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Little is known about the viability of eukaryotic microorganisms preserved in icy regions.
Here we report on the diversity of microbial eukaryotes in ice samples derived from four
Pyrenean glaciers.The species composition of eukaryotic communities in these glaciers is
unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether
they harbor the same populations. The recent deglaciation of these areas is allowing an
easy access to glacial layers that correspond to the “Little Ice Age” although some isolated
deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-
based approaches to characterize some of the microbial eukaryotic populations associated
with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization
of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity
in glaciers. In order to understand the microbial composition of the ice samples the
eukaryotic communities resident in the glacial samples were examined by amplifying
community DNA and constructing clone libraries with 18S rRNA primers. After removal
of potential chimeric sequences and dereplication of identical sequences, phylogenetic
analysis demonstrated that several different protists could be identified. Protist diversity
was more phylum rich in Aneto and Monte Perdido glaciers.The dominant taxonomic groups
across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant
variations in relative abundances of protist phyla between higher and lower glaciers were
observed. At the genus level, significant differences were also recorded for the dominant
genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition,
protist community structure showed significant differences between glaciers. The relative
abundances of protist groups at different taxonomic levels correlated with the altitude
and area of glaciers and with pH of ice, but little or no relationships to other chemical
characteristics were found.

Keywords: eukaryotic microorganisms, glaciers, ancient ice, climate change, biodiversity, Pyrenean glaciers

INTRODUCTION
Small eukaryotes are probably the most abundant eukaryotes on
Earth. They have been found in all extreme environments (Caron
et al., 1999), addressing a wide range of temperatures from tropical
oceans (Li et al., 1994) to polar sea ice (Bachy et al., 2011).

The discovery of cold-tolerant microorganisms in glaciated
and permanently frozen environments has broadened the known
range of environmental conditions which support microbial life.
Although these microorganisms that inhabit permanently cold
ecosystems (representing one of the largest biosphere reserves
on Earth) have been studied only for their ability to survive
in such extreme conditions, recent studies have provided evi-
dence that these habitats (deep sea, Polar Regions, mountain

Abbreviations: ANE, Aneto glacier; CCA, canonical correspondence analysis; LIT,
Literola glacier; MAL, Maladeta glacier; PCA, principal components analysis; PCR,
polymerase chain reaction; PER, Monte Perdido glacier.

glaciers, etc.) can be colonized by both obligate and facultative
psychrophilic microorganisms (Alcazar et al., 2010). Such ecosys-
tems represent one of the last unexplored frontiers of ecology, and
psychrophilic microbial populations sharing such habitats con-
stitute an important part of cold-adapted biodiversity and play
an essential role as nutrient cyclers and organic matter minera-
lizers.

It is difficult to characterize these organisms by simple obser-
vation with optical microscopy, and cultivation methods do not
allow all the organisms to grow. Pigment and/or fatty acid analysis
can provide some information on the structure and dynamics of
the phototrophic and/or heterotrophic behavior of small eukary-
otes, but the phylogenetic information supplied by these methods
is limited (Lefranc et al., 2005). During the last decade, molecular
techniques have greatly increased our knowledge by identifying the
smallest organisms. Environmental studies of eukaryotic diver-
sity based on polymerase chain reaction (PCR) amplification,
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cloning, and sequencing of the 18S rRNA gene have revealed a wide
diversity of protists in a variety of poorly explored habitats (Bachy
et al., 2011). Despite the power of molecular ecology techniques,
these methods have not been as widely used for microeukaryotes
as for prokaryotes. Several recent studies have analyzed the diver-
sity of small eukaryotes, sampled in different cold ecosystems, by
gene cloning and sequencing of rRNA genes and have shown high
phylogenetic diversity (Lefranc et al., 2005). These studies identi-
fied a wide variety of lineages and retrieved sequences not clearly
assigned to any known organisms. It should be emphasized that
most of these studies on small eukaryote diversity were conducted
in marine and lake ecosystems (Medinger et al., 2010; Bachy et al.,
2011). Thus, little is known about the diversity of microorganisms
from glaciers.

