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Abstract

Single-cell transcriptomic analysis is widely used to study human tumors. However it remains 

challenging to distinguish normal cell types in the tumor microenvironment from malignant cells 

and to resolve clonal substructure within the tumor. To address these challenges, we developed an 

integrative Bayesian segmentation approach called CopyKAT (Copynumber Karyotyping of 

Aneuploid Tumors) to estimate genomic copy number profiles at an average genomic resolution of 

5Mb from read depth in high-throughput scRNA-seq data. We applied CopyKAT to analyze 

46,501 single cells from 21 tumors, including triple-negative breast cancer, pancreatic ductal 

adenocarcinomas, anaplastic thyroid cancer, invasive ductal carcinoma and glioblastoma to 

accurately (98%) distinguish cancer cells from normal cell types. In three breast tumors, 

CopyKAT resolved clonal subpopulations that differed in the expression of cancer genes such as 

KRAS and signatures including EMT, DNA repair, apoptosis and hypoxia. These data show that 

CopyKAT can aid the analysis of scRNA-seq data in a variety of solid human tumors.

Single-cell RNA sequencing (scRNA-seq) methods have emerged as powerful tools to 

delineate normal cell types in the tumor microenvironment (TME) and understand the 

expression programs of tumor cells in a variety of human cancers1–3. The development of 

high-throughput sequencing technologies including microdroplet systems (Drop-Seq4, 

Indrop5, 10X Chromium6) and nanowells (Wafergen iCELL87, SeqWell8, CelSee7) make it 

possible to sequence thousands of single cells in parallel for less than $1 US per cell. 

However, a major challenge in the analysis of large-scale datasets is in distinguishing tumor 

cells from the stromal and immune cells in the TME, so that they can be studied 

independently. An effective approach to distinguish tumor from normal cells involves the 

identification of aneuploid copy number profiles, which are common (88%) in most human 

tumors9 and are not found in stromal cell types that have diploid genomes. Previous methods 

such as inferCNV3 and HoneyBadger10 have shown that it is possible to estimate genomic 

copy number profiles from RNA read counts at sufficiently large genomic regions. However, 

these methods were designed for the analysis of first-generation of scRNA-seq technologies 

with lower cell throughput and higher coverage depth. These methods are not suitable for the 

analysis of newly developed high-throughput scRNA-seq platforms (microdroplet and 

nanowell platforms) that perform whole transcriptome amplification (WTA) and sequence 

only the 3’ or 5’ end of mRNA at very sparse coverage depth. Furthermore, previous 

methods could not accurately resolve the genomic locations of specific chromosome 

breakpoints or classify tumor and normal cells from their aneuploid copy number profiles. 

To address these challenges, we developed CopyKAT and applied it to a variety of human 

tumors to identify aneuploid tumor cells and delineate the clonal substructure of different 

subpopulations that co-exist within the tumor mass.
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Results

Overview of CopyKAT workflow

The statistical workflow of CopyKAT combines a Bayesian approach with hierarchical 

clustering to calculate genomic copy number profiles of single cells and define clonal 

substructure from high-throughput 3’ scRNA-seq data (Fig. 1, Online Methods). The 

workflow takes the gene expression matrix of unique molecular identifiers (UMIs) counts as 

input for the calculations. The analysis begins with the annotation of genes in rows to order 

them by their genomic coordinates. Freeman-Tukey Transformation (FTT)11 is performed to 

stabilize variance, followed by polynomial dynamic linear modeling (DLM)12 to smooth the 

outliers in the single cell UMI counts (Fig. 1a). The next step is to detect a subset of diploid 

cells with high confidence to infer the copy number baseline values of the normal 2N cells. 

To do this, we pool single cells into several small hierarchical clusters and estimate the 

variance of each cluster using a Gaussian Mixture Model (GMM) (Fig. 1b). The cluster with 

minimal estimated variance is defined as the ‘confident diploid cells’ by following a strict 

classification criterion. Potential misclassifications may occur when the data has only a few 

normal cells, or when the tumor cells have near-diploid genomes with limited CNA events. 

In this case CopyKAT provides a ‘GMM definition’ mode to identify the diploid normal 

cells one-by-one, where a mixture of three Gaussian models of gene expression in single 

cells are assumed to represent genomic gains, losses and neutral states. A single cell is then 

defined as ‘confident diploid cell’ when genes in neutral states account for at least 99% of 

the expressed genes.

To detect chromosome breakpoints, we integrate a PoissonGamma model and Markov Chain 

Monte Carlo (MCMC) iterations to generate posterior means per gene-window and then 

apply Kolmogorov-Smirnov (KS) tests to join adjacent windows that do not have significant 

differences in their means (Fig. 1c). To speed up the calculations, we split thousands of 

single cells into clusters, find consensus chromosome breakpoints and merge them together 

to form a union of genomic breakpoints for the whole population of cells in the sample. The 

final copy number values for each window are then calculated as the posterior averages of all 

genes spanning across the adjacent chromosome breakpoints in each cell. We further convert 

resulting copy number values from gene space to genomic positions by rearranging genes 

into 220Kb variable genomic bins13 to obtain a genome-wide copy number profile for the 

single cells at an approximate resolution of 5Mb. The genomic resolution was estimated 

based on the median neighboring gene distance (~20Kb) across the genome multiplied by 

the gene window (25 genes) size (Online Methods, Supplementary Fig. 1a–c). We then 

perform hierarchical clustering of the single cell copy number data to identify the largest 

distance between the aneuploid tumor cells and the diploid stromal cells, however if the 

genomic distance is not significant we switch to the “GMM definition” model to predict 

single tumor cells one-by-one (Fig. 1d). Finally, we cluster the single cell copy number data 

to identify clonal subpopulations and calculate consensus profiles representing the subclonal 

genotypes for further analysis of their gene expression differences (Fig. 1e).
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Evaluation of technical performance

To evaluate the performance of CopyKAT we sequenced 1,480 single tumor cells from a 

premalignant breast tumor (DCIS1) by high-throughput 3’ scRNA-seq (10X Genomics) 

(Fig. 2, Online Methods, Supplementary Table 1). We calculated the genome-wide copy 

number profiles from scRNA-seq data using CopyKAT (Fig. 2a–b), and compared the 

results to an analysis performed on the same data using a previously published method 

called inferCNV3 (Fig. 2c–d). To generate a ground-truth reference of the DNA copy 

number profile, we flow-sorted millions of aneuploid tumor cells from DCIS1 for whole 

genome bulk DNA sequencing (Fig. 2e–f). Our results showed that CopyKAT achieved high 

concordance (Pearson’s correlation = 0.82) with the bulk reference DNA copy number 

profile at 220Kb genomic resolution. Most of the major copy number aberrations (CNAs) 

detected in the bulk DNA-seq data were identified in the scRNA-seq data, including 

chromosomal gains in chr4, 6, 8, 12, 17, 20, X and losses in chr2, 3, 9, 10, 15 (Fig. 2a–b). 

