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BACKGROUND Early recognition of volume overload is essential for heart failure patients. Volume overload can often

be easily treated if caught early but causes significant morbidity if unrecognized and allowed to progress. Intravascular

volume status can be assessed by ultrasound-based estimation of right atrial pressure (RAP), but the availability of this

diagnostic modality is limited by the need for experienced physicians to accurately interpret these scans.

OBJECTIVES We sought to evaluate whether machine learning can accurately estimate echocardiogram-measured RAP.

METHODS We developed fully automated deep learning models for identifying inferior vena cava scans with rapid

inspiration in echocardiogram studies and estimating RAP from those scans. The RAP estimation model was trained and

evaluated using 15,828 ultrasound videos of the inferior vena cava and coupled cardiologist-assessed RAP estimates as

well as 319 RAP measurements from right heart catheterization.

RESULTS Our model agreed with cardiologist estimates 80.3% of the time (area under the receiver-operating char-

acteristic of 0.844) in a test data set, at the upper end of interoperator agreement rates found in the literature of 70 to

75%. Our model’s RAP estimates were statistically indistinguishable from cardiologists’ ultrasound-based RAP estimates

(P ¼ 0.98) when compared against the gold standard of right heart catheterization RAP measurements in a subset of

patients. Our model also generalized well to an external data set of echocardiograms from a different institution (area

under the receiver-operating characteristic of 0.854 compared to cardiologist RAP estimates).

CONCLUSIONS Machine learning is capable of accurately and robustly interpreting RAP from echocardiogram

videos. This algorithm could be used to perform automated assessments of intravascular volume status.

(JACC Adv. 2024;3:101192) © 2024 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AUROC = area under the

receiver operating

characteristic curve

IVC = inferior vena cava

ML = machine learning

RAP = right atrial pressure

RHC = right heart

catheterization

SFP = severe false positive

SFN = severe false negative

TTE = transthoracic

echocardiogram

UCSF = University of

California–San Francisco
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H eart failure affects over 6 million
Americans and is the leading
cause of hospitalization in adults

over 65, representing an annual financial
burden of over 40 billion dollars on the
health care system.1 A common complica-
tion of heart failure is vascular congestion,
or the accumulation of excess fluid in blood
vessels due to impaired cardiac function.
This leads to decreased fluid removal by
the kidneys, volume overload, and elevated
pressures within the heart. Patients with
heart failure frequently experience exacer-
bations of vascular congestion which, if left
unchecked, can lead to swelling of the ex-
tremities, difficulty breathing, renal failure,
and hepatic congestion, which are associated with
higher overall mortality.2 Severe cases require hospi-
tal admission for adequate treatment. However, if
vascular congestion is detected early, it can often
be addressed in an outpatient setting through
adjustment of oral diuretics and other medications.3

Thus, methods to easily and accurately identify
vascular congestion are of significant clinical
interest.

A common method of assessing vascular volume
status is the estimation of pressure in the right atrium
of the heart, or right atrial pressure (RAP).2 RAP is
normally low (0-5 mm Hg), but in the setting of
vascular congestion, it can be elevated to 10-30 mmHg
due to fluid accumulation in venous capacitance
vessels.4 The gold standard for RAP measurement is
right heart catheterization (RHC), a procedure that
involves introducing a flexible catheter tipped with a
pressure transducer into the venous system and
advancing it to the right side of the heart. This pro-
cedure yields highly accurate measurements of RAP
but is invasive, carries procedural risks, requires
specialized facilities, and is costly.5 As such, it is only
conducted in settings where the diagnostic benefits
outweigh the associated risks. A common noninvasive
alternative for quantitatively assessing RAP is ultra-
sound evaluation of the inferior vena cava (IVC) at its
juncture with the right atrium. These scans are
routinely collected as part of a standard transthoracic
echocardiogram (TTE). RAP is estimated from IVC ul-
trasound videos using a process called the “sniff test.”
In this process, a TTE video of the IVC is recorded
while the patient is asked to inhale sharply, creating a
rapid change in thoracic pressure that temporarily
compresses the IVC. In patients with normal RAP, the
sniff will significantly collapse the IVC, while in pa-
tients with elevated RAP, the collapse will be
attenuated or absent due to higher pressure inside the
vessel (Figure 1).

