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Abstract

Objective: Cholesteatoma is a challenging chronic pathology of the middle ear for

which pharmacologic therapies have not been developed yet. Cholesteatoma occur-

rence depends on the interplay between genetic and environmental factors while

master regulators orchestrating disease progression are still unknown. Therefore, in

this review, we will discuss the diagnostic and therapeutic potential of non-coding

RNAs (ncRNA) as a new class of regulatory molecules.

Methods: We have comprehensively reviewed all articles investigating ncRNAs, spe-

cifically micro RNAs (miRNAs) and long ncRNAs (lncRNA/circRNA) in cholesteatoma

tissue.

Results: Candidate miRNA approaches indicated that miR-21 and let-7a are the major

miRNAs involved in cholesteatoma growth, migration, proliferation, bone destruction,

and apoptosis. Regulatory potential for the same biological processes was also observed

for miR-203a. The NF-kB/miR-802/PTEN regulatory network was in relation to

observed miR-21 activity in cholesteatoma as well. High throughput approaches rev-

ealed additional ncRNAs implicated in cholesteatoma pathology. Competitive endoge-

nous RNA (ceRNA) analysis highlighted lncRNA/circRNA that could be “endogenous
sponge” for miR-21 and let-7a based on the hypothesis that RNA transcripts can com-

municate with and regulate each other by using shared miRNA response elements.

Conclusion: In this review, we summarize the discoveries and role of ncRNA in major

pathways in cholesteatoma and highlight the potential of miRNA-based therapeutics

in the treatment of cholesteatoma.

Level of Evidence: NA.
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1 | MOLECULAR BASIS OF THE
CHOLESTEATOMA DEVELOPMENT

Cholesteatoma development may depend on the interplay between

genetic and environmental factors,1 however, the molecular mechanisms

underlying cholesteatoma pathogenesis remain undefined. Cholesteatoma

investigations have progressed from evaluating individual candidate genes

to genome-wide studies to elucidate molecular mechanisms of develop-

ment on a genomic scale.2–5 Despite that numerous processes and path-

ways have been determined to harbor dysregulated genes identified in
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cholesteatoma,2–6 no discrete pharmacological targets have been identi-

fied yet. To identify master regulators of these pathways and provide

pharmacologic targets for medical management of cholesteatoma, we

need to look beyond the protein-coding genes and into the universe of

noncoding RNA (ncRNA) molecules (Table 1).

2 | THE EXPANDING UNIVERSE OF
ncRNAs

Only 1%–2% of the human genome is transcribed in coding RNAs,

able to encode a sequence of amino acids in proteins.15 The RNA that

does not code for proteins are called ncRNA. In this narrative review,

we will focus on the two ncRNA subgroups, short ncRNAs and long

ncRNAs16,17 because of their diagnostic and therapeutic potential.

2.1 | Small ncRNA

The dominant class of small ncRNAs, microRNAs (miRNAs), are around

20 nucleotides in size. miRNAs orchestrate gene expression of almost

every biological process18–20 and consequently are associated with vari-

ous diseases.21–23 miRNAs are negative regulators of gene expression

acting through induction of mRNA degradation or inhibition of its trans-

lation (Figure 1A).24 Different miRNAs could share the same target

mRNA while single miRNA could target multiple mRNAs.18 These prop-

erties of miRNA molecules meet most of the required criteria for an

ideal biomarker,25 while miRNA mimics and antagomiRNA are consid-

ered as promising therapeutics.26 As miRNA dysregulation has been

observed in cholesteatoma, in this review, we will highlight the subse-

quent effects on cellular mechanisms and possible medical applications.

2.2 | Long ncRNA

lncRNAs show great capacity for gene expression regulation at both

transcriptional and posttranscriptional levels through the sequence- and

structure-specific mechanism.27,28 Competitive endogenous RNA

(ceRNA) hypothesis states that all types of RNA transcripts can commu-

nicate with and regulate each other by using shared miRNA response

elements (MREs).29 lncRNA can act as miRNA decoy capturing active

miRNAs, buffering that way regulatory activity of those miRNA on their

target mRNAs, which share the same MREs.29,30 Subclass of ncRNAs

are circular RNAs (circ-RNA),31 covalently closed continuous loops,

highly conserved and tissue-specific.32–34 circRNAs have been reported

to harbor multiple miRNA binding sites, which seems to be a typical fea-

ture of this class of RNA molecules.35,36 Interaction between the miRNA

and lncRNA/circRNA represents a complex interaction system

(Figure 1B). This mechanism of gene expression regulation, important in

all aspects of physiology and disease,37–39 will be discussed in the con-

text of cholesteatoma molecular pathology research.

