 alterations with age, the % of CD19+
B cells in the BALB/c strain was significantly higher than
in the C57BL/6 strain at 3 months of age (Fig. 1B).

T cell phenotypes

We did not find any significant age- or strain-related dif-
ferences in the levels of CD3-bearing T cells in the periph-
eral blood. Although the percentage of CD3+ cells
fluctuated with age in both strains, the fluctuations were
non-significant and usually occurred in opposite direc-
tions (data not shown). The kinetics of CD3 expression in
spleen T cells was different from CD3 expression in
peripheral blood T cells in both strains, revealing some
strain differences. Thus, the C57BL/6 mice had higher %
of circulating CD3+ T cells than the BALB/c mice (data not
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Effects of age and strain on circulating (A) and
splenic (B) CD 19+ lymphocytes collected from male
C57BL/6 and BALB/c mice up to 18 months of age. *
Indicates strain differences within a particular age category (P
< 0.05). 2b Indicates age differences within a particular strain
(P < 0.05).

shown). CD3+ T cells declined only in 5 and 18 months
old C57BL/6 mice (data not shown).

As expected, BALB/c mice had significantly higher propor-
tions of circulating CD4+ cells than C57BL/6 mice at all
ages (Fig. 2A). There were some age-related differences in
CD4 expression in BALB/c mice T cells. At the ages of 3
and 5 months, the % of CD4+ cells was significantly
higher than the % of CD4+ cells in 1-month old BALB/c
mice (Fig. 2A). In both strains, the CD4+ T cells were the
lowest in 18-month old mice. However, the decreases in
CD4+ T cells occurred earlier and were more pronounced
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in the C57BL/6 mice (5 months of age) than in the BALB/
c strain (10 months of age, Fig. 2A). Similar to PBMC, the
% of CD4+ splenocytes was significantly higher in the
BALB/c strain than in C57BL/6 mice at all ages (Fig. 2A").
Both strains followed a similar pattern, different from the
one in PBMC: moderate decrease up to 5 months of age
(significant differences in 5-month-old animals), fol-
lowed by increase at the age of 10 months and, finally,
decline in CD4+ cell numbers in 18-month-old animals

that was more pronounced in the C57BL/6 mice (Fig.
2A").

The C57BL/6 mice had higher % of peripheral blood
CD8+ T cells than the BALB/c animals at all ages except 3-
and 5-month old mice (Fig. 2B). At these ages, CD8+ T
cells decreased in the C57BL/6 strain (Fig. 2B). The expres-
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sion pattern diverged afterwards such that 10- and 18-
month-old C57BL/6 mice had more CD8+ cells than
BALB/c mice (Fig. 2B). Again, similar to peripheral blood,
the C57BL/6 strain had higher % of CD8+ T cells in the
spleen at all age groups (Fig. 2B'). There were no striking
age-dependent changes in CD8 expression, but there was
a significant increase of CD8+ cells in 10-month-old
C57BL/6 mice and a significant decrease in the % of cyto-
toxic T cells in 5-month-old BALB/c mice (Fig. 2B").

Mainly due to the greater % of CD4+ PBMC, the prototyp-
ical Th2 mouse strain, BALB/c, had significantly greater
CD4/CDS8 ratio at all ages (Fig. 2C). Overall, the kinetics
of the CD4/CD8 ratio were similar to the kinetics of CD4+
T cells in both strains. Significant age-related drops in the
CD4/CD8 ratio occurred at the age of 10 months in the
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CD44nregllow (D) splenocytes isolated from the spleens of male C57BL/6 and BALB/c mice up to 18 months of
age. * Indicates strain differences within a particular age category (P < 0.001). 2b.cd Indicates age differences within a particular
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C57BL/6 mice PBMC and at the age of 18 months in both
strains (Fig. 2C). As expected, and similar to PBMC, the
CD4/CD8 ratio was significantly greater in the spleen of
the BALB/c strain throughout ageing (Fig. 2C). The CD4/
CD8 ratio was relatively constant at all ages in BALB/c
strain having some insignificant fluctuations, whereas the
CD4/CD8 ratio decreased beginning at the age of 5
months in the C57BL/6 animals, with the decrease being
significant at 18 months of age (Fig. 2C').