The metrics used to estimate RAP from these scans
were previously described 6 and are recommended by
the American Society for Echocardiography and the
European Association of Cardiovascular Imaging 7 as
the standard for TTE-based RAP assessment. How-
ever, the application of these standards can be
operator-dependent. Multiple studies have found
substantial interoperator variability among medical
trainees, fellows, and emergency physicians when
collecting IVC ultrasound videos and estimating RAP,
even after dozens of hours of training.8-14 The most
reliable assessments of TTE IVC videos are those of
experienced cardiologists who regularly interpret
these studies, but such specialists may not be uni-
formly available at all medical centers. If a machine
learning (ML) model could be trained to automatically
analyze IVC sniff tests with the proficiency of an
experienced cardiologist, quick and robust RAP
assessment could be made much more accessible,
even outside of the context of a complete TTE study.
We hypothesized that we could train a deep learning
ML model to accomplish automated interpretation of
IVC sniff test ultrasound videos collected as part of a
routine TTE and compare its performance with both
expert cardiologist assessments and the gold stan-
dard of RHC measurements of RAP.
METHODS

DATA SET AND DATA SCREENING. This work used
Digital Imaging and Communications in Medicine
format recordings of TTE studies obtained at the
University of California–San Francisco (UCSF) be-
tween 2016 and 2020. TTE studies were excluded in
their entirety for any of the following reasons:

� Multiple different RAP estimates were recorded for
the same study.

� The study involved a stress test, pediatric or fetal
patient, transesophageal or intracardiac ultra-
sound, or patient on a ventilator. None of these
study types are representative of how a standard
TTE sniff test would be evaluated.

� 99.7% of the remaining studies were conducted on
1 of 4 cardiac ultrasound machine models; the
remaining 0.3% were excluded.

In addition, individual videos from studies were
excluded based on the following criteria:

� The scan was <20 frames long. Such video clips are
too short to contain a complete sniff test.



FIGURE 1 Examples of a Sniff Test

(A) An ultrasound view of the IVC and right atrium at a resting state and during a sniff. The high degree of collapse during the sniff indicates

that this patient likely has a normal RAP. (B) A view of another IVC at rest and during a sniff. The low degree of collapse indicates that this

patient likely has an elevated RAP. RAP ¼ right atrial pressure; IVC ¼ inferior vena cava.
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� Physical pixel size was not recorded in the meta-
data. This made it impossible to measure IVC
diameter in real units.

� Physical pixel size was in the lower or upper 5th
percentile of pixel scale. This narrowed the total
range of pixel scales from (0.002, 5.2) centimeters
to (0.074, 0.168) centimeters. Extreme pixel sizes
imply extreme ultrasound settings for parameters
like scanning frequency and depth, which would
generally not be used for viewing the IVC.

� Color Doppler mode was enabled. Sniff scans are
rarely taken with Color Doppler enabled at UCSF,
and Color Doppler signal in a small subset of data
would likely confuse ML models. Identification of
videos with Color Doppler was performed using a
pretrained Doppler classification ML model from
another study.

