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Abstract

Background: Influenza A virus can infect a variety of different hosts and therefore has to adapt to different host
temperatures for its efficient viral replication. Influenza virus codes for an RNA polymerase of 3 subunits: PB1, PB2 and PA. It
is well known that the PB2 subunit is involved in temperature sensitivity, such as cold adaptation. On the other hand the
role of the PA subunit in thermal sensitivity is still poorly understood.

Methodology/Principal Findings: To test which polymerase subunit(s) were involved in thermal stress we reconstituted
artificial hybrids of influenza RNA polymerase in ribonucleoprotein (RNP) complexes and measured steady-state levels of
mRNA, cRNA and vRNA at different temperatures. The PA subunit was involved in modulating RNP activity under thermal
stress. Residue 114 of the PA subunit was an important determinant of this activity.

Conclusions/Significance: These findings suggested that influenza A virus may acquire an RNA polymerase adapted to
different body temperatures of the host by reassortment of the RNA polymerase genes.
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Introduction

In April 2009, the Centers for Disease Control and Prevention

(CDC) reported that newly influenza A virus (H1N1) has emerged

in Mexico [1]. Influenza A virus had quickly spread worldwide [2]

and the World Health Organization (WHO) declared a pandemic

phase 6 [3]. Currently, this new pandemic influenza A virus is still

circulating around the world replacing the seasonal "Russian"

influenza A (H1N1) [3]. The H1N1 pandemic virus was

immediately characterized [4] and determined as a triple

reassortant derived from human, avian and swine influenza

viruses [5,6]. WHO announced that the virus was a low

pathogenic virus based on the amino acid features of both HA

and PB2 genes, and the fatality rate of this virus was also low [3].

Although phylogenetic relationships of the 8 gene segments were

quickly and easily obtained [5,7], the primary host is still uncertain

even though the virus quickly established infection in swine [8,9].

Thus it will be difficult to predict the exact origin of the next

pandemic influenza strain as previous predictions of a pandemic

avian-derived H5N1 virus proved unfounded [10].

One of the approaches to solve the problem of predicting new

pandemics is to study host restriction, because the route of the

infection from animals to humans is an important factor in the

emergence of a new pandemic virus. Although some determinants

of host restriction, such as the type of sialic acid on the cell surface

[11], the ease of dissociation of HA by host proteases [11], the

interaction between PB2 and alpha-importins [12,13] and the

amino acid position 627 on PB2 [14,15] are well known, we have

focused on the relationship between the host’s body temperature

and the viral RNA polymerase, because the influenza virus is a

disease affecting animals and birds with different host tempera-

tures. A study of the RNA polymerase, comprised of 3 different

subunits, is particularly relevant to swine flu since this newly

emerged H1N1 swine virus is a hybrid RNA polymerase derived

from humans and birds [5] whose body temperatures differ. Here

we test the hypothesis that the optimal temperature of influenza A

RNA polymerase can be modulated by the differing combination

of its polymerase subunits resulting in a virus adapted to different

body temperatures.

The influenza A virus RNA polymerase is a trimeric complex of

three different subunits - PB1, PB2 and PA, which in association

with the nucleoprotein and viral RNA form the active ribonu-

cleoprotein complex (RNP) [11,16]. Recently, high resolution

structures of amino acids 1-197 of the N-terminal region of PA

subunit [17], amino acids 257-716 of PA, complexed with a short

peptide at the N-terminus of PB1 [18] and short regions of the

structure of PB2 [19,20,21] have been determined. All three

subunits are generally found to be required for both transcription

and replication [11,16], although other reports disagree [22]. In

addition, the influenza RNA polymerase is required not only for

the RNA replication, but also for the thermal sensitivity. In fact,

the avian PB2 subunit is required for replication at high

temperatures [23], presumably because of the high body

temperature of birds. Moreover, the PB2 subunit is associated
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with the efficient replication of cold adapted influenza virus

[24,25,26]. In influenza B virus, the PB2 gene was also involved in

cold-adaptation [27]. Thus the PB2 subunit has a crucial role for

the thermal activity of the RNA polymerase.