In addition to the CD4+ and CD8+ T cells, in the spleens,
we investigated the proportion of naive (CD44nreg/low) and
activated and/or memory (CD44med/high) among helper
(CD4+) and cytotoxic (CD8+) T cell populations [42-44].

The % of CD4+/CD44med/highT cells increased with age in
both strains (Fig. 3A), with the increase being more prom-
inent in the BALB/c mice. There were no strain differences
in the % of activated/memory CD4+ T cells in one-month-
old mice; beginning at three months of age, BALB/c mice
had more CD4+/CD44med/high T cells (Fig. 3A).

The percentage of naive CD4+ T cells (CD44neg/low)
declined with age in both strains, although the decline in
the BALB/c mice was more precipitous (Fig. 3B). C57BL/6
mice had significantly more CD4+/CD44neg/low T cells at
all ages (Fig. 3B).

The % of CD8+/CD44med/high cytotoxic T cells was greater
in the BALB/c mice up until 5 months of age (Fig. 3C). In
both strains, the % of CD8+/CD44med/high cytotoxic T cells
increased with age (Fig 3C).

CD8+/CD44neg/low T cells declined with age in both
mouse strains (Fig. 3D). The decrease in the BALB/c mice
continued at 18 months or age, whereas the decrease in
18-month-old C57BL/6 mice was similar to the one
observed in 10-month old C57BL/6 mice (Fig. 3D).

Molecules related to professional antigen presentation

The % of MHC class 11+ cells in peripheral blood increased
with age in the animals of both strains, peaking at 18
months (Fig. 4A). There were several age-related differ-
ences in the MHC class I1+ cells % within each strain. First,
in the C57BL/6 strain, the levels of the MHC class II-
expressing APC were fairly stable up to 10 months of age
(Fig. 4A). Second, there was a significant decrease in MHC
class 11+ cells up to 5 months of age in the BALB/c strain
(Fig. 4A). Due to the decreases of MHC class II molecules
at the ages of 3 and 5 months and the more moderate
increases at the age of 18 months in the BALB/c strain, the
% of MHC 11+ cells at these ages was lower in the BALB/c
strain than in the C57BL/6 strain (Fig. 5A).

http://www.immunityageing.com/content/5/1/1

The increases in the % of MHC class II-bearing cells in the
spleen were similar to increases in PBMC populations in
both strains but were less pronounced (Fig. 4A"). Increases
in the level of MHC class II+ cells in 5- and 18-month-old
BALB/c mice approached significance (P < 0.07), while
18-month-old C57BL/6 mice had significant increases.
The % of splenocytes expressing MHC class II was signifi-
cantly greater in 1- and 18-month-old C57BL/6 mice than
in their BALB/c counterparts, revealing a difference
between the two strains (Fig. 4A").

The proportion of CD11b+ PBMC decreased in both
strains, with 18-month-old animals having the lowest
amounts of CD11b+ lymphocytes (Fig. 4B). Some age-
related fluctuations in the % of CD11b+ were apparent in
both strains. Thus, the expression of CD11b increased in
both strains at the age of 3 months, and only in the
C57BL/6 strain at the age of 10 months (Fig. 4B). There
were age-related decreases in the % of splenocytes express-
ing CD11b molecules in both strains, with the lowest %
of CD11b+ APC being in 18-month-old mice (Fig. 4B').
There was a strain difference at this age: C57BL/6 mice
had significantly more CD11b-bearing APC than BALB/c
mice (Fig. 4B').