After exclusions, a total of 16,823 TTE studies with
cardiologist RAP measurements remained. Each of
these studies consisted of up to 200 individual ul-
trasound videos covering all areas of the heart, so two
view classification ML models were trained to sort
through these data and identify a single sniff test scan
per study (Figure 2). The first identified all scans in
the study showing any view of the IVC, and the sec-
ond identified which of these IVC views was most
likely to show a sniff test (see Appendix 2 for more
details). This process eliminated 995 studies con-
taining no recognizable IVC scan, leaving 15,828
studies collected from 11,869 patients (Central
Illustration). All TTE studies had RAP estimates
made by National Board of Echocardiography-
certified UCSF cardiologists in the course of routine
clinical care. In accordance with published stan-
dards,7 these measurements were recorded as either
3 mm Hg (representing a range of 0-5 mm Hg),
8 mm Hg (5-10 mm Hg), or 15 mm Hg (10-30 mm Hg).
Measurements of 3 mm Hg and 15 mm Hg represent
normal and elevated RAP ranges, respectively, while
a value of 8 mm Hg is considered indeterminate.

RHC DATA. We also interrogated a data set of RHCs
performed at UCSF between 2012 and 2020. We
identified 1739 paired TTE and RHC studies on the
same patient occurring within a window of �30 days



FIGURE 2 Data Flow Illustration

Going From a Full TTE Study to an RAP Classification Relies on a Series of 3 ML Classification Models. First, the IVC view classifier identifies

scans in the sStudy Which Show the IVC. Second, the sniff view classifier identifies which of the IVC scans is most likely to Sshow a sniff test.

Finally, the RAP classifier analyzes this sniff scan using the SlowFast architecture to determine an RAP estimate of 3, 8, or 15 mm Hg.

ML ¼ machine learning; TTE ¼ transthoracic echocardiogram; other abbreviations as in Figure 1.
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of each other. Although a smaller time separation
window would decrease the chance that the patient’s
RAP changed between the 2 studies, it would sub-
stantially reduce the amount of paired data available
for analysis. A window of 30 days balanced these
considerations (see Appendix 3). If multiple RHC
measurements were taken from the patient, the
closest in temporal proximity to the TTE study was
kept. Of the 1739 paired studies, 527 TTE studies were
labeled with an RAP by a cardiologist. After applying
our sniff identification procedure and manually
screening to exclude scans without the IVC (views of
the IVC without an obvious sniff were not excluded),
319 ultrasound videos remained. These studies rep-
resented our “golden” data for which we had
matched sniff test ultrasound videos, the associated
cardiologist RAP assessment based on this video, and
a ground-truth RAP measurement from RHC. To avoid
potential contamination, these scans were always
kept in the test data set for all model training.

An additional consideration was how to determine
the “accuracy” of cardiologist or ML RAP estimations
(which are categorical) when compared to RHC mea-
surements (which are continuous). Although a direct
comparison could be made by binning the RHC values
according to the ranges in Lang et al,7 these ranges
have some ambiguity; an RHC value of 5 mm Hg could
be binned as “3” or “8,” and an RHC value of
10 mm Hg could be binned as “8” or “15.” As RHC
measurements were reported as integers, these
ambiguous situations were common. We elected to
place these edge case readings into the lower of the 2
possible bins. Thus, an RHC value in the range [0, 5]
was binned as “3,” a value in the range (5, 10] was
binned as “8,” and a value in the range (10, 30] was
binned as “15.” This allowed for direct accuracy
comparisons between any combination of outputs
from RHCs, cardiologist estimations, and ML models.
EXTERNAL VALIDATION DATA. Our external valida-
tion data set consisted of 6007 TTE studies and car-
diologists’ interpreted RAP measurements obtained
at the University of Montreal in 2022. The RAP mea-
surements were performed according to standard TTE
guidelines.7 All studies were conducted on a model of
ultrasound machine which was also present in the
UCSF data set. Identical data exclusion and sniff scan
selection procedures were applied to the Montreal
data with the high-stringency IVC view classifier
threshold (see Appendix 2), leaving 2,618 data points
to use for model evaluation.