Additional functions of the PA subunit of the RNA polymerase

have recently been identified including its role in transcription

[11,16], replication [11,16], endonuclease activity [28,29,30], cap

binding [30], promoter binding [30,31,32,33], proteolytic activity

[34,35] and virulence for mice [36]. Thus the PA subunit has a

crucial role in RNA replication and viral proliferation, but its

function in host restriction and thermal stability are still poorly

understood. Recently, it has been shown that the steady-state level

of polymerase - cRNA complex is important for the thermal

stability of the replication [37]. On the other hand we have

previously reported that the PA subunit of the influenza RNA

polymerase is required for promoter binding to cRNA [31,32].

Taken together, we speculated that there is the relationship

between thermal stability of cRNA and the PA subunit of the RNA

polymerase.

Accordingly, to investigate whether the PA subunit is an

important factor for replication and transcription under thermal

stress, we focused on the PA subunit and measured the replication

and transcription activity of RNP in 293T cells at various

temperatures (34uC - 42uC). Our results suggested the PA was

involved in modulating RNP activity at different temperatures,

and that position 114 of PA was one of the important

determinants.

Materials and Methods

Strains
RNA or cDNA clones isolated from the following influenza

strains were used: A/HongKong/156/97 (H5N1) (abbreviated as

HK), A/Vietnam/1194/04 (H5N1) (abbreviated as VN), A/

WSN/33 (H1N1) (abbreviated as WSN), A/NT/60/68 (H3N2)

(abbreviated as NT). Newly pandemic influenza A virus (H1N1)

was isolated from outpatient in Kurume university hospital and

named as A/Kurume/K0910/2009 (H1N1) (abbreviated as SW).

Position 627 of the PB2 subunit in HK and SW is glutamic acid

(E); the PB2 subunits of the other strains have a lysine (K) at

position 627.

Plasmids
PB1, PB2, PA and NP-expressing plasmids of influenza viruses

WSN, HK, VN and NT have previously been described [31,38]

and the pPOLI-vNA plasmid has also been described previously

[31,39]. To construct point mutants of each PA subunit,

mutagenesis method was used as previously reported [30,31].

WSN NP was used in all experiments, according to previous report

[31].

To construct PB1, PB2 and PA expression vectors of SW, RT-

PCR was performed with Superscript II reverse transcriptase

(Invitrogen) and PFU Turbo (Stratagene) with RNA isolated from

outpatient in Kurume University. PCR fragments were digested

by EcoRV and XhoI and inserted into pcDNA3A(-) (Invitrogen),

generating pcDNA/SW/PB1, pcDNA/SW/PA, pcDNA/SW/

PB2 and pcDNA/SW/PB2-TAP. The isolated SW PB1 [accession

number HM849035] contains 3 mutations of G1299A, A1303G

and A1758G (counting from the A of the initiator ATG as

nucleotide 1) compared to the sequence of A/California/04/2009

PB1 [accession number FJ966080] [5,8], causing 1 coding change

of I435V. The SW PA [accession number HM849037] also has 2

mutations of C670T and T1986G compared to the sequence of

A/California/04/2009 PA [accession number FJ966081] [5,8],

generating 1 coding change of P224S. In addition, the SW PB2

[accession number HM849036] possesses 4 mutations of G752A,

C1873T, G2010A and G2164A compared with A/California/04/

2009 PB2 [accession number FJ966079] [5,8], generating 1 coding

change of R251K.

Preparation of partially purified TAP-tagged polymerase
and in vitro assays

293T cells were transfected with the expression vectors

containing PB1, PB2-TAP and PA subunit of each strain on

10 cm dishes [30,31,38]. Crude cell lysates were harvested at

40 hours post-transfection and the polymerase were partially

purified by the tandem affinity purification (TAP) method

described previously [30,31,38]. The partially purified polymerase

was analyzed by 7.5% SDS-PAGE with silver staining (Invitrogen)

and confirmed by western blotting with specific antibody against

PB1, PB2 and PA [34,40].

The dinucleotide initiation of replication assay was performed

as described previously [41,42], and UV cross-linking to model

vRNA and cRNA promoters was also performed as reported

previously [29,31,32].