We ran inferCNV3 on the same dataset and manually identified stromal cells based on the 

fibroblast marker genes ACTA2 and FN1, which were used to provide an internal baseline 

reference that is required.

We further compared the data by converting the results of inferCNV3 to the same genomic 

resolution as CopyKAT using 220Kb variable bins13. Although the signal of inferCNV3 was 

lower, these data also achieved a high concordance with the bulk DNA-seq data reference by 

correlation analysis (Pearson correlation = 0.79) (Fig. 2c–d). However, a major limitation of 

inferCNV3 was that it can only report smoothed averages of gene windows, and does not 

detect specific coordinates of chromosome breakpoints or copy number segments, which 

was achieved by CopyKAT. We further calculated the relative distance of the inferred copy 

number states from the two methods to the reference bulk DNA-seq copy number profile by 

repetitively sampling adjacent local regions of different gene size intervals (Online 

Methods). This analysis showed that CopyKAT segmentation results were significantly (p-
value < 0.001, T-test) closer to the reference DNA copy number states, compared to the 

sliding window averages reported by inferCNV3 (Fig. 2g). Furthermore, we found that 

CopyKAT exhibited more stable performance across different sizes of gene intervals ranging 

from 5 to 500 genes (Fig. 2h).

We next evaluated the sensitivity and efficiency of CopyKAT in detecting chromosome 

breakpoints from the DCIS1 data by comparing the scRNA-seq results to a “ground truth” 

standard - the bulk DNA-seq copy number profile (Online Methods, Supplementary Fig. 1d). 

Bootstrapping was performed to resample single cells and estimate the variation in detection 

sensitivity. On average we estimated that 19% of CNAs were detected at 1Mb resolution, 

56% at 5Mb resolution and 88% at 20Mb resolution respectively, which agrees with our 

theoretical calculation of a 5Mb average genomic resolution. We also determined that 

CopyKAT is sensitive to the segmentation parameter (KS.cut), which is set as an ad hoc 
pruning cutoff parameter to join adjacent chromosome segments. The breakpoint detection 

becomes more stringent as the KS.cut value increases, resulting in fewer breakpoints 

detected (Supplementary Fig.1e). We observed a significant drop in the accuracy of 

segmentation values when KS.cut exceeds a value of 0.3 (range: 0 to 1) (Supplementary Fig. 

Gao et al. Page 4

Nat Biotechnol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1f). These data suggested that CopyKAT can accurately infer DNA copy number profiles at 

a moderate genomic resolution (5Mb) from high throughput 3’ scRNA-seq data.

Classification of tumor and normal cells in solid tumors

We applied CopyKAT to previously published 3’ scRNA-seq data from 5 pancreatic 

adenocarcinoma (PDAC) patients1, as well as 3’ scRNA-seq data that we generated from 5 

triple-negative breast cancer (TNBC) patients and 5 anaplastic thyroid cancer (ATC) patients 

to distinguish tumor and normal cells based on their copy number differences (Fig. 3). We 

analyzed 9,717 single cell transcriptomes from 5 PDAC patients with CopyKAT and 

successfully identified aneuploid tumor cell subpopulations in all of the patients (Fig. 3a and 

Supplementary Fig. 2a). The predicted tumor cells had genome-wide copy number 

aberrations (CNAs) including frequent amplifications of 1q, 3q, 7p, 8q, 17, 19, 20 and losses 

of 3p, 6, 8p that are commonly reported in PDAC14–16 tumors, whereas normal cells with 

diploid profiles had no recurrent CNAs. The UMAP projection of the aneuploid tumor cells 

that we classified co-localized to the expression clusters that showed high epithelial gene 

scores detected using a panel of four established tumor epithelial markers (EPCAM, KRT19, 
KRT18 and KRT8). Notably, in all 5 PDAC patients the genome-wide CNAs were only 

detected in one (c1) of the two epithelial clusters, suggesting the other cluster was likely 

normal diploid epithelial cells (c2), which could not be resolved by gene expression alone. 

We designated the c1 cluster as the tumor cells since they corresponded to the aneuploid 

copy number profiles and contained higher expression levels of KRT19, which is a widely 

used marker to identify cancer cells in PDAC tumors17. We estimated that CopyKAT 

achieved high accuracy (98.5% concordance) in the identification of tumor cells by 

calculating their co-localization to the c1 expression cluster (Online Methods, 

Supplementary Table 2). From these data we estimated the tumor purity, which ranged from 

6–18% (Fig. 3d) and was consistent with previous histopathological data showing that 

PDAC patients generally have low tumor purity due to high stromal cell populations18–20.

We also performed 3’ high-throughput scRNA-seq of 19,568 cells from 5 ATC tumors using 

the 10X Genomics platform (Online Methods, Supplementary Table 1). Analysis of the 

scRNA-seq data using CopyKAT resulted in the identification of aneuploid tumor cells in all 

of the 5 ATC tumors (Fig. 3b). Common CNAs that were frequently reported in ATC tumors 
21, 22 included amplifications of 1p, 2p, 5p, 7, 8q, 11p, 12, 18p, 20 and losses of 1q, 6p, 13, 

17, 22 that were identified in inferred copy number data (Supplementary Fig. 2b). In the 

UMAP expression data, the predicted aneuploid cells corresponded to 1–2 clusters in all 

patients, which showed high epithelial panel scores, including KRT8 that has previously 

been used to identify ATC by histopathology23. Based on the co-localization of the predicted 

aneuploid tumor cells to c1 (c1 and c2 in ATC1), we estimated the mean prediction accuracy 

for identifying tumor cells to be 97% (Online Methods, Supplementary Table 2). We 

observed a wide range of tumor purities (2–80%) among the ATC patients (Fig. 3e), in 

which two tumors (ATC2, ATC3) had low purities (2, 12%) and three patients (ATC1, 