RAP CLASSIFICATION MODEL TRAINING AND

EVALUATION. The 15,828 studies with a cardiologist-
generated RAP estimate were divided into 12,664
training studies, 1,582 validation studies, and 1,582
test studies. Data were split randomly by patient,
with the exception that all 319 studies with a matched
RHC measurement were placed in the test data set.
The RAP classification ML model used the SlowFast
R50 architecture 15 with a length-3 output layer and
softmax activation to generate probabilities for 3
classes: 3 mm Hg, 8 mm Hg, and 15 mm Hg. SlowFast
uses a convolution backbone and works by analyzing
data in 2 components: a “slow lane,” which takes in
every eighth video frame and is meant to identify
static video features, and a “fast lane,” which takes in
all video frames and is meant to identify dynamic
video features. Information from both lanes is syn-
thesized to yield a final classification. This architec-
ture makes intuitive sense for our application because
RAP measurement relies on measuring one “slow”

feature (IVC resting diameter) and one “fast” feature
(IVC collapsibility).

The model was trained for 100 epochs using cate-
gorical cross-entropy loss with the Radam optimizer
and an initial learning rate of 1e-3. The epoch that
produced the best validation area under the receiver



CENTRAL ILLUSTRATION Measuring Right Atrial Pressure From Transthoracic Echocardiogram Videos of the IVC
Under Rapid Inspiration Using Deep Learning

Yurk D, et al. JACC Adv. 2024;3(9):101192.

Measuring Right Atrial Pressure From Transthoracic Echocardiogram Videos of the IVC Under Rapid Inspiration Using Deep Learning Abbreviation as in Figure 1.
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operating characteristic curve was saved as the best
state. Regularization was performed via random data
augmentation, batch normalization, dropout, and la-
bel smoothing. Training was performed on an
NVIDIA RTX 6000 Ada graphics card (see Appendix 4
for more details).

Model performance was evaluated on the full test
data set as well as 2 subsets: one consisting of the 319
studies with a coupled RHC measurement and one
consisting of 554 “high-stringency” videos, which
were scored highly by the IVC view classification ML
model (see Appendix 2). Additionally, we evaluated
model performance on an external data set from the
Montreal Heart Institute consisting of 2,618 sniff test
TTE videos and associated cardiologist RAP esti-
mates. To permit uniform comparison of results
between these data sets, all values for area under the
receiver-operating characteristic (AUROC) curve, ac-
curacy, and F1 score reported below are calculated as
a weighted average of the metric in each RAP class (3,
8, or 15 mm Hg) based on the frequency of that class
in the overall UCSF data set. All metrics are accom-
panied by a 95% confidence interval, calculated using
either a z-test for proportions or 1000-sample boot-
strapping for AUROC and F1. All reported P values
were computed using 2-sided z-tests.

ETHICAL APPROVAL. This study was reviewed by
the University of California–San Francisco Institu-
tional Review Board, and the need for informed
consent was waived. The external validation was
reviewed and approved by the University of Montreal
Institutional Review Board.



TABLE 1 Out-of-Sample Performance, Full Test Set

RAP Prediction Performance: Full Test Data Set

Confusion Matrix Predicted 3 mm Hg Predicted 8 mm Hg Predicted 15 mm Hg Class AUROC

Cardiologist 3 mm Hg 952 167 29 0.859 (0.842-0.877)

Cardiologist 8 mm Hg 77 132 37 0.603 (0.567-0.637)

Cardiologist 15 mm Hg 31 44 113 0.889 (0.864-0.911)

Accuracy 77.3% (75.2-79.4)

Severe false negative 16.5% (11.2-21.8)

Severe false positive 2.5% (1.6-3.4)

AUROC 0.823 (0.807-0.837)

F1 score 0.769 (0.752-0.784)

The results of the echo-based RAP classification model evaluated on the full test data set of 1,582 scans. Green boxes represent correct predictions, the red box represents
severe false negative (SFN) predictions, and the orange box represents severe false positive (SFP) predictions. SFN rate represents the percentage of patients classified as
15 mm Hg by cardiologists which the model classified as 3 mm Hg, and SFP represents the opposite error. Overall accuracy, AUROC, and F1 values are computed as a weighted
average from each class based on the frequency of that class in the data set. Values in parentheses represent 95% confidence boundaries.