There have been a number of studies on the microbiological
composition of such psychrophilic populations in recent years.
Viable bacterial communities have been observed beneath glaciers
in the northern (Skidmore et al., 2000) and southern hemisphere
(Foght et al., 2004). With reference to eukaryotic microorganisms,
de García et al. (2007) described the occurrence of viable yeasts
in meltwaters running off glaciers of northwest Patagonia, and
Butinar et al. (2007) isolated culturable yeasts from basal ice layers
of high arctic glaciers of the Svalbard Islands. Likewise, Margesin
et al. (2007) and Turchetti et al. (2008) described the existence of
yeasts in some Alpine glacier habitats (e.g., cryoconites, ice cores,
sediments, and meltwaters) and Branda et al. (2010) in Calderone
glacier, Apennines. However, despite the profusion of results,
studies on microbial eukaryotic communities harboring in cold
habitats of Pyrenean area are so far lacking.

The global warming effect on microorganisms from glaciers is
relevant since these organisms constitute the base of the food webs
and a significant number of protists beneath glaciers are reported
to play important roles in chemical weathering and carbon cycling
processes (Dolhi et al., 2012). It is well known that worldwide
glaciers are strongly retreating due to ongoing climate change. In
this context, the Mediterranean region represents a particularly
delicate area, where glaciers of limited size are placed in mountain
chains of relatively low altitude (the Pyrenees, Atlas Mountains,
Maritime Alps, Apennines). The Pyrenees hosts the only active
glaciers that persist today in the Iberian Peninsula. In the early
twentieth century, they occupied an approximate area of 3,300 ha,
but currently, only cover about 390 ha (Arenillas et al., 2008). In
this extension, approximately 58% (some 206 ha) is located in
the Spanish side. These glaciers are a present source of concern
because of their steady decline linked to global warming. With
the disappearance of the Corral del Veleta glacier (Sierra Nevada,
Spain) in 1913 (Gómez et al., 2003), these glaciers, along with a
small residual nucleus (Calderone glacier) that is conserved in the
Apennines became the southernmost in Europe. If the present
trend continues, these glaciers might soon share the fate of Cor-
ral del Veleta. Accordingly, the study of psychrophilic microbial
populations sharing such vanishing cold habitat is of increasing
scientific interest.

Assessments of diversity and distribution of microorganisms in
glaciers are fundamental to studies related to global warming. Our
knowledge about the microorganisms living in mountain glaciers
is still rudimentary mostly because of logistical challenges imposed

by its inhospitable climate and the presence of a multi-year ice
cap. Glacial ice is unique matrix that is capable of protecting
microorganisms from long-term preservation. The organisms
entrapped in glacial ice can provide information on evolution-
ary processes and ancient biodiversity (Ma et al., 2000). Global
warming and associated environmental changes are predicted to
have strong impacts on high-altitude ecosystems (IPCC, 2007),
and the European mountains have already experienced an increase
in temperature of 1–2◦C during the twentieth century (Benis-
ton et al., 1997; Djukic et al., 2012). A possible consequence of
permafrost thawing, based upon predicted global warming sce-
narios, is that there may be an increase in microbial activity and
an increase in active layer thickness (Gilichinsky and Wagene,
2006). Current atmospheric warming will have severe conse-
quences for the structure and functioning of glacier ecosystems
with changes that, in turn, may feed back on the global-scale
composition of the atmosphere (Michelsen et al., 2012; Wagner
et al., 2012). Here we report the diversity and distribution of
microbial eukaryotes in four Pyrenean glaciers studied by 18S
rRNA gene libraries and addresses some interesting questions:
(i) what is the effect of altitude and glacier area on the com-
position of the microbial community? (ii) taking into account
that ice melting is more dramatic in lower glaciers, which are
the environmental differences associated to ice melting that affect
microbial community? (iii) is it possible to discriminate between
the effect on microbial community of area/altitude and the effect
of chemical parameters? (iv) is it possible to find a micro-
bial community or species to be used as an indicator of glacier
retreat?

