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Deep Brain Stimulation (DBS) is a surgical procedure for the treatment of motor disorders in patients with Parkinson’s Disease
(PD). DBS involves the application of controlled electrical stimuli to a given brain structure. The implantation of the electrodes for
DBS is performed by aminimally invasive stereotactic surgery where neuroimaging andmicroelectrode recordings (MER) are used
to locate the target brain structure. The Subthalamic Nucleus (STN) is often chosen for the implantation of stimulation electrodes
in DBS therapy. During the surgery, an intraoperative validation is performed to locate the dorsolateral region of STN. Patients
with PD reveal a high power in the 𝛽 band (frequencies between 13Hz and 35Hz) in MER signal, mainly in the dorsolateral region
of STN. In this work, different power spectrum density methods were analyzed with the aim of selecting one that minimizes the
calculation time to be used in real time during DBS surgery. In particular, the results of three nonparametric and one parametric
methodswere compared, eachwith different sets of parameters. It was concluded that the optimummethod to perform the real-time
spectral estimation of beta band fromMER signal is Welch with Hamming windows of 1.5 seconds and 50% overlap.

1. Introduction

Parkinson’s Disease (PD) is a common neurodegenerative
disorder. Many successful pharmacological therapies and
strategies have been developed to treat both the motor and
nonmotor manifestations of PD. However, as PD progresses,
it often becomes difficult to treat, typically because of motor
complications. In these cases, Deep Brain Stimulation (DBS)
is a therapy used to treat PD. Most recently, DBS is also being
used in early stages of PD [1].

DBS involves the application of controlled electrical
stimuli to a given brain structure by implanted stimulation
electrodes. The implantation of the electrodes for DBS is
performed by aminimally invasive stereotactic surgerywhere
neuroimaging and microelectrode recordings (MER) are
used to locate the target brain structure (Figure 1).

Neuroimaging studies, both Computerized Tomography
(CT) and Magnetic Resonance Images (MRI), are used for
surgery planning and validation of the implantation site.
MER are obtained by recording the neuronal electrical activ-
ity using micro EEG technique during implantation surgery
and they are used to perform an intraoperative validation of
the electrode position. MER signals recorded during surgery
are the sum of a variety of signals generated by several neural
processes and elements. The extracellular activity captured
by MER can be divided into three categories: Local Field
Potential (LFP) < 300Hz, Multi-Unit Activity (MUA) >
300Hz, and single-unit activity.

For PD, the Subthalamic Nucleus (STN) is often chosen
as the target brain structure (Figure 1) [2]. During implan-
tation surgery, an intraoperative validation is performed to
locate the dorsolateral region of STN (Figure 1). For these
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Figure 1: (a) MER and stimulation electrodes in STN during a DBS surgery. (b) Basal nuclei of the brain: TH: Thalamus, STN: Subthalamic
Nucleus, and SN: Substantia Nigra.

validations, temporal characteristics ofMER are used.That is,
in order to locate the STN, MER signals are visually analyzed
and it is sought to recognize the location where the electrode
is located at each moment of the implantation surgery. This
validation method requires a highly trained medical team.

Several researchers ([3–5]) demonstrated that STN’sMER
in humans with PD reveal a high power in the 𝛽 band
(frequencies between 13Hz and 35Hz), mainly in the dor-
solateral region of that subcortical nucleus. In addition, this
is the same region providing optimal therapeutic benefits
for patients with PD who undergo DBS in the STN [4].
Therefore, research has been carried out to obtain frequency
information, which could be valuable to locate the electrode
implantation site [6]. Performing signal processing in the
operating room to retrieve frequency information would
imply having a complementary tool to those currently used,
providing to the medical team more information for the
selection of the best stimulation site.

From the mathematical point of view, in order to be able
to retrieve frequency information from MER, and since the
signals are random and only one segment of them is available,
an estimation of the power spectrum must be considered
[7]. There are different methods for power spectrum density
(PSD) estimation of a random signal. In the literature,Welch’s
algorithm with 1 s Hamming window and 50% overlap is
mostly used as themethod for PSD estimation ofMER signals
([5, 8–12]).