AUROC ¼ area under the receiver-operating characteristic; RAP ¼ right atrial pressure.
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RESULTS

DATA SET CHARACTERIZATION. Patients in the
cohort were 51.8% female and ranged in age from 18
to 102 years old. RAP measurements were produced
by 45 different physicians using 4 different models of
cardiac ultrasound machines from 2 different manu-
facturers. The overall proportion of studies with
cardiologist RAP estimates of 3 mm Hg, 8 mm Hg, and
15 mm Hg was 79.1%, 13.4%, and 7.5%, respectively.
Within the test data set, the relative proportions were
72.6%, 15.5%, and 11.6%, respectively. This difference
in distribution was because the test data set con-
tained all studies with coupled RHC data, and pa-
tients who underwent RHC were more likely than the
broader population who received a TTE to be in heart
failure. Detailed summary statistics are provided in
Supplemental Table S1.

MODEL PERFORMANCE. Compar i son to card io log is t
measurements . Model training and initial evalua-
tion relied only on TTE videos of the IVC during a
TABLE 2 Out-of-Sample Performance, High-Stringency Test Set

RAP Prediction Performance: High-Stringency IVC Test Data set

Confusion Matrix Predicted 3 mm Hg Predicted

Cardiologist 3 mm Hg 328

Cardiologist 8 mm Hg 41

Cardiologist 15 mm Hg 4

Accuracy

Severe false negative

Severe false positive

AUROC

F1 score

Results of the echo-based RAP classification model evaluated on the high-stringency IV

AUROC ¼ area under the receiver-operating characteristic; IVC ¼ inferior vena cava; R
sniff test and cardiologists’ interpretations of those
videos. The model with the best validation perfor-
mance, as measured by AUROC, was run on the test
data set to gauge out-of-sample performance. The
average frequency-weighted model AUROC was
0.823, and similarly frequency-weighted accuracy
and F1 values were 77.3% and 0.769, respectively
(see Table 1). We also examined the rate at which
patients given a measurement of 15 mm Hg by a
cardiologist were labeled as 3 mm Hg by the model
(a severe false negative [SFN]), as well as the rate at
which patients given a measurement of 3 mm Hg by
a cardiologist were labeled as 15 mm Hg by the
model (a severe false positive [SFP]). These yielded
rates of 16.5% and 2.5%, respectively.

Upon manual inspection, the full test data set was
found to contain numerous scans in which the IVC
was either noisy, obscured, or not present at all
(Supplemental Figure S1). To address this, we created
a high-stringency subset of the test data set which
only kept the 35% of scans with the highest scores
from the IVC view classification model. Upon manual
8 mm Hg Predicted 15 mm Hg Class AUROC

44 4 0.879 (0.852-0.904)

58 7 0.626 (0.575-0.677)

30 38 0.917 (0.878-0.952)

80.3% (77.0-83.6)

5.6% (0.3-10.9)

1.1% (0.0-2.2)

0.844 (0.822-0.865)

0.758 (0.729-0.784)

C test data set of 554 scans.

AP ¼ right atrial pressure.



TABLE 3 Comparison to Right Heart Catheter

UCSF Right Heart Catheterization Data

RHC Value Range Cardiologist Estimate of RAP From Echo

N 3 mm Hg 8 mm Hg 15 mm Hg

(0, 5) mm Hg 118 84 24 10

(5, 10) mm Hg 104 56 28 20

(10, 30) mm Hg 97 26 27 44

Accuracy 48.9% (43.4-54.4)

ML Model

RHC Value Range Model Prediction of RAP From Echo

N 3 mm Hg 8 mm Hg 15 mm Hg

(0, 5) mm Hg 118 78 30 10

(5, 10) mm Hg 104 50 35 19

(10, 30) mm Hg 97 27 25 45

Accuracy 49.5% (44.0-55.0)

Comparison of RAP estimates made by both cardiologists and the ML model from echo IVC videos versus gold
standard RAP measurements from right heart catheterization (RHC). The original continuous RAP values have
been binned into 3 mm Hg, 8 mm Hg, and 15 mm Hg categories to allow for direct comparison with cardiologist
and model outputs.