3 | LITERATURE SEARCH AND INCLUSION
CRITERIA

Literature search was carried out on Pubmed.gov database using dif-

ferent combinations of keywords: (cholesteatoma) AND ((miRNA) OR

TABLE 1 miRNAs associated with cholesteatoma

miRNAs

associated
with
cholesteatoma

Regulated direction
of expression

miRNA
expression
validation

Regulatory
mechanism in
cholesteatoma Cellular function

Proposed ceRNA
interaction in
cholesteatoma References

miR-21 Upregulated in

cholesteatoma

versus normal skin

qRT-PCR Downregulation of

PTEN and PDCD4

Increased proliferation

of keratinocytes

lncRNA-

uc001kfc.1

circRNA-102747

[7–10]

let-7a Upregulated in

cholesteatoma

versus normal skin

qRT-PCR Downregulation of

HMGA2

Decreased proliferation

of keratinocytes

circRNA-101458 [8,10,11]

miR-802 Upregulated upon

NF-kB activation

miRNA

transfection

qRT-PCR

Downregulation of

PTEN

Increased proliferation

of keratinocytes in

vitro

— [12]

miR-203a Downregulated in

cholesteatoma

versus normal skin

qRT-PCR Upregulated Bmi1 and

subsequent increase

of p-Akt level

Increased proliferation,

migration, and

antiapoptotic abilities

— [13]

miR-16-1-3pa Upregulated in

cholesteatoma

versus normal skin

Microarray

qRT-PCR

Regulation of PI3K/

Akt signaling

pathway

Hyper-proliferation of

cholesteatoma

— [14]

miR-10a-5pa Downregulated in

cholesteatoma

versus normal skin

Microarray

qRT-PCR

Regulation of PI3K/

Akt signaling

pathway

Hyper-proliferation of

cholesteatoma

— [14]

aOnly qRT-PCR validated miRNAs identified in high throughput analysis have been presented.
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(miR)); (cholesteatoma) AND ((long noncoding RNA) OR (lncRNA) OR

(ceRNA)); (cholesteatoma) AND (miRNA) AND (microarray) ending

with August 2020. Studies in which ncRNA profiling was performed in

cholesteatoma tissue from adult and pediatric patients were included

in the review. Studies investigating ncRNA expression in samples

other than cholesteatoma tissue from patients with cholesteatoma

were excluded. Based on the defined search and inclusion criteria,

eight studies represented the basis of this review. Although one addi-

tional study has passed the search criteria it was not included in this

review due to the incompatibility with inclusion criteria.

4 | ARE miR-21 AND LET-7 BALANCING
CHOLESTEATOMA BETWEEN BENIGN AND
INVASIVE NATURE?