However, for 𝛽 band power detection in real time during
DBS surgery, it is necessary to explore algorithms that
minimize PSD calculation time. In this work, different PSD
methods were analyzed with the purpose of selecting the one
that allows the calculation of the 𝛽 band power of MER sig-
nals in real time during DBS electrodes implantation surgery.
Section 2 describes the used data obtained from patients who
were implanted with a brain stimulator and it details the
followed signal processing methodology. Section 3 describes
the obtained results. Finally, discussion and conclusions are
given in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Patients and Data Collection. For this study, MER
recordings obtained from bilateral surgery performed on 9
patients with PD undergoing the implantation of stimulation
electrodes for DBS in the STN were used. The surgical
interventions took place at La Fe Hospital, in Valencia, Spain.

The recordings were obtained with the “MicroGuide”
system (AlphaOmega Engineering, Nazareth, Israel). Neu-
rophysiological activity was recorded through polyamide-
coated tungsten microelectrodes (Alpha Omega). The signal
was amplified 10000 times and it was filtered with a bandpass
filter between 200 and 6000Hz, using a 4th order Butter-
worth filter for the low cutoff frequency and 2nd order for the
high cutoff frequency. The sampling frequency was 12 kHz,
and a 12-bit analog/digital converter was used.

Filtering the recordings with a high-pass filter with cutoff
frequency at 200Hz implies that these signals are MUA and
not LFP. This selection of filters, however, is helpful to avoid
the recording of electrical noise in the operating room [5].
Despite the fact that the recorded signals do not include low
frequencies where 𝛽 band is located, Section 3.2 describes the
method used to analyze the 𝛽 band.

During electrode implantation surgery, two parallel
MERs in each brain hemisphere weremoved in small discrete
steps of 0.2mm starting at 8mm above the calculated target
(center of the dorsolateral STN).The recording times in each
depthwere variable (between 0.43 s and 278.92 s). In the study
conducted by [6] it was determined that, when using power
spectral density for STN detection, recordings should not be
shorter than one second. For this reason, recordings shorter
than 1 s were discarded. Thus, recording times between 1.56 s
and 278.92 s with a mean of 48.54 s and a standard deviation
of 26.94 s were obtained.

2.2. Signal Processing. Signal processing and data analysis
were performed withMATLAB software V8.5 R2015a (Math-
works, Natick, MA, USA) using Signal Processing Toolbox.
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To compare the results of the different spectral estimators
studied, a statistical analysis was performed using MATLAB
Statistics Toolbox.

2.2.1. Signal Stability. As reported by other authors ([5, 6, 8]),
due to surgical conditions such as electrode tip movements
and/or neuronal lesions, it is necessary to select the most
stable segment from the MER recording at each depth.

To assess signal stability, the strategy outlined by [5] was
followed, but adding an energy threshold condition prior to
RMS calculation.

First, signals values whose modulus exceeded 150𝜇V
were replaced by zeros (the action potentials have typical
values of 60 𝜇V, possibly reaching 100 𝜇V [9], but there were
long portions of signals with high energy in some particularly
unstable recordings). Then, each signal was divided into
consecutive segments of 50ms and the RMS of each segment
was calculated. A portion of the signal was considered stable
when the RMS values of all of the segments fulfilled the
following condition:

RMS
50ms = RMSmedian ± 3SD, (1)

where SD is the standard deviation of the RMS of all of the
50ms segments of the signal.

This stability analysis rejects infrequent events, such as
glitches (spurious electronic signals caused by peaks in elec-
trical energy) or cell damage, but does not reject oscillatory
activity greater than 1Hz [5]. The longest stable portion of
each signal was selected to continue the analysis, discarding
the rest of the recording.

2.2.2. Rectification and Filtering. MER signals are produced
by the superposition of multiple electrical sources corre-
sponding to several neural processes. Since the acquisition
was performed with a high-pass online filter with cutoff
frequency at 200Hz, the signals used in this work are MUA
signals; that is, they are composed by background activity
and action potentials from neurons close to the recording
electrode.

Because of this acquisition strategy, it is impossible to
perform a direct frequency analysis in ranges lower than
200Hz, which are the ones of interest in this study (𝛽 band
frequencies: 13Hz to 35Hz).