ATC4, ATC5) had high tumor purities (42–80%), consistent with ranges reported in 

pathological data for ATC tumors24–26.
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We further performed 3’ scRNA-seq of 8,944 single cells from 5 untreated TNBC patients 

(Online Methods, Supplementary Table 1). In all 5 TNBC samples, CopyKAT identified 

distinct groups of single cells with aneuploid and diploid copy number profiles. From the 

clustered heatmaps of the estimated single cell copy number profiles we identified frequent 

CNAs that have been previously reported in TNBC patients27–29, including gains of 1q, 6p, 

8, 10p,18p, Xq and losses of 1p, 5q, 17p, Xp (Supplementary Fig. 2c). Dimensionality 

reduction showed that the predicted aneuploid tumor cells corresponded to gene expression 

clusters that were positive for the epithelial gene panel score, which included EPCAM that is 

often used to identify tumor cells in TNBC patients (Fig. 3c). In 4 tumors (TNBC1, TNBC2, 

TNBC4, TNBC5) the clusters (c1-c2) with positive epithelial scores corresponded directly to 

the predicted aneuploid clusters by CopyKAT, however in one tumor (TNBC3) only 1 out of 

3 clusters that were positive for the epithelial gene panel (c1) showed genome-wide CNAs. 

We compared the predicted aneuploid tumor cells to the epithelial cell expression clusters 

(c1 in TNBC3) and estimated a high prediction accuracy across the TNBC tumors (98%). 

Notably, in three cases (TNBC1, TNBC2 and TNBC5) the inferred copy number profiles 

localized to two tumor-specific expression clusters that were both positive for epithelial gene 

panel expression, suggesting that there were multiple aneuploid clones present in the tumor 

mass. In contrast to the PDAC and ATC tumors, the TNBC samples all had high tumor 

purities (34–83%) across the patients (Fig. 3f and Supplementary Table 2). Collectively, 

these data suggest that CopyKAT can accurately (98% ± 3% S.D.) distinguish tumor and 

normal cells in a variety of solid tumors based on the aneuploid copy number profiles 

inferred from the scRNA-seq data alone, without the need of specific gene expression 

markers.

Application to other scRNA-seq technologies

While our data suggest that CopyKAT can accurately estimate copy number data from 3’ 

scRNA-seq data, we further investigated whether this approach can be applied broadly to 

first-generation scRNA-seq data (SMART-Seq2) as well as 5’ scRNA-seq data (10X 

Genomics). We performed 5’ scRNA-seq on two estrogen-receptor positive invasive ductal 

carcinoma (ER+ IDC) tumors (IDC1, IDC2) and analyzed SMART-Seq2 data from a 

previously published study30 involving 2 glioblastoma multiforme (GBM) patients (GBM1, 

GBM2) (Supplementary Table 1). In total 7,780 single cells were sequenced from IDC1 and 

IDC2 using the 5’ scRNA-seq (10X Genomics). CopyKAT analysis identified two cluster in 

each tumor representing normal cells (N) and tumor cells (T), in which both tumors showed 

a large amplification of chromosome 8p (MYC) (Fig. 4a, c). Clustering of the scRNA-seq 

expression data showed that the inferred aneuploid tumor cells in both tumors co-localized 

with the cluster that displayed high epithelial scores (Fig. 4b, d), validated the accuracy of 

the CopyKAT prediction. Similar to the TNBC samples, both ER+ IDC tumors showed high 

tumor cellularity (97% and 87% respectively).

Next, we analyzed a previously published scRNA-seq dataset sequenced using a first 

generation full-length scRNA-seq (SMART-seq2) approach30 from two GBM patients: 

GBM1 (MGH125) and GBM2 (MGH128) (GSE131928). In contrast to the high-throughput 

3’ or 5’ scRNA-seq methods (10X Genomics) that have only partial gene body coverage, the 

full-length SMART-seq2 data has sequence reads that cover the whole gene transcripts. 
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However, SMART-seq2 has much lower cell throughput (332 and 184 cells per patient 

respectively) and do not have UMI barcodes that can mitigate amplification bias. To perform 

CopyKAT analysis, we used the TPM/10 matrix that represent normalized gene expression 

count data. In both samples, we observed distinct separation between the clusters of 

aneuploid tumor cells and diploid normal cells (Fig. 4e, g). The aneuploid tumor cell cluster 

inferred by CopyKAT expressed high levels of EGFR (Fig. 4f, h), which is an established 

tumor cell marker in GBM patients31. Collectively, these data suggest that CopyKAT is 

compatible with a wide range of scRNA-seq technologies.

Inferring the clonal substructure of breast tumors

To delineate clonal substructure and link cancer genotypes to phenotypes, we applied 

CopyKAT to scRNA-seq data generated from three TNBC patients (Fig. 5). The inferred 

copy number profiles were clustered to identify subpopulations based on copy number 

differences and a consensus copy number profile was computed from the clusters of single 

cell profiles to identify genomic regions with copy number differences. From the consensus 

profiles of the subclones, we performed differential expression (DE) and gene signature 

analysis to identify phenotypic differences between the subclones (Online Methods).

In one TNBC sample (TNBC1) the clustering of 797 aneuploid copy number profiles 

identified two major subclones (A, B) that comprised 44% and 28% of the tumor mass (Fig. 

5a upper panel) and were separate by two distinct lineages in their neighbor-joining (NJ) 

trees (Supplementary Fig. 3a). Clustered heatmaps identified clonal amplifications (1q, 6p, 

8q, 10p, 16p 18p) and clonal deletions (1p, 4q, 5q, 8p, 10q, 13, 14) that were shared across 

all of the tumor cells. These genomic regions included many known breast cancer genes in 

TCGA32 including MDM4, PIK3CA, EGFR, MYC, GATA3, PTEN, CCND1, RB1 and 

other genes (Fig. 5a upper panel). The clustered heatmaps of the consensus copy number 

profiles revealed subclonal CNA events, including subclonal amplifications in clone A (4p, 

7q, 9p13.2-q22.2, 17q) and subclonal amplifications in clone B (3p26.3-p25.1, 6q, 7p, 11q, 

Xp11.23, Xq) that varied in the tumor mass (Fig. 5a lower panel). DE analysis identified 329 

differentially expressed genes between the two subclones (FDRadj p-value < 0.01, | 

log2(Fold Change) | ≥ 0.5), of which 47% were located in the subclonal CNA regions 

(Supplementary Fig. 4a) and included known cancer genes33 such as IDH1 on Chr2q that 

was overexpressed in subclone A, and CDH1 on chr16q that was overexpressed in subclone 

B (Fig. 5a lower panel). The two aneuploid subclones corresponded to distinct expression 

clusters in high-dimensional space (Fig. 5d upper panel). Single cell Gene Set Variation 

Analysis (GSVA)34 identified several cancer hallmark signatures that were enriched in 

subclone A relative to subclone B, including androgen response, Epithelial-to-Mesenchymal 

Transition (EMT) as well as other cancer signatures (Fig. 5d lower panel).

