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Beyond Beer’s Law: Revisiting the Lorentz-Lorenz Equation
Thomas G. Mayerhöfer*[a, b] and Jürgen Popp[a, b]

In this contribution we show how the Lorentz-Lorenz and the
Clausius-Mosotti equations are related to Beer’s law. Accord-
ingly, the linear concentration dependence of absorbance is a
consequence of neglecting the difference between the local
and the applied electric field. Additionally, it is necessary to
assume that the absorption index and the related refractive
index change is small. By connecting the Lorentz-Lorenz
equations with dispersion theory, it becomes obvious that the
oscillators are coupled via the local field. We investigate this
coupling with numerical examples and show that, as a
consequence, the integrated absorbance of a single band is in
general no longer linearly depending on the concentration. In
practice, the deviations from Beer’s law usually do not set in
before the density reaches about one tenth of that of
condensed matter. For solutions, the Lorentz-Lorenz equations
predict a strong coupling also between the oscillators of solute
and solvent. In particular, in the infrared spectral region, the
absorption coefficients are prognosticated to be much higher
due to this coupling compared to those in the gas phase.

In today’s curricula, the Lorentz-Lorenz and the Clausius-Mosotti
equations are well-known in the context of the determination
of dipole moments.[1] Their quintessence is the establishment of
a relation between the externally applied electric field and the
local electric field around a molecule, a unit cell or an atom. In
contemporary textbooks the information that the local fields
also play a major role in dispersion theory, as shown among
others by Max Planck[2] and Hendrik Antoon Lorentz,[3] is often
no longer discussed. This is of interest, because the concen-
tration dependence of absorbance, i. e. Beer’s law, can be
derived from dispersion theory.[4] In fact, the derivation of
quantities like the molar refractivity, the molar polarization and

absorbance is based on the same formalism,[5] which we will
shortly introduce in the following.

Accordingly, the macroscopic polarization~P is related to the
microscopic dipole moment~p by:

~P ¼ N �~p (1)

In Equation (1), N is the number of dipole moments per unit
volume and ~p is the microscopic dipole moment characterized
by Equation (2):

~p ¼ a �~Eloc (2)

wherein α is the molecular polarizability and ~Eloc the local
electric field. This local electric field is in general not the same
as the applied electric field, since at the location of the atom or
molecule all fields generated by all the other atoms or
molecules, as a reaction to the change of the microscopic
dipole moment, will have to be taken into account. On the
other hand, the macroscopic polarization ~P is connected with
the applied electric field ~E, if scalar media characterized by a
scalar dielectric function are assumed, according to:

~P ¼ e0 er � 1ð Þ~E ¼ e0c~E (3)

In Equation (3), er is the relative dielectric function, e0 the
vacuum permittivity and c the electric susceptibility. Equating
Equations (1) and (3) with help of Equation (2) leads to [Eq. (4)]:

N � a �~Eloc ¼ e0 er � 1ð Þ~E (4)

To continue, it is necessary to find the relation between~Eloc
and ~E. If we assume a so-called “local field of Lorentz” ~EL, the
local electric field consists of two parts, the originally applied
field and~EL[Eq. (5)]:

~Eloc ¼~E þ~EL (5)

For the derivation of ~EL, it is usually assumed that it in turn
consists of two parts, one exerted by the neighbors at the
location of the atom or molecule in question, which is virtually
removed from its location, since its own contribution does not
belong to ~EL. Furthermore, distant molecules or atoms contrib-
ute to the local field like a uniformly polarized medium. If the
field inside a cavity around the removed molecule or atom
containing only neighboring moieties is calculated, one finds
for an isotropic medium that the effect by these cancels out
and the local field is given by Equation (6):[6,7]
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~Eloc ¼~E þ
1
3 e0

~P (6)

Therefore, using Equations (1) and (2) we obtain [Eq. (7)]:

~P ¼ N � a � ~E þ
1
3 e0

~P
� �

(7)

or, equivalently:

~P ¼
N � a

1 � N�a
3 e0

�~E (8)

From Equation (8) together with Equation (3) we arrive at
[Eq. (9)]:

er ¼ 1þ
N � a

e0 �
1
3N � a

¼
1þ 2

3
N�a
e0

1 � 1
3
N�a
e0

(9)

which can also be written as [Eq. (10)]:

er � 1
er þ 2

¼
1
3
N � a

e0
(10)

At this point we depart from the derivation of the Lorentz-
Lorenz relation. Instead we realize that the number of dipole
moments per unit volume N can also be written as molar
concentration c with N= c ·NA, where NA is Avogadro’s constant.
Furthermore, we use a result from Maxwell’s wave equation
according to which er ¼ n̂2 and obtain Equation (11):

n̂2 � 1
n̂2 þ 2

¼
1
3 c

NA � â

e0
(11)

Note that here we have introduced a complex relative
dielectric function and a complex index of refraction n̂ ¼ nþ ik,
where k is the index of absorption. For the following, we
consider matter generally as absorbing, consequently the
polarizability becomes also a complex quantity.