MATERIALS AND METHODS
SAMPLE COLLECTION AND PROCESSING
Glacial ice samples were collected at four sites on the northern
slope of Pyrenees: Aneto glacier (ANE), Maladeta glacier (MAL),
Monte Perdido glacier (PER), and Literola glacier (LIT) in August,
2010 (Figure 1). These glaciers are located at altitudes of 3,404,
3,035, 3,355, and 2,740 m, and their surface are 64, 31, 32, and
1.5 ha, respectively (Rene, 2007; Arenillas et al., 2008). Ice samples
were obtained by removing 20–30 cm of thick debris and cutting
out a square block of 20 cm on a side. Three sampling replicates
were collected from each glacier. Samples were wrapped in plastic
bags and stored at −20◦C until processing. Ice samples were pro-
cessed by using a surface decontamination and melting procedure
consistent with previous studies (Bidle et al., 2007). A section of
block ice was removed from −20◦C and soaked in ice-cold 95%
ethanol for 1 min, followed by extensive rinsing with 0.22 μm-
filtered MilliQ water, effectively ablating the exterior 3-cm shell
of ice samples (corresponding to 30% of total ice volume). These
procedures were effective at removing surface contamination from
inner shell ice samples (Rogers et al., 2004; Christner et al., 2005).
The decontaminated interior ice was thawed in a sterile plastic bag
at 4◦C and used for analyses. To control for laboratory contami-
nation, 1 l of MilliQ rinse water was frozen, thawed, filtered onto
polycarbonate filters, and subjected to identical analytical proce-
dures. All procedures were performed by using bleach-sterilized
work areas, a UV-irradiated laminar flow hood, ethanol-sterilized
tools, and sterilized gloves.
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FIGURE 1 | Geologic setting of ice from Pyrenean glaciers and evidence

of encased microorganisms. (A,B) Map showing the distribution of ice
samples collected at various locations in Monte Perdido (1), Literola (2),
Maladeta (3), and Aneto (4) glaciers. (C–E) Photographs of Monte Perdido (C),
Aneto–Maladeta (D), and Literola (E). (F) Scanning electron microscopy

image of microorganisms in a matrix of fine sediment particles from LIT ice
meltwater illustrating their morphology compared with glacial till. (G,H)

Representative energy-dispersive X-ray analysis spectra from microorganisms
collected at Pyrenean glaciers. Full vertical scales in counts per second are
variable according to the area analyzed. Horizontal spectral ranges are in keV.

CHEMICAL ANALYSIS OF MELTWATER
Basic measurements of physical and chemical parameters of melt-
water from various sites were made with a temperature-calibrated
pH, conductivity, and salinity meter (WTW, Weilheim, Ger-
many). Assays for dissolved inorganic nitrogen (NH+

4 , NO−
2 , and

NO−
3 ) were performed by ion chromatographic method using

suppressed conductivity detection in a 861 Advance Compact
IC system (Metrohm AG, Herisau, Switzerland). Chromatograms
were recorded using the Metrohm IC Net 2.3 SR4 software. The
system was run in the isocratic mode with the column at 45◦C.

SCANNING ELECTRON MICROSCOPY
Samples (50 ml volume) for scanning electron microscopy (SEM)
observation were filtered in the lab (0.22 μm Millipore filters), pre-
served in 2% glutaraldehyde, rinsed in 0.22 μm-filtered 50 mM
phosphate buffer, and dehydrated using an ascending (30, 50,
70, 90, and 100%) series of ethanol. Filter disks were then air

dried overnight and mounted on SEM stubs with carbon pads
and sputter coated with gold-palladium for 1.5 min at 15 mA
voltage. Observation and imaging were examined using a Jeol
5600LV scanning electron microscope with an INCA Oxford
auxiliary X-ray energy-dispersive spectroscopy microanalytical
system.

DNA EXTRACTION AND PCR AMPLIFICATION
Approximately 400 ml of each frozen sample was melted at 4◦C and
filtered through a 0.22-μm filter (Millipore). Community DNA
was extracted using the GNOME BIO101 kit (MP Biomedicals,
Illkirch, France) and purified with QIAquick PCR purification kit
(Qiagen, Hilden, Germany) according to manufactures’ instruc-
tions. Extraction procedures were identical for all ice samples.
The 18S rRNA genes from mixed microbial DNA were amplified
by PCR. Near full-length 18S rDNA fragments were amplified by
PCR using the eukaryotic-specific primers 1F (CTG GTT GAT
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CCT TGC CAG; Lefranc et al., 2005) and 502R (ACC AGA CTT
GCC CTC C; Amann et al., 1990). PCR was carried out under
the following conditions: 33 cycles (denaturation at 94◦C for 30 s,
annealing at 46◦C for 30 s, extension at 72◦C for 35 s), was preceded
by 5 min denaturation at 94◦C, and followed by 7 min extension
at 72◦C. PCR was optimized by both diluting the template and by
increasing the number of thermal cycles.