RNA isolation and primer extension assay in 293T cell
Subconfluent monolayer of 293T cells in E-MEM medium

supplemented with 10% fetal bovine serum, in 6 wells plate were

transfected with Lipofectamine 2000 reagent (Invitrogen) accord-

ing to the manufacture’s protocol [30,31,39]. 0.2 mg each of PA,

PB1, PB2, NP and vNA (viral NA gene) expression vector of each

strain (WSN, NT, HK, VN or SW) were diluted with 50 ml OPTI-

MEM (Invitrogen). This solution was then mixed with 4 ml of

Lipofectamine 2000 reagent (Invitrogen) previously diluted in

250 ml OPTI-MEM. For the thermal stress, the cells were

incubated at 37uC as pre-incubation for 24 hours and then

transferred to 34, 37 or 42uC for several hours based on each

experiment. Later, total cell RNA was extracted using TRIzol

reagent (Invitrogen). RNA was then analyzed in a primer

extension assay using three primers-one for vRNA, one for

mRNA and cRNA, one for 5S rRNA as an internal control

[29,31,32]. Transcripts were visualized by 6% polyacrylamide gel

containing 7 M urea in TBE buffer and quantitated by

autoradiography and Quantity One software version 4.6.7 (Bio-

Rad). The total lysate including influenza RNP was analyzed by

7.5% SDS-PAGE with silver staining (Invitrogen) and confirmed

by western blotting with specific antibody against PB1, PB2, PA

and NP [34,40].

Results

Comparison of RNP activity of different viruses under
thermal stress

To test if thermal stress affects RNA polymerase activity, 293T

cells expressing influenza A ribonucleoprotein (RNP) of 5 different

viruses isolated from humans were incubated at various temper-

atures from 34uC to 42uC for 9 hours, following pre-incubation at

37uC for 24 hours (Figure 1A). A/Hong Kong/156/97 (H5N1)

[HK] and A/Vietnam/1194/2004 (H5N1) [VN] were chosen as

human-isolated H5N1 viruses; A/WSN/33 (H1N1) [WSN] and

A/NT/60/68 (H3N2) [NT] were used as classical human strains,

because these strains were previously extensively analyzed

[31,32,39]. We included the new pandemic influenza A virus,

A/Kurume/K0910/2009 (H1N1) [SW], cloned from an outpa-

tient in Kurume university hospital, Japan. We analyzed steady-

state levels of mRNA, cRNA and vRNA by primer extension

(Figure 1B) as described before (see materials and methods) and
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summarized in Table 1. All strains were pleiotropic in RNP

activity when exposed to thermal stress from 34uC to 42uC
(Figure 1B and Table 1).

Initially, we compared the RNP activity of each strain at the

classical temperature, 37uC (Figure 1B, lanes 6-10). On replication

(cRNA and vRNA synthesis) at 37uC, the HK strain showed the

lowest activity (Figure 1B, lane 7). Interestingly, the VN strain

showed higher activity in both replication (cRNA and vRNA) and

transcription (mRNA) than the HK strain, although both strains

were human-isolated H5N1 virus (Figure 1B, lanes 7 and 9).

However, the steady-state levels of mRNA, cRNA and vRNA of

the WSN strain were significantly higher than those of the HK

strain (compare Figure 1B, lanes 6 and 7), consistent with our

previous report [31]. At 34uC, all strains had lower activity,

although the relative activities of the 5 strains were similar at 34uC
and 37uC, (Figure 1B, lane 1-5). At 42uC (Figure 1B, lanes 11-15)

surprisingly, WSN cRNA synthesis was minimal (Figure 1B, lane

11), whereas vRNA synthesis was still maintained. Transcriptions

(mRNA levels) were significantly enhanced at higher temperatures

(42uC) in all strains (Figure 1B, lanes 11-15). In summary (Table 1)

Figure 1. Comparison of RNP activities under thermal stress. (A) Brief protocol and incubation periods are indicated. (B) Representative
analyzed polyacrylamide gel (6%) is shown. * represents statistical significance at p,0.05 in a Student’s t-test (n = 3). 293T cells expressing influenza
RNP were incubated at 37uC for 24 hours as pre-incubation. Pre-incubated cells were additionally incubated at 34, 37 and 42uC for 9 hours,
respectively. Then total RNAs were extracted and analyzed by primer extension assay. A/WSN/33, A/Hong Kong/156/97, A/NT/60/68, A/Vietnam/
1194/2004 and pandemic H1N1 2009 virus are abbreviated as WSN, HK, NT, VN and SW, respectively. 5s ribosomal RNA (rRNA) is indicated as an
internal control. mRNA, cRNA and vRNA are viral messenger RNA, complementary viral RNA and viral RNA, respectively.
doi:10.1371/journal.pone.0015140.g001