In another TNBC patient (TNBC2), the clustering of 620 single cell aneuploid copy number 

profiles inferred from scRNA-seq data resolved two subclones, including a major subclone 

(A) that comprised most of the tumor (53%) and a minor subclone (B) that represented a 

small fraction of the tumor mass (7%). NJ trees constructed from this data showed that the 

two subclones represented distinct clonal lineages that emerged from a common ancestor 

and corresponded to the clustering results (Supplementary Fig. 3b). The clustered heatmap 
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identified many clonally amplified regions (1, 2p, 6, 8, 9p, Xq) and clonal deletions (4q, 5, 

9q, 13, 14, 15, 16q, 20, Xp) that were shared among all tumor cells and encompassed known 

breast cancer genes including MDM4, EGFR, MYC, CDKN2A, GATA3, PTEN, BRCA2, 
RB1, TP53 and other genes (Fig. 5b upper panel). The comparison of the consensus profiles 

further revealed subclonal CNAs that were specific to subclone A (gains of 16p13.3-p13.2) 

or specific to subclone B (gains of 3q, 12p13.1-q12, 12q21.33–24.12). DE analysis 

identified 158 genes (FDRadj p-value < 0.01, | log2(Fold Change) | ≥ 0.5) that were 

differentially expressed between the two subclones, of which 42% were located in subclonal 

CNA regions (Supplementary Fig. 4b). A major subclonal event that emerged in subclone B 

was the focal amplification of chr12p13.1-q12 that resulted in the overexpression of KRAS 
(Fig. 5b lower panel and Supplementary Fig. 4d). The copy number profiles of the minor 

subclone B mapped to a distinct region in the high-dimensional analysis of the scRNA-seq 

data (Fig. 5e upper panel). Single cell GSVA analysis showed that the major subclone A had 

increased WNT and Hedgehog signaling, whereas the minor subclone B had multiple cancer 

hallmarks upregulated, including interferon responses, TNF-alpha signaling, hypoxia and 

other signatures (Fig. 5e lower panel).

In the third TNBC patient (TNBC5), the clustering of 2,670 aneuploid single copy number 

profiles inferred from scRNA-seq data identified two subclones, including a major subclone 

(A) that constituted the majority of the tumor (65%) and a minor subclone (B) that 

comprised a smaller fraction of the tumor mass (18%). The NJ tress constructed from the 

CNA data identified two distinct lineages that shared a common ancestor and corresponded 

to the clustering results (Supplementary Fig. 3c). Clonal CNAs detected across all of the 

tumor cells included gains of 4q, 7p, 8q and losses of 1p, 2q, 9, 10, 11, 17p that intersected 

several breast cancer genes including MDM4, PIK3CA, FGFR4, EGFR, MYC, TP53, 
CDKN2A and others (Fig. 5c upper panel). Comparison of the consensus copy number 

profiles of the subclones revealed a number of subclonal CNAs, such as amplification of 

chr1p and 14p that were specific to subclone A and amplification of chromosomes 12p and 

12q that were specific to subclone B (Fig. 5c lower panel). The aneuploid copy number 

profiles of the two subpopulations mapped to two different regions in the high-dimensional 

expression space, suggesting that they had different transcriptional programs (Fig. 5f upper 

panel). DE analysis identified 89 genes (FDRadj p-value < 0.01, | log2(Fold Change) | ≥ 0.5) 

that were differentially expressed between the two subclones, of which 66% were located in 

subclonal CNA regions and included cancer genes such as KRAS and SMARCA4 
(Supplementary Fig. 4c). Notably, the minor subclone B harbored major amplification of 

chr12p13.33-q12 that led to increased expression of KRAS, consistent with the minor 

subclone (B) detected in the previous TNBC patient (TNBC2) (Supplementary Fig. 4e) 

Single cell GSVA analysis showed differences in cancer hallmarks in subclone A including 

the upregulation of interferon alpha response and fatty acid metabolism, while subclone B 

showed increases in angiogenesis, hypoxia, EMT among other signatures (Fig. 5f lower 

panel). Taken together, these results suggest that CopyKAT can resolve clonal copy number 

substructure in tumors from scRNA-seq data and identify subclonal differences in breast 

cancer genes and cancer phenotypes that exist within the tumor mass.
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Discussion

Here, we report the development of an integrative Bayesian segmentation approach to 

quantify genomic copy number profiles from high-throughput scRNA-seq data. A major 

application of CopyKAT is in the identification of tumor cells in unbiased scRNA-seq data, 

which often consists of not only tumor cells, but also many different stromal and immune 

cell types in the TME. Normal epithelial cells are often the most difficult to distinguish from 

malignant tumor cells by expression profiles alone, since they can express many of the same 

epithelial markers as the cancer cells. Using CopyKAT, we exploit a unique property of 

cancer cells in solid tumors, namely that they often harbor aneuploid copy number events in 

their genomes, while most stromal and immune cells have diploid copy number profiles. We 

show that the classification of aneuploid genomes from scRNA-seq data is feasible in several 

different solid cancer types, including PDAC, ATC, DCIS, TNBC, IDC and GBM - even in 

cases where the tumor purity is very low (<15%) or very high (>90%). Thus, we expect that 

CopyKAT will be a valuable tool for identifying tumor cells in scRNA-seq experiments that 

are comprised of mixtures of many different TME cell types.

Another application of CopyKAT is the delineation of clonal substructure in solid tumors 

based on differences in copy number alterations. We applied CopyKAT to resolve clonal 

substructure in three TNBC tumors, which identified two major subpopulations in each 

tumor that differed by distinct CNA events. Further, we show that from these data we can 

link the genotypes of the subclones to their phenotypes (transcriptional programs) to 

understand how the genomic alterations influenced different cancerous properties. Our 

analysis in TNBC showed differences in gene signatures and signaling pathways among the 

subclones within the tumor mass, including variation in EMT, DNA repair, hypoxia, 

apoptosis and angiogenesis. Interestingly, in two of the TNBC tumors we identified rare 

subclones (7%, 18%) with amplifications of the KRAS oncogene on chromosome 12p that 

upregulated gene expression. These rare KRAS subclones may be of interest for diagnostics 

or therapeutic targeting, if they are found to be common subpopulations in larger cohorts of 

TNBC patients in future studies.