In [13], it is shown that MER signals acquired using
a high-pass filter can recover its low frequency oscillatory
components via the extraction of their envelope, since there
is a low frequency modulation in the amplitude of the high
frequency signals (MUA). In order to perform frequency
analysis in lower frequency ranges, this modulation informa-
tion needs to be retrieved.

In this study, the strategy proposed by [13] was followed.
The low frequency envelope can be calculated following a
two-step procedure: extraction of the instantaneous power
of the signal by the absolute value operator and smoothing
using a low-pass filter. In addition, the mean of the envelope
signal was subtracted, given that some methods of power
spectrum estimation assume that the signal has zero mean.
The power spectrum of a nonzero mean signal has a zero

frequency pulse; if the mean is relatively large, it may obscure
the components of the low amplitude and low frequency
spectrum. Despite the fact the estimation is not an exact
value, removing the mean value provides better estimation,
especially for low frequencies [7].

Summarizing, to obtain the envelope, these steps were
followed:

(i) Full wave rectification: absolute value of each signal
sample.

(ii) Extraction of the mean.
(iii) Smoothing to obtain the envelope: 4th order Butter-

worth low-pass filter: cutoff frequency at 100Hz.

2.3. Power Spectrum Estimation. In studies where the 𝛽
power of MER signals is obtained ([5, 8–12]), there is a
systematic use ofWelch’s method with 1 s Hamming windows
and 50% overlap. However, in order to be able to do an
intraoperative validation of the electrode position during
implantation surgeries, the 𝛽 band power detection must
be achieved in real time, that is, the shorter time possible.
Thus, it is necessary to explore algorithms that minimize PSD
calculation time.

In this work, different PSD methods were analyzed with
the purpose of selecting the one that allows the calculation
of the 𝛽 band power of MER signals in real time during DBS
electrodes implantation surgery.

First, it was decided to compare different power spectrum
estimation methods in order to identify other methods
that could also be used. For this, after performing spectral
estimation with different methods, a statistical analysis was
performed to find significant differences among them. Then
the computation time of some of the methods was compared.

In all spectrum estimations, parameters were adjusted to
achieve a frequency resolution of 0.1 Hz.

2.3.1. Nonparametric Estimation Methods. Nonparametric
methods for power spectrum estimation are based exclusively
on the available data, without making any assumptions about
the system that generates them. Due to the analyzed signals
characteristics, it seems appropriate to use such an estimation
method.

In this study, three nonparametric techniques of PSD
estimation were analyzed, which are described below.

Periodogram. This is the most basic nonparametric method
based on the calculation of the Fourier Transform. By
definition, the periodogram is not a consistent estimator
[7]. Therefore, although the actual spectrum of the signal
is unknown, it can be assumed that this estimation is not
convenient. However, as it is the basis of other methods, it
was decided to evaluate its results.

Welch’sMethod. Dividing the recordings into segments before
calculating the periodogram reduces the estimation variance.
Moreover, the length of those segments has an impact on the
frequency resolution of the estimation [14].Welch’smethod is
based on this procedure: the overlap of the segments makes
it possible to increase the number of segments (reducing
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variance) without reducing its length in order to not lose
resolution. If segments are shorter, the estimation has worse
resolution but better (less) variance.

In this study, the results of three different window sizes
were compared, always with an overlap of 50%:

(i) 0.5-second Hamming window.
(ii) 1-second Hamming window. This is the most used

window length in the consulted bibliography.
(iii) 1.5-second Hamming window.

Multitaper Method. This method reduces variance using
different windows but all with the same length of the signal
[7]. Since length is not reduced, the total bias is less than
that obtained using signal segments. The time-bandwidth
(NW) parameter balances this estimator resolution and
variance. When NW increases, the variance decreases, but
each estimate has higher spectral leakage and the resulting
spectral estimator has more bias.

To use this method, it is necessary to define the set of
windows used and the NW parameter, which is related to the
number of windows. In this work, the DPSS set of windows,
proposed by Thomson, was always used. In order to select
NW value, the values used in the consulted bibliography
([15, 16]) were taken into account, where typical values were
found to be between 2 and 6. It was decided to analyze the
results of this estimator with typical extreme values of NW.
Thus, the multitaper method was analyzed with NW = 2 and
NW = 6.