ML ¼ machine learning; RAP ¼ right atrial pressure; RHC ¼ right heart catheterization; UCSF ¼ University of
California–San Francisco.
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inspection, almost all scans passing this higher
threshold seemed to be high-quality IVC videos. This
filtering was blinded to any RAP information (either
cardiologist estimates or model predictions) and
should represent the model performance we could
expect on higher-quality IVC data. Test performance
from this data set is shown below in Table 2. Applying
the high-stringency IVC threshold did not signifi-
cantly change overall accuracy, AUROC, or F1 score.
However, it did lead to a significant drop in the SFN
rate (P ¼ 0.02) by almost two-thirds, from 16.5% to
5.6%. The SFP rate decreased with moderate signifi-
cance, from 2.5% to 1.1% (P ¼ 0.09).

Compar i son to RHC measurements . To address
the variability of RAP estimations from echocardio-
gram videos of the IVC, we evaluated model per-
formance on a subset of 319 patients who had an
RAP measurement obtained via RHC within 30 days
of a cardiologist’s TTE-based RAP estimate (see
Methods). To evaluate the performance of both UCSF
cardiologists and the ML model against the invasive
gold standard, RHC measurements were converted
from their original continuous values into categori-
cal 3, 8, or 15 mm Hg bins. Table 3 below shows how
RAP estimates from cardiologists and the ML model
compared to measurements from RHC. While the
model agreed with cardiologist predictions 77% of
the time in the full test data set (see Table 1), its
performance with respect to RHC results was effec-
tively equivalent to that of the cardiologists, both in
terms of overall accuracy and the SFP and SFN rates.
Applying a categorical chi-squared test to compare
the distribution of predictions between the cardiol-
ogists and echo-only ML model yielded P ¼ 0.98,
suggesting no statistically significant difference be-
tween the ML model and cardiologist
interpretations.
Externa l eva luat ion performance . As external
validation of our RAP estimation ML model, we
examined its performance in a data set of 2618 TTE
studies collected in 2022 from the Montreal Heart
Institute at the University of Montreal. Study and
sniff video selection were performed using the same
procedure as that used to generate the high-
stringency UCSF test data set. This fully indepen-
dent data set provided an opportunity to evaluate the
generalizability of the model trained on UCSF data.
Overall, model performance remained robust on the
external data set (Table 4), with similar performance
in overall accuracy, AUROC, and SFN rate as well as
slight improvements in F1 score (P < 0.05) and SFP
rate (P ¼ 0.07) when compared to the high-stringency
UCSF test data set.
DISCUSSION

We present, to our knowledge, the first ML model
capable of performing fully automated measurement
of RAP from a TTE video of a sniff test. The model was
trained on a large and varied data set and attained an
AUROC of 0.823 (on the full test data set, N ¼ 1,582)
and 0.844 (on the high-stringency test data set,
N ¼ 554) compared to RAP measurements from
experienced UCSF cardiologists. When both model
and cardiologist RAP estimates from echoes were
compared to RAP measurements obtained from the
invasive gold standard RHC procedure in a subset of
patients (N ¼ 319), the ML model attained the same
accuracy as the cardiologists and produced a statis-
tically identical measurement distribution. The ML
model also demonstrated strong generalization,
showing robust performance on an independently
obtained data set from another institution. Further-
more, the developed models are relatively light-
weight, allowing for real-time inference on consumer
graphics processing unit or even mobile devices (see
Appendix 4.3).