Two previous methods have also been developed to estimate copy number alterations3,10. 

InferCNV3 utilizes an average moving window of gene expression, after excluding high and 

low expressed genes, however has limited ability to accurately resolve chromosome 

breakpoints. Another method, HoneyBadger10 was designed to predict CNVs from scRNA-

seq data by jointly analyzing allelic imbalance of many variant sites in pooled clusters of 

single cells, but is highly dependent on obtaining full coverage data of the gene body. Thus a 

limitation of these previous methods is that they are not compatible with 3’ and 5’ scRNA-

seq methods (10X Genomics6, Drop-Seq4, InDrop5) that are now widely used in the field of 

single cell genomics, but were instead developed for first-generation scRNA-seq methods 

such as Fluidigm35 and SMART-seq236. In contrast CopyKAT is compatible with high-

throughput scRNA-seq methods that generate sparse data (e.g. 100K reads per cell) on 

thousands of cells that are sequenced in parallel, and is also compatible with data from first 

generation scRNA-seq methods.
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A notable limitation of CopyKAT (and other methods) is that not all cancer types have 

aneuploid copy number events that can be used to distinguish normal and tumor cells. In 

particular, pediatric cancers and hematopoietic cancers (e.g. AML, CLL) are known to have 

few copy number alterations and therefore may not be suitable for CopyKAT analysis. 

Another limitation is that CopyKAT is mainly limited to the detection of CNA events based 

on changes in read depth across the genome and cannot be used to detect other genomic 

events that contribute to genomic diversity including chromosomal structural 

rearrangements, indels and somatic mutations. Furthermore, CopyKAT cannot provide 

reliable copy number information on the genomes of individual cells with unique genotypes, 

due to the technical variability of 3’ scRNA-seq data. This makes CopyKAT more suitable 

for the analysis of subclones in tumors where many cells have expanded and share similar 

genotypes, rather than the analysis of replicating cells or extremely rare subpopulations. A 

potential issue that we noted using CopyKAT is that when scRNA-seq datasets are without 

any tumor cells, CopyKAT may attempt to incorrectly detect CNA events in clusters with the 

highest gene expression levels. However in such cases the inferred CNA events will be 

inconsistent with known cytogenetic events in these cancers and can therefore be dismissed.

In summary, CopyKAT provides a powerful automated tool to classify tumor/normal cells 

and delineate clonal substructure in solid tumors analyzed by high-throughput scRNA-seq 

methods. We anticipate that this tool will be applied widely to many types of solid tumors in 

addition to the cancer types analyzed in this study. These studies will greatly improve our 

understanding of the malignant expression programs of tumor cells by providing a pure 

signal of the tumor cells, whereas previous bulk RNA-seq methods have been challenged by 

the intermixing of stromal and immune cells with the tumor cells, resulting in the incorrect 

assessment of cancer phenotypes. Moreover, these studies will lead to new insights into how 

chromosome alterations lead to gene dosage effects that reprogram cancer phenotypes in 

human tumors during disease progression.

Methods

Tumor tissue samples

Fresh tumor tissues samples from DCIS and invasive triple-negative breast cancers were 

obtained from the MD Anderson Cancer Center under IRB approved protocols in which 

patients were fully consented. The cancers were classified by pathological evaluation of 

H&E stained tissue sections and by staining for by immunohistochemistry for estrogen 

receptor (<1%) and progesterone receptor (<1%), and fluorescence in situ hybridization 

analysis of HER2 amplification using the CEP-17 centromere control probe (ratio of HER2/

CEP-17 < 2.2). The invasive breast cancer (IDC) and anaplastic thyroid cancer (ATC) 

samples were also obtained from patients at the MD Anderson cancer center under an IRB 

approved protocol in which the patients were consented. The classification of cancer types 

was determined by histopathological evaluation of the H&E stained tissue sections.

Single cell RNA sequencing of fresh tumor tissues

To prepare viable single cell suspensions, 1–3cm3 fresh tumors were placed in a 10cm dish 

with 5ml dissociation solution, minced with scalpels into 1mm3 pieces and transferred to a 
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50ml conical tube with 30ml dissociation solution to dissociate the tissue suspension at 37°C 

in a rotating hybridization oven for 15 minutes to 1 hour. For trypsinization, the tissue 

suspension was centrifuged at 450g for 5 minutes to remove the supernatant, and the pellet 

was resuspended into 5ml trypsin (Corning #25053CI) and incubated at 37°C in a rotating 

hybridization oven for 5 minutes. Trypsin was neutralized by 10ml DMEM (Sigma #D5796) 

containing 10% fetal bovine serum (FBS) (Sigma #F0926). The tissue suspension was 

filtered through a 70μm strainer by using a syringe plunger flange to grind the leftover 

unfiltered tissue. The strainer was rinsed and grinded with DMEM to ensure any remaining 

single cells were filtered. The flow-through was centrifuged at 450g for 5 minutes and the 

supernatant was removed. If red blood cells (RBCs) were presented in the pellet, 10–20ml 

1x MACS RBC lysis buffer [1:10 dilution of 10x MACS RBC lysis (MACS #130–094-183) 

into miliQ H2O] was applied by nutating at room temperature for 10 minutes. To stop RBC 

lysis, 20ml DMEM was added and the mixture was centrifuged at 450g for 5min. The 

supernatant was discarded and cell pellet was washed by 10ml 4°C DMEM. After 

centrifuging at 450g for 5 minutes, supernatant was discarded and cells were resuspended 

into cold PBS (Sigma #D8537) +0.04%BSA solution (Ambion #AM2616) and passed 

through 40um flowmi (Bel-Art #h13680–0040). To make dissociation solution, collagenase 

A (Sigma #11088793001) was dissolved in 75% v/v DMEM F12/HEPES media (Gibco 

#113300) and 25% v/v BSA fraction V (Gibco# 15260037) to prepare a concentration of 

1mg/ml.