Variations in the % of APC-expressing CD11c molecules
were similar to the variations in CD11b in both circula-
tion and spleen (Figs. 4B, 4C, 4B' and 4C"). The % of dou-
ble-positive CD11b/c PBMC overall was significantly
greater in C57BL/6 mice than in BALB/c mice at all ages
except 5 and 18 months (Fig. 4D). Age-related fluctua-
tions in the % of CD11b/c+ cells were more prominent in
the C57BL/6 strain than in BALB/c animals (Fig. 4D). In
the spleen, the fluctuations in the % of CD11b/c cells fol-
lowed similar pattern to the fluctuations of CD11b/c cells
in the circulation, except that they declined with age in
both mouse strains, with the effect being more prominent
in the BALB/c mice (Fig. 4D'). To demonstrate that
CD11c+ and/or CD11b+/CD11c+ cells in mouse periph-
eral blood and spleens are primarily DC and their mye-
loid progenitors, we assessed the adhesion molecule
expression in CD3+ T cells and CD19+ B cells in periph-
eral blood and spleens of 3-month-old mice by using
three-color flow cytometry analysis. Both, CD11c and
CD11b markers were expressed insignificantly in CD3+ T
cells and CD19+ B cells compared to the expression levels
in total PBMC or splenic populations (Fig. 5C).

Discussion

Compared to the T cell compartment, i.e., [41,45], the
effects of ageing on professional APC such as B cells,
monocytes/macrophages, and dendritic cells (DC) have
received much less attention. There is evidence that
monocytes and macrophages from aged mice have a
reduced functional potential [46,47]. Very little is known
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Effects of age and strain on MHCII+, CDI1b+, CDIlc+, and CDI 1b+/CDI | c+ positive lymphocytes in circula-
tion (A, B, C, and D, respectively) and in the spleen (A', B', C' and D', respectively) of male C57BL/6 and BALB/
c mice up to 18 months of age. * Indicates strain differences within a particular age category (P < 0.05). 2b Indicates age dif-
ferences within a particular strain (P < 0.05). "Indicates P-value of 0.07 (BALB/c).
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Flow Cytometry analysis of cell-specific surface molecule expression on peripheral blood and spleen mononu-
clear cells in C57BL/6 and BALB/c male mice. Shown on the figure are PBMC (A) and spleen (B) mononuclear cells from
randomly chosen mice regardless of age. Cells were separated, stained with directly conjugated mAbs to several cell-specific
markers and isotype-matching controls, and gated as low FSC and SSC populations. The MHC class Il, CD 19 and CD3 staining
was analyzed by using single histogram statistics (columns |, 2, 3, respectively). Two-color analysis for the CD4/CD8, CDI Ib/
CD I c staining was performed by using dot plots with quadrant statistics (columns 4 and 5, respectively). Analysis of the CD4/
CD44 and CD8/CD44 staining in the spleen was performed by using dot plots with multiple gate statistics (columns 6 and 7,
respectively). The numbers (1, 2, 3, 4 on the dot plots in columns 6 and 7 represent the indicated CD4+ (column 6) and CD8+
(column 7) CD44high, CD44med, CD44low, CD44ne¢ T cell sub-populations, respectively. For statistical analysis, as indicated on
(B), the CD44high and CD44med sub-populations were combined into CD44med/high (activated/memory) and, similarly, the
CD44low and CD44"eg sub-populations were combined into CD44neg/low (naive) T cell populations. (C) To eliminate the contri-
bution of B and T cells to the % of CD|1 Ib/c cells, a three-color analysis (CD19, CDI1Ib and CDIIc; CD3, CDI Ib, CDI Ic; for
B- and T-cell, respectively) was performed and analyzed by dot plots with quadrant statistics.
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about DC changes with age, although their number in the
epidermis decreases with age [48,49]. Studies of age-
related effects on B cell-mediated immunity are also not as
advanced as those of the T cell immune response [2].