Table 1. Relative RNP activities of each strain at different temperatures.

mRNA cRNA vRNA

(%a)/uC 34 37 42 34 37 42 34 37 42

WSN 52 67.8 100 129 613.0 76 612.6 100 31 618.3 86 68.6 100 38 65.5

HK 54 65.6 100 221 638.9 84 65.0 100 78 618.3 89 64.5 100 54 64.9

NT 85 618.8 100 163 613.4 100 635.3 100 125 640.9 90 68.3 100 79 67.7

VN 82 61.1 100 170 69.8 90 64.2 100 224 622.0 88 66.2 100 86 620.0

SW 77 68.5 100 150 68.2 87 611.8 100 102 630.8 86 613.9 100 70 68.2

aThe replication (cRNA and vRNA) and transcription (mRNA) activities are indicated as a relative activity (%) 6 S.D. to each strain set at 100% at 37uC (n = 3).
doi:10.1371/journal.pone.0015140.t001
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replication (especially in cRNA) of the VN and NT strains was

adapted to 42uC whereas the WSN and HK strains were not well

adapted to this higher temperature; the SW strain possessed an

intermediate activity under thermal stress.

Time course of RNP activity on thermal stress at 42uC
To test whether the decreased cRNA and increased mRNA

levels observed at high temperature (42uC) were time-dependent,

293T cells, transfected with expression plasmids for each RNP of

WSN, HK or SW, were transferred to 42uC, after pre-incubation

at 37uC for 24 hours. The mRNA, cRNA and vRNA levels were

measured from 0 to 24 hours (Figure 2A) and quantitated in

Figure 2B. cRNA levels of WSN rapidly decreased under thermal

stress, although vRNA levels decreased more slowly (Figure 2B

and Figure 2C, lanes 1-6). By contrast, the replication of both HK

and SW (cRNA and vRNA) remained relatively constant over the

24 hour period (Figure 2C, lanes 7-12 and 13-18). In WSN,

mRNA levels peaked at 9 hours and then steadily decreased

(Figure 2C, lanes 1-6); however, mRNA levels were maintained in

both HK and SW (Figure 2C, lanes 7-12 and 13-18). Expression

levels of RNA polymerase subunits (PA, PB1 and PB2) and NP

were shown by western-blotting in Figure 2D. Each protein tested

here was maintained or slightly accumulated.

Effect of transient heat shock at 42uC on RNP activity
Heat shock proteins such as Hsp70 and Hsp90 are known to be

involved in viral replication [43,44], RNA polymerase assembly

[45], RNA import [45] and RNA export [46]. To investigate

whether heat shock is involved directly in increasing the levels of

mRNA and decreasing levels of cRNA seen above (Figures 1 and

2), 293T cells - expressing influenza RNP of WSN or HK, were

heat-shocked transiently for 15 min at 42uC (Figure 3A). Both

replication (cRNA and vRNA) and transcription (mRNA) were

slightly elevated by 6 hours in both heat shocked and control, non

heat-shocked cells that were kept at 37uC (Figure 3B). However,

no significant differences were observed on quantitation of the

Results (Table 2). Thus a short heat shock at 42uC did not appear

to influence cRNA, vRNA and mRNA levels in 293T cell

transfected with influenza RNP expression plasmids.

Analysis of the contribution of the RNA polymerase
subunits to thermal stress

It was previously shown that PB2 subunit is required for viral

replication at high temperatures [23]. PB2 is also associated with

efficient replication of cold adapted influenza virus [24,25,26].

More recently, it was suggested that the steady-state level of

polymerase - cRNA complex is important for the thermal stability

of influenza virus [37]. Thus the PB2 subunit can modulate the

stability and/or activity of RNP including RNA polymerase

complex under thermal stress. To determine which polymerase

subunit(s) are required for stable activity of RNA polymerase on

thermal stress in 293T cells, we constituted artificial hybrid

polymerases and measured the steady-state levels of mRNA,

cRNA and vRNA. Thus the hybrid trimeric complexes consisted

of one polymerase subunit from other of the H5N1 polymerase

and the other subunits from the WSN polymerase. In all cases the

polymerase subunits (PB1, PB2 and PA) were visualized on 7.5%

SDS-PAGE by silver-staining, showing that these hybrids could

form a functional complex (Results not shown). Furthermore

partially purified polymerases were active in an in vitro replication

assay and in promoter binding (Results not shown).