To control for false-positive PCR signals, 1 l of MilliQ water
was frozen, thawed, and subjected to the same DNA extraction
procedure. This material was used as a template with the specific
primers to test for contamination and PCR artifacts.

SEQUENCING AND PHYLOGENETIC ANALYSIS
18S rDNA PCR amplicons were cloned using TOPO TA Cloning
Kit (Invitrogen, Carlsbad, CA, USA), and plasmid DNA (112
ANE clones, 35 MAL clones, 108 PER clones, and 44 LIT
clones) was bidirectionally sequenced with a 3730XL sequencer
(Applied Biosystems). Chimeric sequences were identified with
the CHIMERA-CHECK program (Ribosomal Database Project
II, Michigan State University, East Lansing, MI, USA) and dis-
carded.

Sequences were analyzed using BLAST at the NCBI database1.
Representative sequences were aligned using the software of
ClustalX (version 2.0; Larkin et al., 2007), the results were cor-
rected manually and alignment uncertainties were omitted in the
phylogenetic analysis. Their phylogenetic relationship was ana-
lyzed using the software MEGA 5 (Tamura et al., 2011) and the
ARB software (Ludwig et al., 2004) with parsimony, neighbor-
joining, and maximum likelihood analyses. In all cases, general tree
topology and clusters were stable, and reliability of the tree topolo-
gies was confirmed by bootstrap analysis using 1,000 replicate
alignments. A consensus tree was generated.

Rarefaction analysis was performed using Analytic Rarefac-
tion software (version 1.3)2, based on previous analytic solutions
(Raup, 1975; Tipper, 1979).

STATISTICAL ANALYSIS
Statistical differences on the number of clones, number of opera-
tional taxonomic units (OTUs) and Shannon–Wiener index were
studied by analysis of variance (ANOVA) test. Data of OTUs and
clones are media values of three sampling replicates. Relationships
between the number of taxa found in glaciers and environmen-
tal variables were analyzed by linear regression analysis (Pearson’s
correlation coefficient r).

Abundance-based coverage estimator (ACE) and Chao1 (Chao
and Bunge, 2002) indices were calculated using the EstimateS
program (version 8.2.0)3 (Colwell, 2011).

Effects of environmental variables on the community compo-
sition were investigated by a combination of analysis developed
with CANOCO version 4.5 software (Microcomputer Power,
Ithaca; Jongman et al., 1995). For statistical analysis, Monte Carlo
permutation tests with 500 permutations were used.

1http://ncbi.nlm.nih.gov/BLAST
2www.uga.edu/∼strata/software/Software.html
3http://purl.oclc.org/estimates

NUCLEOTIDE SEQUENCE ACCESSION NUMBERS
Sequences obtained in this study have been deposited in the
EMBL sequence database under accession numbers JX196712 and
JX456225 to JX456234.

RESULTS
GENERAL CHARACTERISTICS OF THE ICE SAMPLES AND CHEMICAL
PROPERTIES
In this study, we assessed and compared the composition of
eukaryotic microorganisms present in samples from four Pyre-
nean glaciers. ANE, MAL, PER, and LIT contained a broad size
spectrum of particles and sand debris as the ice contained a layer
of sand and organic matter of aeolian origin below the surface.
These inorganic particles contributed to variations in chemical
properties between the meltwater samples. Meltwater of ANE and
MAL were pH 6.7 and 6, respectively, whereas those from PER
and LIT were 4.8 and 5.7, possibly due to the chemical reac-
tions of fine particles of, e.g., pyrite (Table 1). These fine particles
were analyzed in a spectroscopy microanalytical system in order
to exactly define whether the observed particles corresponded to
microorganisms or inorganic material (Figures 1G,H). Spectrum
1 (Figure 1G) contains two major peaks corresponding to silicon
and oxygen, demonstrating it is a clay mineral, moreover spectrum
2 (Figure 1H) shows a major peak of carbon.