For diluted gases, n̂ is not very different from unity:
n̂2 þ 2 � 3. This allows to provide approximations [Eq. (12)]:

n̂ ~nð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c
NA � â ~nð Þ

e0

s

� 1þ c
NA � â ~nð Þ

2e0
(12)

This first approximation also results, if in Equation (4)
~Eloc �~E is assumed,

[5] therefore both assumptions are equiv-
alent. If we focus on the index of absorption, the second
approximation reads [Eq. (13)]:

k ~nð Þ ¼ c
NA � a

00 ~nð Þ

2e0
(13)

which leads to Beer’s law, in which A is the absorbance, e* ~nð Þ

the molar attenuation constant, d the sample thickness and a00

the imaginary part of the polarizability [Eq. (14)]:

A ~nð Þ ¼
2p lg e NA � ~n � a

00 ~nð Þ

e0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e* ~nð Þ

�c � d
(14)

To study the consequences of a local electric field different
from the applied field, it is of advantage to use the frequency
dispersion of â ~nð Þwhich results from dispersion theory. Accord-
ingly, if we assume a single oscillator, the molar polarizability
â* ~nð Þ ¼ NA � â ~nð Þ=e0 can be expressed as Equation (15):

â* ~nð Þ ¼
S*2

~n20 � ~n2 � i~ng
(15)

wherein S* is the molar oscillator strength, ~n0 the resonance
position and γ the damping constant. If this expression is put
into eqn. (10) taking into account N=c ·NA, the result is
[Eq. (16)]:[8]

er � 1
er þ 2

¼ 1 �
3

er þ 2
¼
1
3 c

S*2

~n20 � ~n2 � i~ng
!

er � 1 ¼ 3
1

1 � c S* 2
~n20 � ~n2 � i~ng

� 1

0

@

1

A ¼
3c S* 2

~n20 � ~n2 � i~ng

1 � c S* 2
~n20 � ~n2 � i~ng

!

er � 1 ¼ 3c
S*2

~n20 � cS*2ð Þ � ~n2 � i~ng

(16)

This can be brought into the typical form of dispersion
relations, featuring a Lorentz-oscillator:

er ¼ 1þ c
S*2

~n20 �
c
3 S*2

� �
� ~n2 � i~ng

!

er ¼ 1þ c
S*2

~n020 � ~n2 � i~ng

(17)

Equation (17) can also be derived directly assuming a
damped harmonic oscillator driven by the local electric field.[2,3]

From this result it seems that the only change introduced by
the local electric field, enhanced relative to the applied electric
field, is to redshift the oscillator position. With the exception of
few textbooks,[6,7,9] this is the usual conclusion drawn. In fact, as
has been shown by Herzfeld and Wolf,[8] even if there are local
field effects and more than one oscillator, and the dispersion of
the molar polarizability is correspondingly expressed as sum of
all contributions of the different oscillators

â* ~nð Þ ¼
X

i

Si*
2

~n20i � ~n2 � i~ngi
(18)

it is still possible to express the dielectric function in its usual
form:
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er ¼ 1þ
X

i

S02i
~n020i � ~n2 � i~ngi

(19)

Under these circumstances, however, some important
changes occur. While the oscillators of the individual molecules
are still uncoupled in Equation (18), the local electric field leads
to the fact that this is no longer the case for the oscillators
assumed in eqn. (19). Oscillator strength and oscillator position
in this equation are not individual properties, but influenced by
any other oscillator – very much as this is also the case for the
inverse dielectric function, for which the local electric field is
different from the applied electric field, too.[10] In other words,
an oscillator located in the UV will alter the strength and the
position of an oscillator in the infrared and vice versa in
Equation (19).

This is certainly not a new insight per se,[7] but it has some
important consequences for the concentration dependence of
the peak and integrated value of the absorbance, which
seemingly have not been investigated until now.