At 37uC only the PB1 subunit of VN (V) in a WSN (W)

background increased activity (Figure 4A, lane 2). The PB2 and

PA subunits were inhibitory (Figure 4A, lanes 3 and 4). In the

reciprocal hybrids in a VN background, the PB1 subunit had the

most obvious effect causing a decrease in activity (Figure 4A, lane

6) whilst the PB2 subunit had a small inhibitory effect (Figure 4A,

lane 7). At 42uC, when WSN PA was substituted with VN PA, in a

WSN background, activity was significantly increased (Figure 4A,

lanes 9 and 12, and Figure 4B); in contrast the PB1 and PB2

subunits did not significantly affect activity (Figure 4, lanes 10 and

11). In the reciprocal hybrids, activity (notably cRNA) decreased

by the substitution of VN PA with WSN PA in a VN background

(Figure 4A, lane 13 and 16, and Figure 4B). Taken together, we

conclude that the PA subunit of VN appears to be required for

optimal activity of RNP when assayed at 42uC.

The PA subunit of the RNA polymerase can modulate
RNP activity under stress

Further evidence that the PA subunit can modulate RNP

activity was obtained by constructing hybrid polymerases and

testing RNP activity in 293T cells under conditions of thermal

stress. In Figure 5A and 5B each of 4 different PA subunits – from

HK (H), NT (N), VN (V) or SW (S), was in turn substituted for the

WSN (W) PA subunit. The NT PA subunit resulted in a nearly

total loss of activity (Figure 5A, lanes 3, 8 and 13), This result is

consistent with the fact that RNA polymerase activity, and

promoter binding, of this WSN/NT PA combination in vitro was

weak as shown in previous work [31].

Under conditions of thermal stress at 42uC, however,

replication (cRNA and vRNA) of WSN (W) hybrids, substituted

with PA subunits of either VN (V) or SW (S), the activities of VN

and SW PA subunits were particularly pronounced (Figure 5A,

lanes 14 and 15, and Figure 5B). Interestingly, the hybrid RNA

polymerase containing the SW PA subunit was more active than

the parental WSN polymerase at all temperatures tested

(Figure 5A, lanes 5, 10 and 15). By contrast, optimal activity of

the RNP containing an RNA polymerase substituted with the VN

PA subunit was shifted to the higher temperature of 42uC
(Figure 5A, lanes 4, 9 and 14, and Figure 5B). We conclude that

the PA subunit of the polymerase is involved in modulating the

activity of RNP at different temperatures.

Mutagenesis of the PA subunit and thermal stress
Since substitution of the PA subunit of different influenza A

virus RNA polymerases revealed different properties under

conditions of thermal stress, we have extended our analysis of

the PA subunit. We aligned the sequences of each PA gene, which

highlighted 3 amino acids positions that were identical in NT,

HK VN and SW but differed from WSN (Figure 6A). 2 positions,

86 and 114 were in the N-terminal domain of PA that is required

for promoter binding and endonuclease activity. The RNP

activities derived from each PA mutant identified in this way

(I86M, K114 E and H556Q) were introduced into the PA of

WSN and were analyzed as before (Figure 6B) and quantitated

Figure 6C. Replication (cRNA and vRNA) of the K114E mutant

was significantly increased by about 50% by this mutation,

whereas both the I86M and H556Q PA mutants decreased

activity significantly (Figure 6B and C). Interestingly, the K114E

mutant affected only replications (cRNA and vRNA) but not

transcription (mRNA), suggesting that replication and transcrip-

tion were affected independently of one another under conditions

of thermal stress. From these findings, we conclude that position

114 of the PA subunit of the RNA polymerase is necessary for the

optimal RNP activity for replication under conditions of thermal

stress.
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Discussion

Here we test the hypothesis that the optimal temperature of

influenza A RNA polymerase differs in different viruses of human

origin, and can be modulated by the differing combinations of its

polymerase subunits. We analyzed two human isolated H5N1

strains (A/Hong Kong/156/97 [HK] and A/Vietnam/1194/

2004 [VN]) and a recently isolated H1N1 swine flu strain (A/

Kurume/K0910/2009 [SW]) from humans and compared their

properties with two well studied classical, conventional, human

isolates of H3N2 origin (A/NT/60/68 [NT]) or H1N1 origin (A/

WSN/33 [WSN]). We found, by expressing RNP containing the

different polymerases in 293T cells, and analyzing steady state

levels of mRNA, vRNA and cRNA at 3 different temperatures (34,

37 and 42uC), that there were clear differences in the levels of

RNA expression in the 5 strains tested.