In addition, ice properties such as salinity, pH, NH+
4 , NO−

2 , and
NO−

3 contents were determined (Table 1). The ice samples had
overall low salinity and highly variable NO−

2 and NO−
3 contents

ranging from 3.4 μM in ANE to 73.2 μM in LIT for NO−
2 and

ranging from 4.5 μM in ANE to 103.5 μM in LIT for NO−
3 . Further,

NH+
4 presented a moderate variability between 2.1 μM in ANE and

6.6 μM in PER (Table 1). Generally, samples from higher glaciers
showed lower amounts of ion concentrations, as salt solubility
decreases in cold environments.

18S rRNA GENE CLONE LIBRARIES
In order to understand the microbial eukaryotic populations of the
ice samples, we amplified community DNA and constructed clone
libraries with eukaryotic-specific 18S rRNA primers (Table 2).
After removal of potential chimeric sequences and dereplication
of identical sequences, phylogenetic analysis demonstrated that 31
different phylotypes could be identified (10 from 112 ANE clones,
7 from 35 MAL clones, 9 from 108 PER clones, and 5 from 44 LIT
clones; Figure 2). Most of BLAST analysis of the 31 phylotypes
(Table 2) revealed no identical clones to 18S rDNA sequences in
GenBank, to currently cataloged species. Overall, the ANE, MAL,
and PER clone libraries showed a high diversity (Table 3; Figure 2)
with sequences belonging to Viridiplantae, Stramenopiles, Fungi,
Rhizaria, and Metazoa divisions.

COMMUNITY COMPOSITION AND STATISTICAL ANALYSIS: SPECIES
RICHNESS, ABUNDANCE, AND DIVERSITY
The microbial communities in higher glaciers differed from
the lower glacier communities. Regardless of the chemical
composition of ice (Table 1), this difference was mainly due to
the large numbers of Viridiplantae and Rhizaria among others in
higher glaciers. There was also a marked decrease in the number
of clones, number of OTUs and the Shannon index of diversity
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Table 1 | Chemical analysis of ice meltwater from ANE, MAL, PER, and LIT.

Sample pH Salinity (ppt) NH+
4 (μM) NO–

2 (μM) NO–
3 (μM)

ANE-1 6.7 0.23 1.8 4.0 5.4

ANE-2 6.7 0.27 2.3 3.1 3.9

ANE-3 6.8 0.21 2.2 3.2 4.3

Average (SD) 6.7 (0.06) 0.24 (0.03) 2.1 (0.26) 3.4 (0.49) 4.5 (0.77)

MAL-1 6.5 0.20 4.0 4.8 6.5

MAL-2 6.2 0.29 3.1 5.3 7.2

MAL-3 5.3 0.23 4.3 4.9 7.0

Average (SD) 6.0 (0.51) 0.24 (0.04) 3.8 (0.51) 5.0 (0.22) 6.9 (0.29)

PER-1 4.9 0.15 7.5 3.5 6.1

PER-2 5.0 0.21 5.9 4.1 3.9

PER-3 4.6 0.19 6.4 3.8 4.2

Average (SD) 4.8 (0.21) 0.18 (0.03) 6.6 (0.82) 3.8 (0.30) 4.7 (1.19)

LIT-1 5.5 0.35 5.5 68.1 110.5

LIT-2 5.9 0.28 6.8 76.3 101.6

LIT-3 5.8 0.31 4.9 75.2 98.5

Average (SD) 5.7 (0.21) 0.31 (0.06) 5.7 (0.97) 73.2 (4.45) 103.5 (6.23)

index in lower glaciers (Table 4). Comparisons of both, the mean
number of clones and the mean number of OTUs demonstrated
the similarity between ANE and PER (Table 4). Further, the
mean H ′ which ranged from 1.565 to 2.017, revealed that the
highest microbial diversity was found in PER, followed by ANE
(Table 4).