Similar to [50], we observed that the expression of MHC
antigens on splenic lymphocytes in C57BL/6 mice
increases with age. Our data indicated that C57BL/6 ani-
mals have higher proportion of B cells at all ages than
BALB/c mice. Similarly, previous reports suggests that the
relative proportion of B220+ cells is high in C57BL/6 and
intermediate in BALB/c mouse strains [8,51]. We also
found that the % of CD19+ B cells increases with age in
peripheral blood of both strains, while the increases in
splenic B cells are prominent in C57BL/6 strain only. This
finding, at least for PBMC, differs from earlier reports sug-
gesting that the number of peripheral blood B lym-
phocytes (B220+) in C57BL/6 and BALB/c mice does not
change with age [8,52]. This difference may be due to the
different markers used to identify B cells (CD19 versus
B220) or to the different sex of the animals (all males used
in our study; females in [52]; males and females in [8]).

Our comparison of the kinetics of MHC class II, CD19,
and the adhesion molecules CD11b and CD11c expressed
on professional APC indicated that, except at the age of
one month, C57BL/6 mice had higher % of CD19+ cells.
At the same time, we did not observe any strain-related
differences in the proportion of CD11b+ or CD11c+ APC
in the same age groups. Our data that peripheral blood T
and B cells virtually do not express CD11b or/and CD11c
are in agreement with the report that the population of
peripheral blood CD11b+/CD11c+ APC are predomi-
nantly DC [53]. The proportion of CD11b+/CD11c+ APC
was significantly greater in 1, 3, and 10 months old
C57BL/6 mice than in the BALB/c mice. As previously
reported, in general, the proportion of CD11b+/CD11c+
DC in peripheral blood is relatively small [53]. Therefore,
increases in the % of DC could not contribute dramati-
cally to the increases in the % of cells expressing MHC
class IT molecules. Based on the kinetics of MHC class II,
CD19, CD11b and CD11c markers in aged animals, we
suggest that strain-related differences in MHC class I+
cells were most likely due to the differences in the number
of CD11b+/CD11c+ DC in 1 month old mice, CD19+ B
cells and DC at the age of 3 months, and CD19+ B cells in
5- and 18-month-old animals.

Unlike in PBMC populations, the spleen cell expression of
MHC class I, but not of CD19, was significantly higher in
1-month old C57BL/6 mice. At the same time we did not
find any strain-related differences in the % of CD11b+,
CD11c+ or CD11b+/CD11c+ APC at this age. Most likely,
the CD11b-/CD11c- DC populations contribute to the
strain differences at this age. Our data suggest that 18-

http://www.immunityageing.com/content/5/1/1

month-old mice from both strains did not differ in the %
of CD19+ B cells. Interestingly, we found significant strain
differences in the % of CD11b+, CD11c+ and CD11b+/
CD11c+APCin 18 months old animals. This suggests that
the strain difference in the % of MHC class II + APC at the
age of 18 months was due to the differences in the % of
monocytes and DC [53,54].

In contrast to previously reported data that T cell number
increases dramatically with age in mice bred by a cross
between CB6F1 mothers and C3D2F1 fathers [55], we
conclude that age does not affect the % of total T cells in
mouse PBMC from the strains used here. However, differ-
ences were evident in splenic T cell populations. C57BL/6
mice had a greater CD3+ T cell % than the BALB/c strain
up to the age of 10 months, followed by a substantial
decline up to the age of 18 months, resulting in signifi-
cantly lower % of T cells than their BALB/c counterparts.
These results might be explained by the age-related differ-
ential accumulation of T cell clones in the spleens of mice
from different strains.

Our data are in accord with earlier reports that the proto-
typical Th2-type strain BALB/c has a greater % of CD4-
bearing cells. We observed that at all age groups BALB/c
mice have higher % of CD4+ cells than C57BL/6 strain in
both PBMC and spleen [8,51]. Similarly, our finding that
the % of CD4+ cells decreases with age in peripheral
blood regardless of strain agrees with previous reports
[17,52,55].