2.3.2. Parametric Estimation Methods. Although MER sig-
nals characteristics do not seem to be described by a simple
parametric model as they come from a system of great
complexity, an autoregressive model (AR) was decided to be
applied.

The order of the AR model provides a balance between
bias and variance [17]. For a small order, the spectrum may
not be well estimated (large bias) but it will have less variance.
For a large order, the spectrumwill exhibit lower bias butmay
have a lot of variances.

AR Model with Burg Coefficients. An AR model with the
coefficients calculated by the Burg method was chosen.
Regarding the order of the model, it was decided to compare
AR models of two different orders. Two orders were selected
within the margins of the values used in other studies ([18,
19]). The power spectrum was then estimated using AR
model, 4th order, and AR model, 15th order.

2.4. Statistical Comparison of Spectral Estimators. Astatistical
analysis was performed to compare the results of the different
spectral estimators studied. For this, all of the signals coming
from the 28 trajectories were used (each trajectory contained
several signals, each of a different recording depth). In total,
1010 signals were used.

Since there were few samples and the distribution of the
samples was unknown, it was decided to work with Fried-
man’s nonparametric method. This test was applied to two
matrices. In both cases, each column represented a method

of power spectral estimation and each row represented one
signal, which was recorded at a specific depth, with a specific
microelectrode, in a specific hemisphere, and in a specific
patient.

In one of the input matrices, each element of the matrix
contained the average𝛽 band power. In the other case, instead
of filling the matrix with power values, it was completed with
the frequency values of the𝛽 band inwhich the highest power
was obtained.

To obtain the significance value of the comparison
between two methods, an ad hoc method for multiple com-
parisons, based on the Tukey-Kramer criterion, was used.
The level of significance was 𝛼 = 0.05; that is, the confidence
interval was 95%.

2.5. Computational Cost Comparison. Since the final goal
of this work is to apply one of these estimation methods
to an intraoperative validation of the stimulation electrode
implantation optimal location, it is necessary that signal
processing is done in real time. Thus, processing speed is an
important factor to consider.

The computation time of four of the estimators were com-
pared, using a computer with an Intel� Core� i7-6700HQ
Processor, 16GB SDRAM DDR3L, and running Windows 10
home 64 bits. The methods chosen for the calculation of the
computational cost were those that are shown to be more
adequate for the calculation of the spectral estimation.

3. Results

3.1. Stability Analysis. An example of the stability analysis
is shown in Figure 2. In this case a large increase in the
amplitude of the original signal around second 18 can be
observed. This segment is considered to be spurious by the
algorithm since its RMS value is greater than the upper
stability threshold as described above.

As a result of applying this stability analysis to all
trajectories, stable portions were obtained from each of them.
The length of the stable signals was 21.08 ± 12.18 s, being
the minimum and maximum values of 1.55 s and 102.11 s,
respectively.

3.2. Rectification and Filtering. To obtain the low frequency
signal that modulates high frequency in theMER recordings,
the method previously explained was applied over the stable
segments of the signals.

As a result of full wave rectification, only positive values
of the signal are present. However, the mean of the signal is
then subtracted and then some samples may have negative
values. Subsequent filtering, with a 4th order Butterworth
low-pass filter with cutoff frequency at 100Hz softens the
signal, eliminating some of the original peaks. An example
of this processing is illustrated in Figure 3.

3.3. Comparison of the Power Spectral Estimation Methods.
Since the actual spectrum of the signals is unknown, the
results can only be evaluated by doing a comparison between
the estimations obtained by each of the methods. That is, the
bias of an estimate cannot be assessed without knowledge of
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Figure 2:MER recording of patient 2, left hemisphere, central electrode, at a distance from target of 0.524mm, processed to eliminate spurious
data. (a) Original record. (b) RMS values of 50ms signal segments; the red lines mark the limits corresponding to ±3 standard deviations of
the median. (c) Portion of signal considered stable by the algorithm.
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Figure 3: Low frequency modulation signal for patient 8, left hemi-
sphere, central electrode (at a distance from the target of 1636mm).
Blue: stable MER segment. Red: rectified and filtered signal.

the actual spectrum, but the differences in the variability of
the different methods or of the same method with different
parameters can be seen. Given that in studies where the
𝛽 power of MER signals is obtained ([5, 8–12]), there is a
systematic use ofWelch’s method with 1 s Hamming windows
and 50% overlap; that method is taken as a reference in this
study.