We found that the classical H1N1 WSN polymerase was

adapted to the low temperature (34uC), and lost activity rapidly at

higher temperatures (42uC). This property may reflect the past

history of passage of this strain that was artificially passaged in eggs

Figure 2. Time course of RNP activity on thermal stress at 42uC. (A) Brief protocol and incubation periods are indicated. (B) Quantitation of
cRNA (closed circle) and vRNA (opened circle) of WSN at 42uC is shown. Data have been normalized for total RNA using the 5S rRNA signal. Data are
expressed as a percentage of wild type activity (with standard deviation). Quantitation was based on at lease three independent sets of data. (C)
Representative analyzed polyacrylamide gel (6%) is shown (n = 3). 293T cells expressing influenza RNP were incubated at 37uC for 24 hours as pre-
incubation. Then pre-incubated cells were transferred to 42uC. Total RNAs were extracted and analyzed at each time point by primer extension assay.
(D) RNA polymerase subunits (PA, PB1 and PB2) and NP - transiently expressed in human 293T cells, analyzed by western blotting using specific anti-
bodies of each subunit by 8% SDS-PAGE. A/WSN/33, A/HongKong/156/97 and pandemic H1N1 2009 virus are abbreviated as WSN, HK and SW,
respectively. 5s ribosomal RNA (rRNA) is indicated as an internal control. mRNA, cRNA and vRNA are viral messenger RNA, complementary viral RNA
and viral RNA, respectively.
doi:10.1371/journal.pone.0015140.g002
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Figure 3. Effect of transient heat shock at 42uC on RNP activity. (A) Brief protocol and incubation periods are indicated. (B) Representative
analyzed polyacrylamide gel (6%) is shown (n = 3). 293T cells expressing influenza RNP were incubated at 37uC for 24 hours as pre-incubation. Pre-
incubated cells were stimulated by 42uC for 15 min, and then continued to incubate at 37uC up to 6 hours. Total RNAs were extracted and analyzed
by primer extension assay. A/WSN/33 and A/HongKong/156/97 are abbreviated as WSN and HK, respectively. 5s ribosomal RNA (rRNA) is indicated as
an internal control. mRNA, cRNA and vRNA are viral messenger RNA, complementary viral RNA and viral RNA, respectively.
doi:10.1371/journal.pone.0015140.g003

Table 2. Effect of a transient heat shock on RNP activity at 42uC.

mRNA

(%a)/hours 0 1 3 6

WSN Control 100 97 67.8 119 615.7 133 616.5

42uC 15 min 100 103 68.3 98 610.8 141 616.0

HK Control 100 94 610.2 115 621.7 148 632.7

42uC 15 min 100 93 66.4 98 67.3 127 624.0

cRNA

(%a)/hours 0 1 3 6

WSN Control 100 112 66.0 149 622.4 135 612.3

42uC 15 min 100 121 69.2 115 618.7 134 621.3

HK Control 100 116 612.8 143 626.7 151 610.5

42uC 15 min 100 97 68.2 108 69.2 114 619.5

vRNA

(%a)/hours 0 1 3 6

WSN Control 100 103 64.7 118 614.3 114 67.0

42uC 15 min 100 108 66.4 105 615.7 109 615.3

HK Control 100 105 616.2 105 620.8 126 621.2

42uC 15 min 100 100 611.5 106 615.8 108 626.0

aThe replication (cRNA and vRNA) and transcription (mRNA) activities are indicated as a relative activity (%) 6 S.D. from start point (0 hours) (n = 3).
doi:10.1371/journal.pone.0015140.t002
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and then subsequently in the brains of mice. Interestingly, the