The first two miRNAs assigned to be important in cholesteatoma were

miR-21 and let-7 as well as their interplay.7,8,11 Both miRNAs have

been found upregulated in cholesteatoma compared to normal skin7,8

with a more pronounced difference in pediatric samples.8 At the time

the studies have been performed, miR-21 was known to be an onco-

miR due to its role in tumorigenesis through regulation of potent tumor

suppressors such as PTEN and PDCD4.40,41 The downregulation of

PTEN in cholesteatoma compared with levels in normal skin inversely

correlates with p-Akt levels.42 PI3K-Akt pathway is important for the

induction of cell proliferation and terminal differentiation,43 and thus

was proposed as a possible mechanism of development and progres-

sion of cholesteatoma through downregulation of PTEN.42 In addition

to PTEN, PDCD4 was also shown to suppress benign and malignant

skin tumor formation and progression.44 This critical regulator of apo-

ptosis, which inhibits the procaspase-3 mRNA translation, is shown to

be dependent on miRNA regulation under apoptotic stimuli.45 It was

indeed confirmed by western blot that downregulation of PTEN and

PDCD4 correlates with upregulation of miR-21, making a significantly

greater reduction in PTEN and PDCD4 protein levels in pediatric versus

adult cholesteatoma.8

Additionally, a similar profile of expression changes both between

cholesteatoma and normal skin and between adult and pediatric

cholesteatoma was observed for let-7a.8 By investigating protein levels

of its target HMGA2, it was shown that its levels are reduced in cho-

lesteatomas, especially in pediatric cholesteatomas.8 This small, nonhis-

tone chromatin-associated protein has no intrinsic regulatory activity on

gene expression. However, its capability to alter chromatin architecture

could influence gene transcription through the influence on the assembly

of multiprotein complexes of transcriptional factors.46 It was reported

that in vitro disruption of HMGA2 suppression by let-7 miRNA enhances

F IGURE 1 Noncoding RNA interplay in regulation of the mRNA expression. The figure depicts the mechanism of gene expression regulation
in the absence and presence of competing endogenous RNA (ceRNA) interactions with miRNAs. (A) In the absence of ceRNA (circRNA and
lncRNA) various miRNAs incorporated in RNA-induced silencing complex (miRISC) induce degradation or repression of translation of target
mRNA; (B) When ceRNAs (circRNA and lncRNA) harboring the same miRNA response elements (MREs) as the target mRNAs are present, they
complementary sequester miRISCs (green, red, or blue) and consequently lower cellular levels of free miRISCs, which leads to increased

translation; Cellular levels of miRISC (orange) remains unchanged since lcnRNAs do not harbor the same MREs as the target mRNA, thus not
affecting the miRNA-mRNA regulation, which results in unchanged, miRNA-induced target mRNA degradation, or repression of translation
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oncogenic transformation.47,48 Eventual inhibition of HMGA2 by let-7a

upregulation in cholesteatoma may lead to increased keratinocyte apo-

ptosis and a reduction in the proliferation of cholesteatoma cells.

Based on findings of miR-21 and let-7a expression in

cholesteatoma and joint regulation of their targets, a balancing mech-

anism has been proposed, perpetuating the growth and invasiveness

of cholesteatoma by PTEN and PDCD4 downregulation but keeping it

in a benign stage through HMGA2 inhibition.8 To explain the interplay

of the two miRNAs in cholesteatoma it was shown that let-7a trans-

fected mimics inhibited the growth, migration, and invasion of

cholesteatoma keratinocytes in vitro.11 It was suggested that the

observed effect in cholesteatoma keratinocytes could be explained by

the mechanism through which let-7a downregulates miR-21, causing

subsequent regulation of its targets.11 However, knowing that both

miR-21 and let-7 were upregulated in cholesteatoma ex vivo, implies

that the sole interaction between the induced expression of let-7 and

downregulation of miR-21 was not a sufficient mechanism. Additional

mechanistic studies are needed to confirm this interesting hypothesis

aiming to tackle the paradoxal nature of cholesteatoma.