The goal of this comparison is to identify other methods
that could also be used for this application.

3.3.1. Qualitative Comparison. In order to perform a quali-
tative comparison, power spectral estimation of an example
signal, calculated with the different methods, is shown in
Figure 4. The goal is to make a visual comparison that
will be helpful to understand the statistical results that will
followed this section. The qualitative comparison provided
these results compared with Welch method with Hamming
windows of 1 s (Figure 4(d)):

(i) Periodogram. Figure 4(a) shows the great variability
of this estimationmethod comparedwith Figure 4(d).

(ii) Welch’s Method. In the case of 0.5 s Hamming win-
dows (Figure 4(b)), it can be seen that the spectrum
is very smooth; that is, it does not present great
variability.This agreeswith the fact that increasing the
number of segments improves the variance of the esti-
mate. However, this improvement implies some loss
in frequency resolution. Increasing the length of the
segments improves the frequency resolution. With
1.5 s Hamming windows (Figure 4(c)), the spectrum
is less smooth, as expected.

(iii) Multitaper Method. For multitaper NW = 2, the spec-
trum (Figure 4(e)) shows some variability. However,
when compared with the periodogram, variability in
this case is lower. Taking into account the fact that the
number of windows used is 2 ∗NW − 1 = 3, it can be
thought that these are not sufficient to significantly
reduce the variance of the spectral estimate. In case
of multitaper NW = 6 (Figure 4(f)), the variance is
smaller thanNW= 3, which is consistent with the fact
that increasing the number of windows improves this
feature. The number of windows used is 2 ∗ NW −
1 = 11. However, this estimated variance is still
considerably higher than that of Welch’s estimators.

From the observation of these estimations, and concern-
ing the AR model with Burg coefficients, in the case of
the AR model, 4th order, the spectrum (Figure 4(g)) shows
how the use of this parametric method implies an excessive
simplification of the system under study. The estimated
spectrum is completely smooth and has unlimited frequency
resolution, but its shape does not match the one given by
the other methods, which may indicate that bias is very
large (although the actual spectrum is not known, it is
more likely that it resembles the ones from nonparametric
methods rather than that of this approach). For theARmodel,
15th order (Figure 4(h)), the comparison shows an excessive
simplification of the system under study.
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(f) Multitaper: NW = 6
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Figure 4: Results of different power spectral estimation methods apply to the signal from patient 5, left hemisphere, central electrode, at a
distance from target of 2.235mm.

3.3.2. Quantitative Comparison. Statistical comparisons of
the spectral estimations were performed with two different
datasets: average power and highest power.

Comparison of 𝛽 Band Average Power. Figure 5 compares
the different PSD estimation methods studied according to
their estimations of 𝛽 band average power. In this figure,
the value corresponding to Welch’s method with 1 s window
was selected. It can be seen that this method is significantly
different to AR models, but not to the rest of methods.

Table 1 summarizes the 𝑝 values of all of the pairs of
the compared methods. It can be seen that several non-
parametric PSD methods do not show significant differences
among them. The calculation of the periodogram was not
significantly different from those of Welch’s method with
0.5 s window (𝑝 = 0.9999), 1 s window (𝑝 = 0.2284), and
multitaper NW = 6 (𝑝 = 0.3520). On the other hand, for
Welch’s method, it can be emphasized that when using 1.5 s
window, the estimations obtained are not significantly differ-
ent from those obtained with 1 s window (𝑝 = 0.6453), but
they are different from those obtained with 0.5 s window (𝑝 =
0.0038). On the other hand, themultitaper estimators did not
show significant differences between each other (𝑝 = 0.1697)