While modern medical centers have widespread
access to ultrasound equipment capable of IVC im-
aging, round-the-clock access to cardiologists for
interpretation of these images for RAP assessment
may be limited. Even at large medical centers with
many cardiologists, it is not always feasible to
immediately obtain expert TTE assessment for
vascular volume status. The availability of a robust



TABLE 4 External Model Validation

Montreal Data

Confusion Matrix Predicted 3 mm Hg Predicted 8 mm Hg Predicted 15 mm Hg Class AUROC

Cardiologist 3 mm Hg 1963 195 8 0.891 (0.875-0.906)

Cardiologist 8 mm Hg 118 151 13 0.631 (0.599-0.658)

Cardiologist 15 mm Hg 15 75 80 0.917 (0.893-0.937)

Accuracy 82.4% (80.9-83.9)

Severe false negative 8.8% (4.6-13.1)

Severe false positive 0.4% (0.1-0.6)

AUROC 0.854 (0.842-0.866)

F1 score 0.805 (0.793-0.817)

Model performance as compared to cardiologist RAP estimates, shown for the Montreal external test data set. Total accuracy, AUROC, and F1 scores are still weighted by UCSF
class frequencies to allow for direct comparison.

AUROC ¼ area under the receiver-operating characteristic.
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ML model would enable quick and noninvasive RAP
assessment to be expanded beyond cardiology de-
partments and democratized to anyone with access to
an ultrasound machine.

Multiple prior studies have attempted to use ML to
analyze ultrasound scans of the IVC and use it to
predict parameters such as RAP 16 and fluid respon-
siveness.17-19 However, these studies had access to
limited data sets of at most 175 patients, hampering
model training and leading to significant generaliza-
tion concerns. Our data set of 15,828 individual TTE
studies from 11,869 patients represents a nearly 100�
increase in data set size over any similar previous
study, enabling far more robust training and testing.
Furthermore, the data set covered TTEs collected
over a period of 4 years using 4 different models of
ultrasound machines and interpreted by dozens of
cardiologists, encompassing the variability inherent
in real-world medical data. As a result, this study
represents a unique opportunity to both train an ac-
curate ML model and robustly evaluate its
performance.

VARIABILITY OF HUMAN LABELING. When assessing
ML model results, it is important to note that sniff
test assessments are vulnerable to a variety of po-
tential sources of error, such as varying IVC diameter
at different points along its length or erroneous
measurements due to misalignment of the imaging
plane with the IVC.20 Multiple studies have found
substantial interoperator variability when assessing
IVC dimensions,8-14 and studies that specifically
looked at interoperator agreement rates for RAP
measurement or vascular volume status based on IVC
scans found agreement rates of 70 to 75%.11,12

Assuming that the conditions leading to this vari-
ability are broadly similar between different medical
centers, our model performance may be nearing the
performance limit set by underlying uncertainty in
human labeled TTE data.

COMPARISON TO INVASIVE CATHETER MEASURE-

MENTS. The subset of our test data set that had
matched RHC measurements provided a means of
assessing model performance in a way that was in-
dependent of human interpreter variability. Align-
ment between cardiologist and RHC measurements in
this data set compared favorably to the results of
Magnino et al,21 a study that was designed to compare
sniff test evaluation to RHC measurements in
controlled conditions (see Appendix 3). In compari-
son to RHC, the ML model attained almost identical
accuracy and SFP/SFN rates to the cardiologist mea-
surements. Furthermore, a chi-square test to compare
the model and cardiologist prediction distributions
indicated that they were statistically indistinguish-
able (P ¼ 0.98). These results provide strong evidence
that the ML model effectively replicated the perfor-
mance of cardiologists in analyzing sniff tests.
Furthermore, the robust performance of the model on
the external test data set from the University of
Montreal indicates that it was able to effectively
apply clinical standards 7 in a generalizable manner,
rather than focusing on some artifact unique to the
UCSF data set.