Single cell capture, barcoding and library preparation was performed by following the 10X 

Genomics Single Cell Chromium 3’ protocol (PN-120237) or 5’ protocol (PN-1000006) 

using V3 or V2 chemistry reagents (10X Genomics). The final libraries containing barcoded 

single cell transcriptomes were sequenced at 100 cycles on an S2 flowcell on the Novoseq 

6000 system (Illumina). Data were processed using the CASAVA 1.8.1 pipeline (Illumina 

Inc.), and sequence reads were converted to FASTQ files and UMI read counts using the 

CellRanger software (10X Genomics).

Preprocessing and transformation of scRNA-seq data

The analysis starts with the UMI count matrix that has genes in rows and cell IDs in 

columns. To remove ambient and low viability cells, we filter out single cells that have less 

than 200 genes detected. To mitigate gene dropout effects, we require at least 7000 genes 

that are detected in at least 5% of cells in the population. Genes that are detected in less than 

5% of cells in the population are excluded from our analysis. Further, we require that each 

chromosome should have at least 5 genes detected to represent its copy number status. All 

row IDs are annotated by gene symbols and ordered by their genomic coordinates. To 

mitigate the segmentation artifacts caused by HLAs genes in chr6p in immune cells, we 

removed HLA genes from the copy number calculation pipeline. Similarly, we removed a set 

of cellular cycling genes (c5.all.v6.2.cyclegene)37 to reduce artificial segments associated 

with cells that are actively dividing.

Supposed X be the raw UMI count matrix, we first transform X using log-Freeman-Tukey 

Transformation (FTT)11 to stabilize variance as below:
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X = log X + X + 1

And then apply ‘dlmModPoly’ model in R package ‘dlm’ to model gene expression by 

polynomial dynamic linear model (DLM)12 and the ‘dlmSmooth’ function to smooth 

outliers in single cell UMI counts.

Estimating copy number baseline values in diploid cells

To estimate the ground state copy number baseline, we predefine a subset of ‘confident 

normal’ cells using a combined approach. First, the normalized and smoothed scRNA-seq 

data are clustered using ward linkage for hierarchical clustering. The average silhouette 

width Wd2 in the 2-cluster separation with the ‘cutree’ function is then calculated. Next, 

single cells are pooled into 6 clusters and the consensus gene expression profiles are 

calculated for each of the 6 clusters as the medians of all single cells within the cluster. The 

variance of consensus profile is calculated using Gaussian Mixture Model (GMM). The 

minimal variance min is compared to the maximal variance max using Fishers’ F test:

Fs = δmax2

δmin2

The cluster with minimal variance is predefined as ‘confident normal’ cell cluster if the 

stringent criteria is met: p-value < 0.05, Wd2 ≥ 0.15 and at least 5 ‘confident normal’ cells to 

serve as copy number baseline.

In the alternative “GMM definition” approach, we evaluate the diploid status of single cells 

one-at-a-time by calculating the fraction of neutral copy number events in each cell. The 

normalized and smoothed expression values of all genes in a single cell are assumed to be a 

mixture of three Gaussian distributions to represent three copy number states: gain, neutral 

and loss. To fit the GMM model, we initiate the modeling with equal variances in the three 

distributions, i.e. half of the sample standard deviation, with initial mean values of 0.2, 0, 

−0.2 respectively. Next, we use the modeled means and relative frequencies of the three 

distributions to determine the fractions of neutral events in each cell as:

Nfrac =
No .   of genesabs mean ≤ 0.05

total No .   of genes

A single cell is predefined as normal cells if more than 99% of genes fall into the neutral 

distribution ( Nfrac ≥ 0.99 ). Finally, the baseline copy number values are calculated as the 

median of all predefined ‘confident normal’ cells, and the relative gene expression values are 

obtained by subtraction of these baseline values from each individual gene.

Copy number segmentation

To perform segmentation, we first transform the cluster consensus to find chromosome 

breakpoints for the within-cluster of cells using Monte Carlo Simulation based on a Poisson 

Likelihood with a Gamma prior by applying the ‘MCpoissongamma’ function in R package 
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‘MCMCpack’38. We assumed a Poisson distribution of segment mean and a conjugated 

Gamma distribution of the Poisson parameter as follows:

y   Poisson λ ,

λ   Gamma α,  β ,

where y is the back-transformed UMI counts; α,  β are shape parameters of gamma 

distribution. We simulated 1,000 posterior means for each window and then use 

Kolmogorov–Smirnov (K-S) tests to determine if adjacent windows should be joined 

together. We calculate the KS test statistic D as the largest vertical distance between the 

accumulative distributions of posterior means of the two adjacent windows:

D = supx Fi x − Fj x

where x are posterior means of adjacent windows i and j. If the KS test statistic D is greater 

than a cutoff value, then a breakpoint is defined. If less than 25 breakpoints are defined in 

the first round with the initial cutoff, we decrease the cutoff by 50%. We repeat this process 

twice at most for each cluster. We unify all breakpoints from each cluster to form the 

consensus breakpoints for the whole population. We then calculate the posterior means of 

each window between adjacent breakpoints as its segment means by applying 

‘MCpoissongamma’ function to all consensus windows of each single cell. We then log-

transform the means and center the data as the final relative copy number ratios of each 

gene. Finally, we convert individual gene copy numbers to genomic bins by calculating 

averages of the genes that fall into 220kb genomic bins28 across the human genome to 

estimate the genome-wide copy number profile for each cell from the scRNA-seq data.

Theoretical estimation of genomic copy number resolution

To estimate the expected resolution of the copy number profiles inferred from the single cell 

RNA data, we downloaded the BED file of all gene entries in GRCh38 (v28) from UCSC. 

Since chromosome Y was not included in our copy number calculation, we only considered 

genes located in chr1:22 and chrX, which harbor a total of 56,051 genes entries. We 

estimated the genomic center position of individual genes by taking the averages of the gene 

start position and gene end position. Next we ordered all genes by their genomic positions 

and estimated the distance between two adjacent gene centers by calculating the distance 

between two gene centers. In total, we defined 56,028 gene intervals across the genome. 

From chr1 to 22 and X, the number of gene intervals are as follows: 5127, 3872, 2925, 2430, 

2779, 2802, 2292, 2189, 2137, 3189, 2857, 1279, 2152, 2081, 2440, 2911, 1133, 2917, 

1350, 795, 1300, 2281. The first quartile, median, mean, third quartile and maximum of 

gene interval across the whole genome are as follows: 9430bp, 24532 bp, 52806bp, 58485bp 

and 21765992bp. Since the size distribution of gene intervals is heavily skewed to the right, 

we calculated the median value to estimate the copy number resolution. Since we require at 

least 7000 genes to be detected across the whole single cell population in our pipeline, this 
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number represents an equivalent to a median of 7000/56051 ≈ 12.5% gene detection rate. 