H5N1 HK strain, isolated in 1997, possessed an optimal

temperature in 37uC whereas a closely related H5N1 VN strain

isolated only 7 years later preferred 42uC, although we have tested

only in human cells not in avian cell. This difference might be

caused by the PB2 subunit, because the HK PB2 and VN PB2

differ in the amino acid at position 627, which is glutamic acid (E)

in HK and lysine (K) in VN. The SW PB2 contains E at position

627 of PB2 - like the HK strain, yet SW showed a different

susceptibility to temperature from WS, HK and VN in that it was

active at all 3 temperatures tested. This observation suggests that

PB2 627 cannot be the sole determinant of the differences

observed here in susceptibility of RNP to temperature in the HK

and VN strains. It is known that the 2009 H1N1 virus acquired a

second-site mutations in its PB2 subunit at position 590 and 591 to

adapt to the human host [47].

In a study of the changes in steady state levels of mRNA, cRNA

and vRNA over a 24 hour period at 42uC remarkable differences

between the levels of mRNA and replication products (vRNA and

cRNA) were observed in the WSN strain, but not in the HK and

SW strains tested (Figure 2C). Instead of a synchronized, parallel

decrease in mRNA, cRNA and vRNA, as might have been

expected because the synthesis of all 3 RNAs are catalyzed by the

same RNA polymerase and are interdependent, we observed clear

differences in that cRNA levels decreased faster than vRNA in the

WSN strain; mRNA levels remained the highest. These observa-

Figure 4. Analysis of the contribution of the RNA polymerase subunit(s) to thermal stress. (A) Representative analyzed polyacrylamide gel
(6%) is shown. WSN (W) subunit(s) was replaced with corresponding VN (V) subunit(s). 293T cells expressing the hybrid RNP were incubated at 37uC
for 24 hours as pre-incubation. Pre-incubated cells were additionally incubated at 37uC or 42uC for 9 hours. Total RNAs were extracted and analyzed
by primer extension assay. Each RNA polymerase subunit is indicated as PB1, PB2 or PA. 5s ribosomal RNA (rRNA) is indicated as an internal control.
mRNA, cRNA and vRNA are viral messenger RNA, complementary viral RNA and viral RNA, respectively. (B) Quantitation of cRNA (closed bar) and
vRNA (opened bar) and standard deviations of bands in panel A expressed as a percentage of WSN strain at 37uC. ** represents statistical significance
at p,0.01 in a Student’s t-test (n = 3). Each RNA polymerase subunit is indicated as PB1, PB2 or PA.
doi:10.1371/journal.pone.0015140.g004
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tions suggested that vRNA to cRNA synthesis is more sensitive

than vRNA to mRNA synthesis in this strain, i.e. replication is

more sensitive to heat treatment than transcription. Western-

blotting analysis showed that the protein expression levels of RNA

polymerase subunits and NP didn’t affect both levels of decreased

cRNA and increased mRNA at 42uC (Figure 2D). Control

experiments, in which we transiently heat shocked RNP, suggested

a continuous thermal stress but not a short heat shock is required

for the induction of mRNA levels and reduction of both cRNA

and vRNA levels, consisting with previous report [37], although it

cannot be excluded that heat shock proteins might still be

involved.

Why were mRNA levels enhanced by a continuous thermal

stress? One of the possible answers may be an altered balance of

RNA replication versus transcription in favor of transcription.

Similar results have been reported in the closely related A/PR/8/

34 (H1N1) strain treated at 41uC [37]. Those authors suggested

that polymerase activity was shifted to the transcription because of

a reduction of the replication. Interestingly, it is known that the

phosphorylated RNA polymerase II large subunit (POLIIo)

Figure 5. Effect of PA subunit under various thermal stresses. (A) Representative analyzed polyacrylamide gel (6%) is shown (n = 3). WSN PA
subunit was replaced with that of each strain. 293T cells expressing influenza RNP were incubated at 37uC for 24 hours as pre-incubation. Pre-
incubated cells were additionally incubated at 34uC, 37uC or 42uC for 9 hours. Total RNAs were extracted and analyzed by primer extension assay. A/
WSN/33, A/HongKong/156/97, A/NT/60/68, A/Vietnam/1194/2004 and pandemic H1N1 2009 virus are abbreviated as W, H, N, V and S respectively. 5s
ribosomal RNA (rRNA) is indicated as an internal control. mRNA, cRNA and vRNA are viral messenger RNA, complementary viral RNA and viral RNA,
respectively. (B) Quantitation of cRNA (closed bar) and vRNA (opened bar) and standard deviations of bands in panel A expressed as a percentage of
WSN strain at 37uC. ** represents statistical significance at p,0.01 in a Student’s t-test (n = 3). Each RNA polymerase subunit is indicated as PB1, PB2
or PA.
doi:10.1371/journal.pone.0015140.g005
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accumulated under conditions of heat shock [48]. On the other