Test richness, abundance, and diversity were performed by
ANOVAs (Table 4). Subsequently, Newman–Keuls post hoc test
was used to test for differences among samples. Statistics indi-
cated that significant differences existed among glaciers. ANE had
the highest number of clones (112) and OTUs (10) whilst PER
showed 9 OTUs with 108 clones, and MAL and LIT contained
7 and 5 OTUs with 35 and 44 clones, respectively. In general,
glaciers located at higher altitude and area (ANE, MAL, and PER)
were more diversely populated than LIT.

Rarefaction analysis was performed. At 3% sequence divergence
rarefaction curves reached saturation, indicating that the survey-
ing effort covered almost the full extent of taxonomic diversity
at this genetic distance (Figure 3). Comparison of the rarefaction
analyses with the number of OTUs determined by Chao1 and ACE
richness estimators revealed that 50–100% (3% genetic distance)
of the estimated taxonomic richness was covered by the survey-
ing effort (Figure 4). Thus, we did not survey the full extent of
taxonomic diversity, but a substantial fraction of the microbial
diversity within individual glacier samples was assessed. The com-
parison of mean Chao1 richness estimates in glaciers employing
one-way ANOVA showed different values between ANE and the
rest of glaciers (p = 0.0013). MAL, PER, and LIT did not vary
significantly (p > 0.05).

Further, several correlation analysis between protist taxa from
glaciers and environmental variables demonstrated statistical dif-
ferences in the total number of taxa related to the altitude

(p = 0.0074) and also related to the number of Viridiplantae
(p = 0.0346; Figure 5; Table 5). Other variables such as salinity and
NH+

4 showed a negative correlation in Rhizaria (p = 0.0203) and
Fungi (p = 0.0165), respectively. NO−

2 and NO−
3 also presented a

negative correlation in the total number of OTUs (p = 0.0424 and
0.0432), respectively.

DISTRIBUTION OF TAXA AND PHYLOTYPES ACROSS ALL SAMPLES
All the sequences were affiliated to five phyla, Fungi, Metazoa,
Rhizaria, Viridiplantae, and Stramenopiles, representing 9.7, 4.7,
36.5, 45.8, and 3.34%, respectively (Figure 6). The dominant taxa
were represented in all samples with the exception of Metazoa
in PER and Stramenopiles in ANE and MAL. The members of
rare phyla (<1% of all classified sequences) included a member of
the family Chrysophyceae in PER and a member of Viridiplan-
tae in LIT samples (Table 2). The most abundant phylotype
across all samples was a glacier algae in ANE and MAL samples,
Chloromonas platystigma, representing 16% of all sequences. The
most abundant phylotypes in PER and LIT were two uncultured
Cercozoan representing 6 and 5% of all sequences, respectively
(Table 2).

At the genus level, comparison of the relative abundances
revealed significant differences between glaciers. Chloromonas was
the most abundant genus across all ice samples, representing 22%
of all classified sequences in ANE and 4% in MAL. The distribution
of the other dominant genera Raphidonema (4.6%), Heteromita
(5.3%), Koliella (5.4%), and Bodomorpha (4%) varied significantly
between glaciers (p < 0.0001; Table 2).

DIFFERENCES IN COMMUNITY STRUCTURE BETWEEN GLACIERS
The relative abundances of dominant taxa varied between glaciers.
Our clone libraries were clearly dominated byViridiplantae in ANE
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FIGURE 2 | Phylogenetic analysis of microbial community DNA in ice

samples. Consensus phylogenetic tree derived from 18S rRNA gene
sequence data showing the four groups of microbial eukaryotes found in
Pyrenean glaciers. The distance corresponding to one base change per

hundred nucleotide positions is indicated by the scale bar. Accession numbers
for the sequences used to make this tree are given inTable 2. Names in
capital letters (ANE, MAL, PER, and LIT) correspond to clones retrieved in this
study.

and MAL where they represented nearly 80%. Rhizaria, especially
represented by the Cercozoa in PER (Figure 6) and sequences
affiliating to Rhizaria were also the most abundant in LIT
library.

Principal components analysis (PCA; analysis no. 1) based on
the relative abundances of the microbial phyla confirmed that
microbial communities in glaciers were quite different (Figure 7).
MAL contained the only samples that shared similar composition
with those from ANE and PER. ANE and PER contained only one
common species (a soil flagellate belonging to Cercozoa), and LIT
appears to be the most different.