ERROR MODALITY RATES. It is also worth consid-
ering that not all wrong answers carry the same
clinical significance. If a model of this nature were
deployed as a screening tool in a clinical setting, the
most problematic error would be a SFN, ie, analyzing
a scan from a patient who had an RAP in the 15 mm Hg
range and placing them in the 3 mm Hg category. This
would potentially result in a patient who needed
immediate treatment for vascular congestion being
evaluated as euvolemic and not directed to appro-
priate follow-up testing and treatment. Our model
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results on the full test data set showed a SFN rate
16.5% and a SFP rate of 2.5%. While these rates could
be problematic in clinical applications, we hypothe-
sized that many of these misclassifications were due
to poor-quality input videos or videos that did not
actually show a sniff scan. When the test data set was
restricted to videos that were scored highly by the IVC
view classification model, the SFN rate dropped by
almost two-thirds to 5.6% and the SFP rate dropped
by over half to 1.1%, supporting our hypothesis.
Outside of these SFN and SFP errors, the overall
model performance did not change significantly be-
tween the full and high-stringency test data sets,
indicating that the model was generally able to
correctly classify poor-quality IVC scans. This is
important for potential clinical utility, as even expe-
rienced sonographers struggle to obtain clear high-
quality IVC views for some patients. We further
highlight that this tool, like all diagnostic modalities
utilized in clinical medicine, would be applied and
interpreted in the entire clinical context of a pa-
tient presentation.

STUDY LIMITATIONS. There are several limitations to
this work. As sniff scans were not labeled at the time
of collection, we identified the appropriate video
input from each full TTE study using view classifica-
tion ML models. These models identified some videos
that were not used by cardiologists to generate RAP
measurements, which added noise to model training
and evaluation. Using the high-stringency test data
set mitigated this problem, but also excluded some
valid sniff scan videos. In addition, the level of un-
derlying variability in the cardiologist RAP measure-
ments in this data set cannot be known, so the true
performance limit of a model that “perfectly” repli-
cates a cardiologist can only be estimated from vari-
ability levels found in other studies. Comparison to
RHC provided us with a measure independent of
human variability, but the size of this matched data
set was limited. Furthermore, the RHC and TTE
measurements were generally not taken on the same
day, making it possible that the patient’s RAP
changed in the intervening time. Our selection of a
30-day allowable time window between the 2 studies
was chosen to balance the changing RAP concern
against data availability. As both the cardiologist and
model evaluations were based solely on TTE data, any
error due to a change in underlying RAP between the
RHC and TTE measurements would be reflected
equally in the cardiologist and model performance
results. The study cohort also included relatively few
patients with conditions like more-than-moderate
tricuspid regurgitation or liver transplants which
can impact the reading of sniff scans, so caution may
be warranted in applying the model to these pop-
ulations. Finally, the application of the current model
as a clinical tool would be limited to medical settings
with access to a high-end cardiac ultrasound device
and a trained sonographer, as these were the condi-
tions under which all training and evaluation data
were acquired.

CONCLUSIONS

ML can be used to measure RAP accurately and
robustly from ultrasound scans of the IVC. Future
work will focus on evaluating and fine-tuning the ML
models using data from low-cost point-of-care ultra-
sound devices, as well as using the IVC view recog-
nition models that were developed to help guide
novice ultrasound operators to acquire sniff scans on
such devices. These developments would make
vascular congestion screening possible in primary
care offices or even home health settings, reducing
the need for costly specialist referrals and improving
the standard of care for heart failure patients.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: ML can

automatically measure RAP from an ultrasound video of

the IVC with similar accuracy to a cardiologist.

TRANSLATIONAL OUTLOOK: ML-based tools could

be used to aid nonspecialized providers in quickly

obtaining RAP measurements and in assessing risk of

intravascular congestion. This may enable automated

ultrasound-based assessments without needing to wait

for a full echocardiogram study.
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