One of these consequences is that focusing on an oscillator
as it appears in Equation (19), the value of the squared oscillator
strength is no longer proportional to the concentration. This
also means that in general even the integrated absorbance of
this band no longer depends linearly on the concentration. A
consequence for gases is that under compression and for
higher densities deviations from Beer’s law are inevitable. The
only question is at which point they set in.

Note that the model makes no difference between different
kinds of oscillators from the same or different molecules.
Therefore, it enables to calculate the indices of refraction of
mixtures. Henceforth, based on the same model it should be
possible to calculate absorbances of mixtures with j different
kinds of molecules each featuring i oscillators [Eq. (20)]:

â ~nð Þ ¼
X

j

cj
X

i

Sji*
2

~n20ji � ~n2 � i~ngji
(20)

As a consequence, all oscillators of all components in a
mixture would mutually couple.

In the following we will investigate these conclusions in
some more detail. In Ref. [4], we investigated the absorbance
and its concentration dependence based on a single oscillator
in the infrared with the following parameter, S*2=4900 l/
(molcm2), ~n0 ¼1700 cm

� 1 and γ=20 cm� 1. A further assumption
was that the concentration of the neat substance is 50 mol/l.
Since every molecule has absorptions in the UV-Vis, we now
have to complete our assumptions with a second oscillator
located in this spectral region. For this oscillator we assume the
parameters S*2=1.25 ·108 l/(cm2), ~n0 ¼6 ·10

4 cm� 1 and γ=

2 ·103 cm� 1. These assumptions lead to an index of refraction of
about 1.5 in the transparency region between UV-Vis and IR
spectral region, if a local field of Lorentz is assumed (without
the additional local field, the index of refraction would be less
than 1.3!). Furthermore, we will also consider a solution of the
hypothetic substance in a hypothetic solvent which has a single
oscillator located in the UV-Vis region with the parameters S*2=

2.5 ·108 l/(mol cm2), ~n0 ¼1.2 ·10
5 cm� 1 and γ=2 ·103 cm� 1. These

parameters lead to the same index of refraction in the trans-
parency region as those of the UV-Vis oscillator of the
hypothetic solute. The oscillators have been used to calculate
the absorbance according to Equation (21)

A ~nð Þ ¼
4p~n

ln 10
k ~nð Þd (21)

in the infrared spectral range (Figure 1) and in the UV-Vis
(Figure 2).

Figure 1 illustrates the changes of the absorbance spectra
for four different concentrations of 0.05, 0.5, 5 and 50 mol/l,
under the constraint c ·d=5 ·103 cm·mol/l. As already shown in
Ref. [4], for the conventional model the absorbance stays
practically the same for the two lowest concentrations. At
higher concentrations the band begins to blueshift since the
molar absorption coefficient is a function of the inverse index of
refraction function, which has its maximum at higher wave-
numbers than the index of absorption. For the graphs shown in
panel b), the same model is used, except that the resonance
position is shifted with increasing concentration by

~n00i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n20i �
c
3Si*2

q

, i. e. the coupling between oscillators is still

disregarded. Accordingly, for small concentrations blue and
redshift compensate each other, and there is again virtually no
difference for the two lowest concentrations before the
maximum begins to redshift for higher concentrations. The
same can be concluded for the full Lorentz-Lorenz model and
its influence on the two lowest concentrations in panel c). For

Figure 1. Absorbance for different concentrations of 0.05, 0.5, 5 and 50 mol/l
of the hypothetical substance assuming c · d=5 ·103 cm·mol/l. a) conven-
tional dispersion formula. b) conventional dispersion formula assuming

additionally a redshift according to ~n00i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n20i �
c
3Si*2

q

. c) Lorentz-Lorenz
formula [Eq. (10)] in combination with Equation (18). d) Same as c) but with
hypothetical solvent (please note the change concerning the range of the y-
axis for d).
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higher concentrations, however, there is not only a redshift,
which is stronger than that for b), but also an increase in the
intensity compared to cases a) and b). For the case that the
hypothetical substance is dissolved in a solvent with the same
index of refraction function in the transparency region (panel
d)), the two lowest concentrations can also not be distin-
guished, but their intensity is about twice as high than for the
case where the hypothetical substance is suspended in vacuum
(please note the change of the range of the y-axis for panel d)
in Figure 1). This factor even increases somewhat for weaker
oscillators (the parameters of the infrared oscillator are
approximately those of the ν3 vibrations of oxyanions like SO

2�
3

or NO�3 ; note that we have subtracted the absorbance of the
solvent from the spectra which otherwise would be noticeable
for the two smaller concentrations in form of a baseline
increasing towards the visible range). The redshift is somewhat
stronger in the beginning, but since it is assumed that the
hypothetical solvent has the same concentration in pure form,
so that the concentration divided by 50 mol/l equals the
volume fraction, there is only the hypothetical material left for
the highest concentration and the spectra are enforcedly the
same in c) and d).