Ranks of groups

AR order 15
AR order 4

Multitaper NW = 6
Multitaper NW = 2

Periodogram

0 1 2 3 4 5 6 7 8 9

Welch Hamming 0.5 Ｍ
Welch Hamming 1 Ｍ

Welch Hamming 1.5 Ｍ

Figure 5: Comparison between Welch’s method with 1 s windows
and the other estimators. Average power values in the 𝛽 band are
compared. Each circle represents the mean of one of the methods
and is accompanied by the bars that define a 95% confidence inter-
val. In blue, Welch’s method with 1 s windows; in red those methods
with which a significant difference has been found; and in gray the
methods that are not significantly different to the selected method.

and with Welch’s method with 1 s window (MTNW = 2: 𝑝 =
0.2741; MTNW = 6: 𝑝 = 1.0000) and 1.5 s window (MTNW
= 2: 𝑝 = 0.9992; MTNW = 6: 𝑝 = 0.4884).

With regard to parametric estimators, as expected, after
visual inspection of the obtained spectra, the estimations
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Table 1: Statistical results (p values) from the multiple comparisons of the PSD methods regarding average 𝛽 band power values. In bold,
significant values for 𝛼 = 0.05.

PGRM Welch 0.5 s Welch 1 s Welch 1.5 s Mult. 2 Mult. 6 AR 4 AR 15
PGRM - 0.9999 0.2284 7.3461 ∗ 10−4 5.2344 ∗ 10−5 0.3520 5.9881 ∗ 10−8 5.9881 ∗ 10−8

Welch 0.5 s 0.9999 - 0.4637 0.0038 3.4350 ∗ 10−4 0.6205 5.9881 ∗ 10−8 5.9881 ∗ 10−8

Welch 1 s 0.2284 0.4637 - 0.6453 0.2741 1.0000 5.9881 ∗ 10−8 5.9881 ∗ 10−8

Welch 1.5 s 7.3461 ∗ 10−4 0.0038 0.6453 - 0.9992 0.4884 5.9881 ∗ 10−8 5.9881 ∗ 10−8

Mult. 2 5.2344 ∗ 10−5 3.4350 ∗ 10−4 0.2741 0.9992 - 0.1697 5.9881 ∗ 10−8 5.9881 ∗ 10−8

Mult. 6 0.3520 0.6205 1.0000 0.4884 0.1697 - 5.9881 ∗ 10−8 5.9881 ∗ 10−8

AR 4 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 - 5.9881 ∗ 10−8

AR 15 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10-8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 -

Table 2: Statistical results (p values) from multiple comparisons of the PSD methods regarding 𝛽 band frequency values in which the
maximum power is reached. In bold, significant values for 𝛼 = 0.05.

PGRM Welch 0.5 s Welch 1 s Welch 1.5 s Mult. 2 Mult. 6 AR 4 AR 15
PGRM - 5.9881 ∗ 10−8 7.4812 ∗ 10−6 0.0037 0.9238 0.5155 0.9554 5.9881 ∗ 10−8

Welch 0.5 s 5.9881 ∗ 10−8 - 0.0487 3.0526 ∗ 10−4 5.9961 ∗ 10−8 7.1982 ∗ 10−8 5.9913 ∗ 10−8 5.9881 ∗ 10−8

Welch 1 s 7.4812 ∗ 10−6 0.0487 - 0.8801 0.0023 0.0306 0.0014 5.9881 ∗ 10−8

Welch 1.5 s 0.0037 3.0526 ∗ 10−4 0.8801 - 0.1680 0.5895 0.1262 5.9881 ∗ 10−8

Mult. 2 0.9238 5.9961 ∗ 10−8 0.0023 0.1680 - 0.9963 1.0000 5.9881 ∗ 10−8

Mult. 6 0.5155 7.1982 ∗ 10−8 0.0306 0.5895 0.9963 - 0.9906 5.9881 ∗ 10−8

AR 4 0.9554 5.9913 ∗ 10−8 0.0014 0.1262 1.0000 0.9906 - 5.9881 ∗ 10−8

AR 15 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 5.9881 ∗ 10−8 -

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Ranks of groups

AR order 15
AR order 4

Multitaper NW = 6
Multitaper NW = 2

Periodogram
Welch Hamming 0.5 Ｍ

Welch Hamming 1 Ｍ
Welch Hamming 1.5 Ｍ

Figure 6: Comparison between 1 s windowsWelch’smethod and the
other estimation methods. The values of the frequencies in which
the maximum energy in the 𝛽 band is obtained are compared. Each
circle represents themean of one of themethods and is accompanied
by the bars that define a 95% confidence interval. In blue, Welch’s
method with 1 s windows; in red, those methods with which a
significant difference has been found; and in gray, the methods that
are not significantly different to the selected one.