hand, the influenza RNA polymerase bind to the POLIIo at its C-

terminal CTD domain for viral transcription [49]. Thus we

suggest that the interaction between influenza RNA polymerase

and cellular phosphorylated-RNA polymerase II might be

promoted by highly temperature thereby causing the increased

mRNA levels. Taking our results on thermal stress together, we

propose that the mechanisms of the decreased cRNA synthesis and

the increased mRNA synthesis are different and independent of

one another.

To test which subunit(s) of the RNA polymerase was important

for replication and transcription under conditions of thermal

stress, we constructed artificial hybrids of RNP and measured their

activities. The PA subunit was obviously involved in increased

activities in WSN-VN hybrids (Figure 4A and 4B). PB2 did not

appear to be involved contrasting with previous studies on cold-

adaptation [24,25,26]. Perhaps there are differences in the factors

influencing stress at low and high temperatures.

We further tested if the PA subunit can modulate the RNA

polymerase activity in RNP at different temperatures from 34uC to

42uC. Activity of the RNP clearly depended both on the origin of

the PA subunit and the temperature and varied widely from

essentially no activity to a much enhanced activity (Figure 5A and

5B). To determine which amino acid of the PA subunit is

important for the thermal stability, we focused on positions 86, 114

and 556 - positions that differed between WSN and the other

strains studied here (Figure 6A). The K114E mutant was found to

promote replicative activity under thermal stress compared with

that of wild type (Figure 6B and 6C). The function of this position

114 in the PA subunit has not been analyzed before, but may

affect promoter binding [30,31,32], or may modulate endonucle-

ase function [17,28,29,30] since both these functions are mediated

by the N-terminal domain of PA. The H556Q mutation of WSN

PA subunit reduced replication and transcription (Figures 6B and

C). This position may interfere or modulate the interaction with

hCLE – a host factor thought to regulate the activity of viral RNA

polymerase and known to bind nearby [50,51]. The I86M

mutation of WSN PA subunit also reduced replication and

transcription (Figure 6B and C), although the reduced level of

cRNA was not statistically significant. It has previously been

shown that the position 86 locates in the 4th alpha helix which is

exposed to the surface of the PA subunit [17], indicating that this

region may be associated with the RNA binding.

In summary, we show that particular combination of subunits of

influenza RNA polymerase can modulate its thermal sensitivity. In

addition, position 114 of the PA subunit is involved in conferring

stability to thermal stresses. How does influenza A virus adapt to

various hosts that possess different body temperatures? We

propose, given the evidence presented in this paper, that in the

emergence of new pandemic viruses the subunit(s) of RNA

polymerase are reassorted and/or mutated to allow adaptation of

the virus to the differing temperature of the new host.

Figure 6. Mutagenesis of the PA subunit and thermal stress. (A) Alignment of PA subunits. Interesting amino acids of WSN PA subunit are
indicated. (B) Representative analyzed polyacrylamide gel (6%) is shown (n = 3). WSN PA subunit was mutated at position 86, 114 or 556 as indicated
in (A). 293T cells expressing influenza RNP were incubated at 37uC for 24 hours as pre-incubation. Pre-incubated cells were additionally incubated for
9 hours under thermal stress (42uC). Total RNAs were extracted and analyzed by primer extension assay. 5s ribosomal RNA (rRNA) is indicated as an
internal control. mRNA, cRNA and vRNA are viral messenger RNA, complementary viral RNA and viral RNA, respectively. (C) The each RNP activity is
graphically visualized. Wild type of PA subunit is indicated as WSN (WT). The activity is expressed as a % relative to the WSN wild-type. White, light
oblique and dark oblique lined columns show steady-state levels of mRNA, cRNA and vRNA, respectively. * and ** show statistically significant
differences from WSN wild-type at p,0.05 and p,0.01 in a Student’s t-test.
doi:10.1371/journal.pone.0015140.g006
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