The decline of CD4+ cells with age that occurs in circula-
tion was not observed in the spleens of BALB/c mice. Sim-
ilar, other groups have found little no or change with age
in CD4+ cell proportions in spleen of several inbred
mouse strains, including BALB/c [50,56-58]. Yet, in other
mouse strains, including C57BL/6, the splenic CD4+ T
cells decreased with age [17,52,59], which is what we
observed here, albeit of smaller magnitude than in the
blood. Thus, CD4+ T cell clonal expansion, which has
been described in previous reports apparently occurs with
age only in the spleens of the prototypical Th2-type strain
BALB/c [17,18].

Peripheral blood CD8+ T cells fluctuated with age in both
strains. Fluctuations were greater overall in the C57BL/6
strain, as has been previously observed [8,51]. Our find-
ing that the % of CD8-bearing lymphocytes in peripheral
blood does not decrease at the age of 18 months is in
accord with previous reports [17,52,18,55]. However,
others have reported significant increases in the number
of CD8+ T cells in circulation [2,58] or moderate declines
in the number of cytotoxic T cells [8].
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In general, our results support a gradual, age-dependent
shift from naive CD44neg/low cells towards an increase in
CD44med/high cell populations, representing activated or
memory phenotypes in mice and humans
[8,28,52,55,60,61]. The data presented here are signifi-
cant regarding these earlier observations in two major
ways. First, we found strain differences in the distribution
of naive and activated and/or memory cells in splenic
CD4+ and CD8+ T cell populations; BALB/c mice had
more activated/memory T-cells and less naive T cells than
C57BL/6 mice. Second, the overall kinetics of CD4+ naive
and activated/memory phenotypes were similar between
the two strains and resembled the kinetics of their CD8+
naive and activated/memory T cells.

Overall, the strain-related phenotypic changes in the
splenic APC and T cell populations did not always corre-
late with the changes in the APC and T cells residing in
peripheral blood. There were prominent strain differences
in both PBMC and spleen populations in the % of CD4+
(higher in the BALB/c strain), CD8+ T cells (higher in
C57BL/6 mice) and CD11b+/CD11c+ APC (higher in
C57BL/6 mice). Other strain differences however, were
present only in PBMC. Namely, the differences in the % of
MHC class IT + and CD19+, which were greater overall in
the C57BL/6 strain than in BALB/c mice. Of note, the
strain difference in the % of CD3+ T cells was only evident
in the spleens but not in the peripheral blood. The C57BL/
6 strain had greater % of T cells than BALB/c mice. Because
of the differences in the composition of the peripheral
blood cells and splenocytes [28] spleen cells could not
always be used as surrogates for peripheral blood [52].

Age as a factor, influenced phenotypic changes in both
strains. There were populations of cells that increased with
age in the PBMC and spleens of both strains (i.e., MHC
class I1+), decreased in the periphery and spleens of both
strains (CD11b+) or did not change in the PBMC and
spleens of both strains (CD8+). However, in many cases
the age-related differences were genetically determined,
strongly supporting the evidence of intrinsic connection
between genetic background and ageing.

Conclusion

Taken together, our data provide important information
on the principal differences in T cell and professional APC
populations between the prototypical Th1 mouse strain
C57BL/6 and the prototypical Th2 strain BALB/c.
Although many of the age-related changes that occur may
be rather subtle and not of much consequence to animals
in normal condition, they may become very relevant in
conditions of disease and stress. This information might
foster development of new strategies to enhance the abil-
ity of the immune system to cope with infection at differ-
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ent ages within the context of a particular genetic
background.