based on ARmodels presented significant differences with all
of the other methods and between each other (𝑝 = 5.9881 ∗
10−8).

Comparison of the 𝛽 Band Frequency Value with the High-
est Power. Figure 6 compares the different PSD estimation
methods studied according to the frequency of the 𝛽 band in
which the highest power appears. In this figure, once again,
the value corresponding to Welch’s method with 1 s window
was selected.

Table 2 summarizes the 𝑝 values of the paired compar-
isons among all of the methods. In this comparison, the

periodogram did not have significant differences with the
multitaper methods (MTNW = 2: 𝑝 = 0.9238; MTNW =
6: 𝑝 = 0.5155) and with the 4th order AR model (𝑝 =
0.9554), but it provided significant differences with all of the
others methods. Welch’s method with 1 s window was not
significantly different fromWelch’s method with 1.5 s window
(𝑝 = 0.8801), but it was significantly different to all others.
The multitaper estimations, as in the previous comparison,
did not present significant differences between each other
(𝑝 = 0.9963) nor with Welch’s method with 1.5 s window
(MTNW = 2: 𝑝 = 0.1680; MTNW = 6: 𝑝 = 0.5895), but
it shows differences with Welch’s method with 1 s window
(MTNW = 2: 𝑝 = 0.0023; MTNW = 6: 𝑝 = 0.0306).

Regarding parametric estimators, as in the previous com-
parison, ARmodels presented significant differences between
each other (𝑝 = 5.9881 ∗ 10−8).

3.3.3. Computational Cost Comparison. Since the final goal
of this work is to apply one of these methods for intraoper-
ative validation of the implantation’s optimal location, it is
necessary that signal processing is done in real time. Thus,
processing speed is a factor to consider.

The computation time of four of the estimators was
compared. The methods chosen for the calculation of the
computational cost were those that, from the previous com-
parisons, showed to be more suitable for the calculation of
the spectral estimation, that is, Welch’s method with 1 s and
1.5 s window and multitaper method with NW = 2 and NW
= 6. The evaluation of the computation time was done in
the signals from patient 1, left hemisphere, posteromedial
electrode, whose duration was 27.9987 ± 11.9316 s.
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Table 3: Computation times for the trajectory corresponding to
patient 1, left hemisphere, posteromedial electrode, whose duration
is 27.9987 ± 11.9316 s.

Method Computation times
Welch 1 s windows 1.1137 ± 0.4831 s
Welch 1.5 s windows 0.7253 ± 0.3168 s
Multitaper NW = 2 2.3227 ± 0.8811 s
Multitaper NW = 6 4.4735 ± 1.8008 s

The computational times required by each of these meth-
ods for the PSD estimation are summarized in Table 3.

4. Discussion

Comparisons were done in order to choose the best method
to perform an intraoperative validation that takes into
account frequency characteristics of MER recordings from
PD patients to be performed in real time.

First, it was necessary to compare different power spec-
trum estimation methods in order to identify methods that
could be used for this application. Since the actual power
spectrum of the analyzed signals is unknown, it is not
possible to evaluate an estimator by how close it is to the
ideality.Therefore, a comparison was made between different
estimators, taking as a reference the mostly used method
in the consulted bibliography ([5, 8–12]), which is Welch’s
method with 1 s Hamming window and 50% overlap.

The bias of an estimate cannot be assessed without
knowledge of the real spectrum, but the differences in the
variability of the different methods or of the same method
with different parameters can be seen. Here parametric and
nonparametric methods were considered.