While due to the local field of Lorentz the oscillators in the
infrared are strongly affected by coupling to those in the UV-
Vis, the comparison of Figure 2b with 2c demonstrates that this
coupling only weakly effects the UV-Vis oscillators since differ-
ences between Figure 2b and 2c cannot be discerned. This is a
consequence of the squared IR oscillator strength being less
than 0.04% of the total oscillator strength which is mainly

contributed by the UV-Vis oscillator. Accordingly, the redshift of
the UV-Vis oscillator can be predicted to a very good

approximation by ~n00i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n20i �
c
3Si*2

q

, despite the coupling.

Nevertheless, the spectra for the two lowest concentrations
agree very well with each other (Figure 2a–c), so that
absorbance scales linearly in this concentration range and
Beer’s law holds to a good approximation. As shown in
Figure 2d, this conclusion cannot be drawn if a solvent is
employed. Note that for Figure 2d the thickness d was kept
constant instead of the product c ·d as for a)-c). Therefore, the
absorbance is about an order of magnitude larger for c=

0.5 mol, if the solvent is present, and a clear redshift by
500 cm� 1 can be observed, while this is not possible for the
same concentration without solvent (again, as for the case
presented in 2c, the band in the infrared has little influence on
the UV-Vis bands for the same reason, namely comparably
weak oscillator strength). It is also interesting to note, that while
the peak maximum of the band of the solute is redshifted, the
oscillator of the solvent is blueshifted. Therefore, a solvent with
bands close to that of the solute may cause baseline changes
for higher concentrations, so that at these concentrations blank
correction in the usual way, using the pure solvent, is no longer
possible. This may be the reason why in practice instead of
pure solvents high solute concentrations are employed for
reference measurements as suggested recently.[11] In general, in
the case of strong coupling, it is the low wavenumber band
that is red- and the high wavenumber band that is blueshifted
(actually, the band is not blueshifted, but its redshift is reduced)
and the shift is the stronger the higher the UV-Vis oscillator
strengths or, equivalently, the index of refraction of the solvent
is, which was known in former times as Kundt’s rule.[12,13] Note
that Kundt’s rule is according to the findings above only strictly
applicable if there are no “chemical” changes due to the
process of dissolution, i. e. the polarizabilities of both, solvent as
well as solute, must not change during dissolution. In particular
processes like association and dissociation are chemical
changes that cannot be predicted by Kundt’s rule. This also
means that in more complex systems with more than one
solute the probability strongly increases that Kundt’s rule will
not be applicable. On the other hand, for small concentrations
of all solutes we do not see a reason why Kundt’s rule should
not be applicable as long as it is valid for every binary system of
solute and solvent.

The conclusion drawn in the preceding paragraphs must be
seen more as illustration of the general effects that can be
expected. If one focuses in the IR spectral region, it is often
possible as is known from dispersion theory to approximate the
influence of the UV-spectral region by a single oscillator, while
depending on the structure of the material much more
oscillator may be necessary to describe the optical properties in
the IR spectral region. If one focuses on the UV-Vis spectral
region, it might even be necessary to model not only the
transitions related to valence electrons, but also to take into
account further electronic transitions to characterize the spectra
completely, while in this case the transitions due to vibrations
might be neglected.