Finally, we calculated the minimum gene interval in our analysis as 24,532 bp ÷ 12.5% ≈ 
200 Kb per gene interval. Last, we initiated our copy number analysis with 25-gene window, 

therefore we estimated the minimum size of a segment is 200Kb × 25 = 5 Mb genomic 

resolution for the detection of copy number events across the genome of each cell.

Estimation of bulk DNA copy number from single cell DNA data

The bulk DNA copy numbers of DCIS1 tumor cells were obtained from a single cell DNA 

sequencing data in which the median copy number profiles were computed. Briefly, we 

flow-sorted aneuploid single cells from the single nuclei suspensions and performed 

multiplexed single nucleus sparse whole genome sequencing as previously described39. In 

total we sequenced 539 single cells. Single cell copy number profiles were calculated using 

a 220kb variable binning method13 to quantify sequence reads in genomic bins and the CBS 

method40 to segment genomic bins, followed by MergeLevels41 to join adjacent segments 

with non-significant differences in segment ratios. The final bulk DNA copy number profile 

of this tumor was calculated by taking the median values of the all 539 single cell copy 

numbers of each genomic bin to generate a pseudo-bulk profile as a reference for the single 

cell RNA sequencing data.

Empirical estimation of CopyKat sensitivity from a breast tumor sample

We quantified the breakpoint detection efficiency using the breast tumor sample DCIS1 that 

has both scRNA-seq and bulk DNA-seq data describes above. The breakpoints detected in 

the bulk DNA-seq data were taken as the ‘ground truth’. The estimation was performed by 

comparing the breakpoints detected by CopyKAT in the scRNA-seq data to the ‘ground 

truth’ in bulk DNA-seq data. To evaluate the variation in genomic resolution detection, we 

performed bootstrapping 1000 times to resample 200 single cells with replacement and sent 

them for segmentation in CopyKAT. For each ‘ground truth’ breakpoint, we located a closet 

CopyKAT breakpoint that had the smallest genomic distance to the ‘ground truth’. If the 

distance fell within a given range, e.x. 200Kb, we defined that this breakpoint was 

successfully detected at 200Kb resolution; similarly breakpoints that fell into 5Mb range 

were determined as successfully detected at 5Mb resolution, and so forth. Lastly, we 

calculated the resolution at a given resolution as the percentages of breakpoints that were 

successfully detected with the given range of genomic distances, i.e. the total number of 

breakpoints detected divided by the total ‘ground truth’ breakpoints. We repeated this 

process 1,000 times to calculate the averaged sensitivity at the given resolution by 

bootstrapping resampling.

Classification of tumor and normal cells

Classification of tumor and normal cells was performed in two steps. We assumed that the 

major genetic distance among the cell populations is the difference between diploid and 

aneuploid genomes and therefore forced the single cells into two major clusters using 

hierarchical clustering with Ward linkage and Euclidean distance. To determine the identities 

of each clusters, we integrated the clustering results with the predefinition of the ‘confident 

normal cells’ that are defined by a very stringent criteria (see Online Methods section on 

Estimating Copy Number Baseline Values in Diploid Cells).The cluster that has significantly 
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higher enrichment of predefined normal cells is defined as the normal diploid cell cluster. In 

cases where there is no significant difference in the enrichment test, we switch to the ‘GMM 

definition’ approach to determine if the consensus profiles of each cluster pass the ‘normal 

cell criteria’, where at least 95% of the regions fall into the neutral distribution. In some 

challenging samples that have aneuploidy too close to 2N, we use an alternative slower 

approach by predicting the cells one-by-one using the ‘GMM definition’ approach and 

‘normal cell criteria’.

To evaluate the accuracy of this copy number-based classification of tumor and normal cells, 

we applied an empirical approach to decide tumor and normal cells based on clustering and 

expression of cancer-specific marker genes. We first clustered all single cells within a tumor 

using ‘SNN’ method in R package ‘Seurat’42. Next we obtained the expression levels of a 

panel of four epithelial markers (EPCAM, KRT19, KRT18, and KRT8). We calculated the 

average expression values of this epithelial markers panel as a consolidated epithelial score 

in each cell. Single cell gene expression clusters with high epithelial scores (kernel density 

center is above 0) were labeled as putative tumor cell clusters. In tumors that have both 

normal epithelial and tumor epithelial cell clusters, we further applied evaluated cancer type 

specific markers, including KRT19 for PDAC tumor epithelial cells, KRT8 for ATC, 

EPCAM for TNBC and IBC, and EGFR for GBM cancer cells. Furthermore, expression 

clusters that expressed immune cells markers (CD45, CD3, CD4, CD8) or fibroblast markers 

(ACTA2, FN1) were classified as normal cells. Single cells that had consistent aneuploid 

prediction results in both CopyKAT and by gene expression clusters with high epithelial 

score were considered to be tumor cells. The prediction accuracy of CopyKAT using 

aneuploid copy number profiles alone was then calculated as the number of cells with the 

correct prediction divided by the total number of single cells in the analysis.

Differential gene expression of subclones

We compared the single cell RNA gene expression data of the two major subclones within 

each tumor using a bimodal algorithm, MAST43, to mitigate gene detection rates across 

cells. The significant differentially expressed genes (DEG) were defined as having FDR 

adjusted p-value < 0.01 and | log2(Fold Change) | ≥ 0.5. The list of DEG was intersected 

with COSMIC33 human cancer gene list and a TCGA defined breast cancer gene list32 to 

identify known cancer genes. The genomic positions of genes were annotated by using R 

package ‘biomaRt’44.