5 | NF-kB/miR-802/PTEN REGULATORY
NETWORK BEYOND miR-21 IN
CHOLESTEATOMA

As previously mentioned, multiple miRNAs could share the same target

mRNA18 making the additive fine-tuning of gene expression. This effect

was also found to be important in cholesteatoma, by describing addi-

tional PTEN regulation, beyond miR-21, through the first time revealed

NF-kB/miR-802/PTEN regulatory network.12 The increased mRNA

levels of proinflammatory cytokines TNF-a, IL-1b, and IL-6 and

increased phosphorylation of NF-kB subunit P65 in the clinical samples

of cholesteatoma tissues compared to retroauricular skin have been

found.12 Through comprehensive analysis integrating bioinformatics and

in vitro manipulation of miR-802 in primary keratinocytes, it was dem-

onstrated that activated NF-kB increase expression levels of miR-802,

which subsequently promotes cell proliferation through regulation of

PTEN.12 The observed mechanism was suggested to be important in

cholesteatoma development and progression as well.12 However, there

are no studies investigating miR-802 expression in cholesteatoma tissue,

while the single high-throughput study performing miRNA expression

profiling in cholesteatoma compared to normal skin to date has not

reported differential expression of miR-802.14 These discrepancies war-

rant further ex vivo validation in cholesteatoma tissue on a larger num-

ber of samples to confirm the in vitro observations especially by taking

into account the complex perimatrix-matrix molecular interplay which

has been suggested to play a major role in cholesteatoma.6

6 | miR-203 IN CHOLESTEATOMA
PATHOLOGY

The next miRNA investigated in cholesteatoma pathology, miR-

203a13 is specific to epithelial tissue by affecting the growth,

differentiation, and physiology of keratinocytes; and is an important

contributor to skin development.49–51 Additionally, studies investigat-

ing miR-203a in various cancer pathologies have suggested its cancer-

suppressive potential.52–55 Also delay of chronic wound healing

is linked with over-expression of miR-203 in diabetes mellitus.56

miR-203a is significantly lower in cholesteatoma than in normal

retroauricular skin, while its bioinformatically predicted target Bmi1

showed correlated upregulation on the protein level. Using luciferase

assay on HaCaT cell model, the miR-203/Bmi1 interaction has been

confirmed, while the same cells displayed hyperproliferation, a low

rate of apoptosis, and abnormal migration in low levels of miR-203.13

It has been described that Bmi1 increases the level of p-Akt, which is

considered as one of the mechanisms of tumor cell proliferation,

migration, and antiapoptotic abilities.57–59 p-Akt was also linked with

the development of cholesteatoma.60,61 The upregulation of EGFR/

Akt/NF-κB/cyclinD1 survival signaling pathway in cholesteatoma epi-

thelium compared to normal skin was suggested to be involved in cel-

lular hyperplasia of cholesteatoma,60 while its activity in PI3K/Akt/

PKB survival signaling may be an additional factor of early

keratinocyte differentiation arrest.61 Further research of the upstream

mechanisms responsible for miR-203a downregulation in

cholesteatoma remains to be elucidated.

7 | HIGH-THROUGHPUT miRNA
EXPRESSION PROFILING IN
CHOLESTEATOMA

miRNA microarray technique for miRNA expression profiling identi-

fied 44 upregulated and 175 downregulated miRNAs in acquired mid-

dle ear cholesteatoma compared to normal skin.14 The bioinformatic

analysis of 19 candidate miRNAs suggested that these miRNAs might

be important factors in the etiopathogenesis of middle ear

cholesteatoma, by regulating genes involved in cell proliferation, apo-

ptosis, cell cycle, differentiation, bone resorption, and remodeling.14

Subsequent qRT-PCR validation of miRNAs of particular interest has

confirmed the upregulation of miR-21-3p and miRNA-16-1-3p while

miRNA-10a-5p levels were deceased in cholesteatoma versus normal

skin.14 However, the discrepancy in the expression of miRNA-584-5p

and miRNA-338-5p between qRT-PCR validation and microarray anal-

ysis warrants the need for further studies with a larger number of

samples. Although the study has a limitation in sample size, the

robustness of the high throughput methodology makes acquired data

valuable information and a good starting point for the development of

novel research hypotheses involving novel miRNA candidates and

mechanisms of their activity in cholesteatoma development.

8 | REGULATION OF miR-21 AND LET-7
EFFECTS BY lncRNA IN CHOLESTEATOMA

ceRNA research in cholesteatoma proposed “endogenous sponges”
for miR-21-3p and let-7a-3p.9,10 Using network analysis of lncRNA/

miRNA/mRNA interactions, the authors have discovered lncRNA-
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uc001kfc.1 as a possible regulator of miR-21 effects in cholesteatoma

and hypothesized that this lcnRNA molecule could be a potential drug

target for the treatment of cholesteatoma.9 The same group aimed to

investigate the ceRNA hypothesis in cholesteatoma with circRNAs.10

The most notable observation was that circRNA-102747 and

circRNA-101458, downregulated in cholesteatoma compared to nor-

mal skin, interact with miR-21-3p and let-7a-3p. However, other

interactions with targeting miRNAs, beyond miR-21 and let-7a,

detected in both studies9,10 should not be neglected in upcoming

cholesteatoma research.

9 | PERSPECTIVES

The important role of ncRNAs in cholesteatoma pathology and the

contemporary scarcity of the experimental results in the field could be

easily deduced from the thorough analysis of available literature

encompassed by the current review. We have integrated and

highlighted the progress of the previous research of ncRNAs in

cholesteatoma (Table 1, Figure 2). The key ncRNAs and target genes

are joined in Figure 2 to depict regulation of ncRNAs in

cholesteatoma, their interplay, and putative modulation of target

genes associated with pathology.

Based on our literature review we can conclude that miR-21 and

let-7a are the two most highlighted ncRNAs dysregulated in

cholesteatoma pathology (Figure 2). It is widely recognized that

ncRNAs exert many biological properties that can make them note-

worthy biomarkers for disease follow-up and minimally invasive thera-

peutics.62 Therapeutics based on blockade of miRNA in different

pathologies are reported recently. Beneficial effects on miR-21

expression inhibition have been observed with miR-21 antagomir in

hypertrophic scarring of the skin63 and inhibition of acute tissue injury

in LPS-treated human pulmonary alveolar epithelial cells (HPAEpiC).64

Even more, a personalized nanomedicine approach with functional

nanoparticles was proposed to target both, miR-21 and target genes

using the same therapeutic.65 For the let-7, clinical trials are already

ongoing for the evaluation of the therapeutic potential of this nc-RNA

in various diseases such as obesity, diabetes, and cancer.66 Although

the recently developed analytical models indicate time requirement

before many miRNA products reach the market67 the progress which

has been made in the past few years envisages a promising future.
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