Figure 2. Absorbance for different concentrations of 0.05, 0.5, 5 and 50 mol/l
of the hypothetical material assuming c · d=50 cm·mol/l: a) conventional
dispersion formula, b) conventional dispersion formula assuming additionally

a redshift according to ~n00i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n20i �
c
3Si*2

q

, c) Lorentz-Lorenz formula
[Eq. (10)] in combination with (18), d) Same as c) but with hypothetical
solvent. Note that for d), in contrast to a)–c), a constant d=10� 6 cm was
chosen and that the range of the y-axis is different.
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The concentration dependence of the absorbance is, to a
very good approximation, linear at 1700 cm� 1 until about
1 mol/l, independent of the chosen model (cf. Figure 3a). At
higher concentrations the peak maximum begins to shift.
Additionally, if a solvent other than vacuum is assumed, the
slope is much stronger due to the intensity enhancement by
coupling. The absorbance integrated over the infrared range is
to a good approximation linearly depending on concentration
over an even larger concentration range. In fact, without the
influence of the absorption band in the UV-Vis, the dependence
would be perfectly linear,[14] but due to the baseline caused by
this mode, deviations occur. If this baseline remains unchanged
and is thereby virtually removed, because solvent and solute
cause identical baselines, which is the case for the Lorentz-
Lorenz model with solvent, a perfect linear dependence can be
observed. In the UV-Vis spectral region Beer’s law breaks down
without solvent above concentrations of about 0.5 mol/l and
with solvent at about 0.2 mol/l. Since most of the oscillator
strength is concentrated in this range, the integrated absorb-
ance is linearly depending on the concentration except for the
case with solvent. For this case, the influence of the absorption
of the solvent is, due to the interaction between the oscillators
of solvent and solute, no longer additive and can thus not be
removed perfectly. Since Beer’s law is accompanied by a twin
law concerning the changes of the index of absorption,[15] we
have also investigated the influence of the different models on
the index of refraction calculation. This may be in particular
interesting for the emerging field of infrared dispersion
spectroscopy.[15–18] The corresponding results can be found in
the Supporting Information.

Overall, we find that the different assumptions according to
Beer’s law vs. Lorentz-Lorenz equation etc. are less important

for concentrations below 0.5 mol/l, which are equal to densities
of about 1% of the condensed material, as long as there is no
mixture with a second material which acts as solvent. In the
latter case, the deviations start somewhat earlier at about
0.2 mol/l and the slope of the absorbance vs. concentration
curves is much steeper. In other words, the molar absorption
coefficient is much larger than without solvent. If the integrated
absorbance is examined, it seems that the limits of linearity are
extended by about an order of magnitude. All these consid-
erations, however, are based on the negligence of the light’s
wave nature and retardation and local interference effects and
electromagnetic coupling seem to start much earlier.[19] For
solutions, in particular also changes of chemical interactions
with concentration are important. These modify, in contrast to
all effects discussed so far, the atomic or molecular polar-
izabilities.

Close to densities of the condensed material, the Lorentz-
Lorenz equation predicts a strong nonlinear behavior, but even
without local field it can no longer be stated that absorbance is
proportional to the density of oscillators. Accordingly, the use
of absorbance for the spectra of pure materials, which is
recommended by the IUPAC, has no advantages over the use of
other quantities like transmittance or reflectance.

In summary, we discussed the influence of the local field of
Lorentz on the optical and IR-optical spectra of materials in
dependence of the concentration. We showed that from the
Lorentz-Lorenz equations Beer’s law can be rederived assuming
low oscillator densities/concentrations, so that first the local
field of Lorentz becomes negligible and, secondly, the depend-
ence of the complex index of refraction and its imaginary part,
the absorption index, becomes linearly dependent on the
concentration. This demonstrates that Beer’s law needs no
longer to be seen as an empiric law and is well-integrated in a
common theoretical fundament together with dispersion theory
and the Lorentz-Lorenz equation.

Acknowledgements

Financial support of the EU, the ”Thüringer Ministerium für
Wirtschaft, Wissenschaft und Digitale Gesellschaft”, the ”Thüringer
Aufbaubank”, the Federal Ministry of Education and Research,
Germany (BMBF), the German Science Foundation, the “Fonds der
Chemischen Industrie” and the Carl-Zeiss Foundation is gratefully
acknowledged.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: absorbance · dispersion · refractive index · Beer’s
law · Lorentz-Lorenz relation

[1] P. Atkins, J. de Paula, Atkins' Physical Chemistry, OUP Oxford 2014.
[2] M. Planck, Sitzungsber. K. Preuss. Akad. Wiss. 1902, I, 470–494.

Figure 3. Dependence of the absorbance and the integrated absorbance
from the concentration. a) Absorbance at 1700 cm� 1, b) integrated
absorbance from 100–3000 cm� 1, c) absorbance at 60000 cm� 1, d) integrated
absorbance between 30000 and 100000 cm� 1. d=1 micron for a) and b) and
d=0.01 micron for c) and d).
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