Single cell gene set enrichment analysis

To identify enrichment of cancer hallmark signatures between the subclones, we applied 

single-sample GSVA (GSVA)34 to calculate enrichment scores for each gene set of the 

single cells using log2(UMI + 1) data. We first obtained GSVA scores for the 50 cancer 

hallmark gene signatures45 for each cell, and then compared the enrichment scores between 

two clones by using R package ‘limma’46. Differentially enriched signatures were defined as 

having FDR adjusted p-values < 0.05 and | mean score difference | ≥ 0.1 as described 

previously47.
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Construction of neighbor-joining trees from copy number profiles

To construct the neighbor-joining (NJ) trees of breast tumors, the pearson’s correlation 

distances were first calculated from the single tumor cell copy number matrix generated by 

by CopyKAT. The NJ trees were built from the distance matrix using the ‘nj’ function and 

re-rooted to an artificial normal diploid cell (2N copy number across the entire genome) 

using the interactive ‘root.phylo’ function in R package ‘ape’48. The final trees were plotted 

as a downward phylogram plots in R.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. Overview of the CopyKAT analysis workflow
a, The CopyKAT workflow begins with a UMI count matrix to order genes by their genomic 

positions and uses the raw count matrix to perform log-Freeman Turkey Transformation to 

stabilize variance and smooth outliers using a polynomial dynamic linear model. b, A subset 

of normal cells is defined using integrative clustering and GMM method to infer the copy 

number baseline. c, Relative gene expression values in single cells are used for MCMC 

segmentation and segments are merged by KS testing. d, Aneuploid tumor and normal cell 

clusters are classified using a normal cell enrichment and GMM distribution tests. e, Clonal 

substructure of tumor cells are delineated by clustering and subclones are used for 

differential expression analysis.
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Figure 2 –. Comparison of bulk DNA and single cell RNA copy number profiles
Copy number profiles estimated from scRNA-seq data for DCIS1 using CopyKAT and 

inferCNV. a, Clustered heatmap of 1,100 scRNA-seq copy number profiles estimated by 

CopyKAT. b, Line plot of the consensus of scRNA-seq copy number profiles estimated by 

CopyKAT where values are the median segments of all cells in the population. c, Clustered 

heatmap of 1,100 single tumor cell RNAseq copy number profiles estimated by inferCNV. d, 

Line plot of the consensus copy number profiles estimated by inferCNV. e, Heatmap of 

DNA copy number profile calculated from bulk DNA sequencing data from DCIS1, 

representing the ground truth reference profile. f, Line plot of bulk DNA-seq copy number 

profile from DCIS1. g, Boxplot comparing the relative distances of inferred copy numbers 

for all gene windows to the ground truth DNA copy number values for CopyKAT and 

inferCNV. h, Boxplot comparing the stability of gene interval sizes, showing the variation in 

averaged copy number values across different gene intervals. In g and h, ***, p-value < 

0.001 of pair-wise two side t-tests comparing n= 12,167 gene windows between CopyKAT 
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and inferCNV results. In both boxplots, the boxes are centered at median values, where the 

range of boxes are the inter quartile range (IQR) bounded by first quartile (Q1) and third 

quartile (Q3). The upper whiskers are located at the smaller of the data maximum and Q3 + 

1.5 IQR, whereas the lower whiskers are located at the larger value of the data minimum and 

Q1 – 1.5 IQR.
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Figure 3 –. Classification of cancer and normal cells in human tumors
Classification of tumor and normal cells by aneuploidy estimation with CopyKAT and 

mapping of the inferred profiles to scRNA-seq expression data from PDAC, ATC and TNBC 

tumors. a, UMAPs of scRNA-seq data from 5 PDAC tumors, with upper panels mapping the 

aneuploid clusters to the gene expression data, and the lower panels showing epithelial 

scores (average expression of four epithelial markers). Circles indicate expression clusters 

with high epithelial scores and include both tumor and normal epithelial cells. b, UMAPs of 

scRNA-seq data from 5 ATC tumors, with upper panels mapping the aneuploid clusters to 

Gao et al. Page 22

Nat Biotechnol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the scRNA-seq gene expression data, and lower panels showing epithelial scores. c, UMAPs 

of 5 TNBC tumors, with upper panels mapping the aneuploid clusters to the scRNA-seq 

gene expression data, and the lower panels show epithelial scores. d-f, Stacked bar graph 

showing percentages of predicted aneuploid tumor cell and normal diploid cell purities of 

the d, PDAC tumors e, ATC tumors and f, TNBC tumors.

Gao et al. Page 23

Nat Biotechnol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4 –. Classification of tumor and normal cells sequenced by different scRNA-seq 
technologies
Clustered heatmaps of single cell copy number profiles estimated by CopyKAT from 5’ 

scRNA-seq data for invasive breast cancer samples (a) IDC1 and (c) IDC2, and full-length 

SMART-seq2 scRNA-seq data for GBM sample (e) GBM1 and (g) GBM2. CopyKAT 

classification of diploid normal cells (N) and aneuploid cells tumor cells (T) are indicated on 

the left side annotation bars. High-dimensional UMAP embedding of scRNA-seq data with 
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annotation of the inferred CopyKAT diploid and aneuploid copy number profiles for (b) 

IDC1, (d) IDC2, (f) GBM1 and (h) GBM2.
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Figure 5 –. Clonal substructure of three triple-negative breast tumors
Clonal substructure of TNBC1, TNBC2, TNBC5 delineated by clustering single cell copy 

number profiles inferred from scRNA-seq data by CopyKAT. (a-c) The upper panels show 

the clustered heatmap of single cells of two major subclones in TNBC1, TNBC2 and 

TNBC5 with cancer genes annotated in clonal events, while the lower panels show 

consensus copy number profiles of the two major clones with subclonal cancer genes 

annotated. (d, e, f) Upper panels show UMAP projections of the scRNA-seq expression data 

of the two major clones in TNBC1, TNBC2 and TNBC5 with inferred aneuploid copy 
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number profiles marked, while lower panels show GSVA analysis of the top 12 cancer 

hallmark signatures between the two major subclones.

Gao et al. Page 27

Nat Biotechnol. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Overview of CopyKAT workflow
	Evaluation of technical performance
	Classification of tumor and normal cells in solid tumors
	Application to other scRNA-seq technologies
	Inferring the clonal substructure of breast tumors

	Discussion
	Methods
	Tumor tissue samples
	Single cell RNA sequencing of fresh tumor tissues
	Preprocessing and transformation of scRNA-seq data
	Estimating copy number baseline values in diploid cells
	Copy number segmentation
	Theoretical estimation of genomic copy number resolution
	Estimation of bulk DNA copy number from single cell DNA data
	Empirical estimation of CopyKat sensitivity from a breast tumor sample
	Classification of tumor and normal cells
	Differential gene expression of subclones
	Single cell gene set enrichment analysis
	Construction of neighbor-joining trees from copy number profiles

	References
	References
	Figure 1 –
	Figure 2 –
	Figure 3 –
	Figure 4 –
	Figure 5 –