Methods

Animals

Male BALB/c and C57BL/6 mice, 1, 3, 5, 10 (purchased
from Harlan, Indianapolis, IN), and 18 months of age
(purchased from the National Institute of Aging, NIH,
Bethesda, MD) were used in this study. Animals were
housed (up to 3/cage) on a 12 h light/dark cycle, with
water and food available ad libitum. All animal procedures
were in accordance with the Animal Welfare Act and the
Guide for the Care and Use of Laboratory Animals (NTH
publication No. 86-23) and were approved in advance by
the Institutional Animal Care and Use Committee
(IACUC) of Mississippi State University. At the designated
times, animals were sacrificed via CO, asphyxiation,
blood was obtained by a cardiac puncture and then imme-
diately transferred into 2 ml vacutainers containing citric
buffer (BD Biosciences Pharmingen, San Diego, CA). The
tubes were maintained on a rocker platform until periph-
eral blood mononuclear cells (PBMC) isolation and sub-
sequent analysis. In addition, body weights were
recorded; spleens were collected, weighed, placed in 3 ml
saline, and maintained on ice until further processing and
analysis.

Cell preparation

PBMC

Blood samples were diluted with PBS (1:15), and plasma
was removed by centrifugation. To remove red blood
cells, samples were incubated with ACK lysing buffer (Bio-
Wittaker, Walkersville, MD) for 7 min on ice. Then PBMC
were washed twice in PBS and stained with directly conju-
gated mAbs to several cell-specific markers. PBMC were
gated as low forward scatter (FSC) and low side scatter
(SSC) populations using Flow Cytometer FACS Calibur
(Becton Dickinson, San Jose, CA).

Splenocytes

Cell dissociation sieves (Sigma, St. Louis, MO) were used
to isolate spleen mononuclear cells. Following dissocia-
tion, splenocytes were incubated with ACK lysing buffer
for 7 min on ice, washed twice in PBS, and stained with
mADbs to different cell-specific markers. Spleen mononu-
clear cells were gated as described for PBMC.

Cell counting

From subset of the samples, an aliquot of the PBMC and
splenocyte cell suspensions prepared for flow cytometry
was used to determine the number of circulating PBMC
and splenocytes. This was accomplished with an elec-
tronic cell counter (Coulter Model Z1, Beckman Coulter,
Fullerton, CA) as described [62].
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Antibodies and Flow Cytometry

Fluorescein-conjugated mAbs to CD4 (H129.19), CD19
(ID3), MHC class II (28-16-85), CD11b (M1/70), phyco-
erythrin-conjugated mAbs to CD3 (17A2), CD8 (53-6.7),
CD11c (HL3), CD44 (IM7), CD4 (H129.19), Per-CP-con-
jugated mAbs to CD3 (145-2C11), CD19 (eBIOID3) and
isotype-matched controls were used. All conjugated mAbs
were purchased from PharMingen/BD Biosciences (San
Diego, CA). Isotype-matched controls were purchased
from ID Labs (Ontario, Canada). Immunofluorescent
staining was analyzed using Cell Quest Version 3.3 Soft-
ware (Becton Dickinson). The CD19, MHC class II, and
CD3 staining was analyzed by using single histogram sta-
tistics (Fig. 5A and 5B). Two-color analysis for the CD4/
CD8, CD11b/CD11c, staining was performed by using
dot plots with quadrant statistics (Fig. 5A, 5B). In the
spleen, analysis of the CD4/CD44 and CD8/CD44 stain-
ing was performed by using dot plots with multiple gates
statistics (Fig. 5B). To eliminate the contribution of B and
T cells to the % of CD11b/c cells, a three-color analysis
(CD19, CD11b and CD11¢; CD3, CD11b, CD11g¢; for B-
and T-cell, respectively) was performed by gating on
CD3+T cells and CD19+ B cells and analyzed by dot plots
with quadrant statistics (Fig 5C).

Statistical Analysis

All cell marker-specific lymphocyte sub-populations were
expressed as a percentage of the total PBMC and spleno-
cytes. Then, data was subjected to a two-way (age, strain)
analysis of variance (ANOVA). When ANOVA P-value was
< 0.05 for a main effect or an interaction, group means
were separated by Student-Newman-Keul's multiple com-
parison post hoc test.
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