Regarding parametric methods, the results obtained by
the AR models confirm the previous assumption that, with-
out making a much deeper study, these are not optimal
for processing MER recordings. Their results are not only
significantly different from the results of the other methods,
but they are also different from each other.

Regarding nonparametric estimates, although qualita-
tive comparisons showed certain morphological similarities
between allmethods, the quantitative analysis shows that they
may be significantly different from each other.

For the particular case of the periodogram, it presented
similarities with other nonparametric methods in the com-
parisons; however, it must be remembered that this is not
a consistent estimator and a high variance was observed in
the qualitative analysis. Although some of its results may not
be significantly different from those of other estimators, we
consider that it is not convenient to continue this work with
an inconsistent estimator, since other options are available.

On the other hand, regarding the mostly used method
in the consulted bibliography (Welch’s method with 1 s
Hamming windows and 50% overlap), the results of our
comparisons show that there are significant differences, at
least in one of the two comparisons, with all of the other tested
methods, except for Welch’s method with 1.5 s windows. This
means that it does have significant differences with the case

of 0.5 s windows, but—taking into account the qualitative
comparison—a reason for these differences can be found.
Welch’s method with 1 s window is a method with little
variance but sufficient resolution so as not to lose all of
the peaks. Estimations obtained with the same method but
other window sizes are morphologically similar, but the 0.5 s
windows provided a spectrum with no peaks. Having shorter
windows allows the method to further soften the spectrum,
but this can lead to missed peaks that should be taken
into account. This could explain why the results with 0.5 s
windows do not match those of the other window sizes when
comparing the frequency values in which the maximum
power in the 𝛽 band is obtained.

So, for Welch’s method, the results indicate that 1 s
and 1.5 s windows provide results that are not significantly
different from each other. Since this method with 1 s windows
is the most used in the consulted bibliography and given
that there are no significant differences with the one with
1.5 s windows, the possibility of working with one of these
estimators indistinctly could be considered.

As for the multitaper method, in first place, these esti-
mators do not present significant differences between them
in any of the two comparisons. On the other hand, in the
qualitative comparisons, it can be seen that these methods
give more variable results than Welch’s method. The quanti-
tative comparison reveals that they do not present significant
differences with Welch’s method with 1.5 s windows. If this
result is analyzed taking into account the explanation in the
previous paragraph, the use of multitaper methods for the
study of MER recordings could also be considered.

According to the statistical analysis performed, themeth-
ods that could be considered for PSD estimation in MER
recordings are multitaper with NW = 2 and NW = 6 and
Welch’s with Hamming windows of 1 s and 1.5 s.

However, in order to be able to do an intraoperative
validation of the electrode position during implantation surg-
eries, the 𝛽 band power detection must be achieved in real
time, that is, the shorter time possible.Thus, it is necessary to
explore algorithms that minimize PSD calculation time.

In order to select a single method, then, the computa-
tional cost of each of them was considered. The results show
that multitapermethods are computationally more expensive
than those of Welch. In addition, the comparison suggests
that Welch’s method with 1.5 s windows is the fastest: 35%
faster than Welch with 1 s windows and 617% faster than
MultitaperNW=2

.

5. Conclusion

In this study, a comparison was made between different PSD
estimation methods, taking into account a particular appli-
cation. MER signal processing and particularly its frequency
information can serve as an intraoperative validation tool for
best electrode placement during DBS electrode implantation
surgery in PD patients. The most used method for spectral
estimation in the literature is that ofWelch with 1 s Hamming
windows and 50% overlap.

In this study we compared different spectral estimators
and also the computational costs involved were taken into
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account. Finally, according to the discussion, we propose
Welch’s method with 1.5 s Hamming windows and 50%
overlap as the most appropriate real-time PSD estimator for
MER signals of PD patients.

Even though the selection was based on the idea of
performing an intraoperative validation in real time, the
methods were not applied online. To further test the utility
of the selected method, it would be appropriate to generate a
hardware set, in which the registration of the signals could be
simulated as if it was on the actual operating room, and the
𝛽 band power detection could be achieved in real time, while
the signals are being read. Moreover, it would be necessary to
ideate a convenient way to show this frequency information,
so that it could be easily read and understood by the medical
team.
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