Canonical correspondence analysis with all environmental
variables was used to estimate the proportion of the community
variability attributable to variability in the environment, which
was estimated in several runs, each with a single variable. The
eigenvalues corresponding to the four ordination axes were used
to characterize the results of particular analysis (Table 6). CCA
diagrams show the interrelationships between microbial commu-
nities and environmental variables that were observed in the four
glaciers (Figure 8). The OTUs and sampling points mutually por-
tray the dominant patterns in community composition to the
extent that these could be elucidated by the selected variables

(Jongman et al., 1995). The length of an arrow representing an
environmental variable was considered to be equal to the rate of
change in the score as inferred from Figure 8, hence a measure
of how much the microorganism distribution differ along that
variable.

In the analysis no. 2, the CCA produced four axes which
accounted for 100% of the total variance in abundances of micro-
bial OTUs among the glaciers. Figure 8 shows a biplot diagram
of OTUs, glaciers, and environmental variables. The forward
selection of variables demonstrated that the relationship between
microbial communities and altitude (p = 0.02), area (p = 0.02),
pH (p = 0.02), NO−

2 (p = 0.046), and NO−
3 (p = 0.048) were

significant. The CANOCO program excluded NH+
4 and salinity

because they exhibited negligible variance. Subsequent analy-
sis also demonstrated that altitude, area, and pH can explain
the total community variability (analysis no. 3 and 4), mean-
while NO−

2 and NO−
3 are not so relevant (analysis no. 5, 6,

and 7).
In summary, significant differences of the community struc-

ture between the four glaciers were visible. The comparison of
relative abundances at the level of phyla also revealed significant
differences (Figure 6; Table 4). In general, Viridiplantae, Fungi,
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Table 3 | Diversity of small eukaryotes in clone libraries from glaciers.

Taxon Mean no. of OTUs (clones) in glacier

ANE MAL PER LIT

Viridiplantae 4 (80) 2 (17) 3 (38) 1 (2)

Streptophyta 2 (34)

Chlorophyta 3 (72) 2 (17) 1 (4) 1 (2)

Environmental samples 1 (8)

Stramenopiles 1 (2) 1 (8)

Chrysophyceae 1 (2)

Bacillariophyta 1 (8)

Fungi 3 (12) 2 (3) 1 (4) 1 (10)

Chytridiomycota 2 (10) 1 (1) 1 (4)

Dikarya 1 (10)

Environmental samples 1 (2) 1 (1)

Rhizaria 2 (12) 2 (13) 4 (68) 1 (16)

Cercozoa 2 (12) 2 (13) 4 (68) 1 (16)

Metazoa 1 (4) 1 (2) 1 (8)

Rotifera 1 (4) 1 (2) 1 (8)

Table 4 | Number of clones, number of OTUs, and diversity index for

the samples from Pyrenean glaciers.

Glacier Mean no. of

clones

Mean no. of

OTUs

Diversity

index H ′

ANE 112 10 1.832

MAL 35 7 1.649

PER 108 9 2.017

LIT 44 5 1.565

r2 0.9905*** 0.9688** 0.9995***

Multiple ANE vs. PERNS ANE vs. PERNS ANE vs. PER***

comparison ANE vs. LIT*** ANE vs. LIT** ANE vs. LIT***

PER vs. LIT*** PER vs. LIT** PER vs. LIT***

MAL vs. PER*** MAL vs. PER* MAL vs. PER***

MAL vs. ANE*** MAL vs. ANE* MAL vs. ANE***

LIT vs. MALNS LIT vs. MAL** LIT vs. MAL***

Statistical differences were studied by ANOVA test on the number of clones,
number of OTUs and Shannon–Wiener index (**, p ≤ 0.001; ***, p ≤ 0.0001). Sta-
tistical significance was achieved by Newman-Keuls post-test (NS, not significant;
*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001).

and Rhizaria were positively influenced by altitude, area, and
pH of glaciers, and negatively by salinity and NO−

2 and NO−
3

contents. These environmental characteristics were dominant in
higher glaciers (Figure 8). On the contrary, samples collected at
low altitudes, in LIT, contained a majority of Stramenopiles and
Metazoa, and were positively influenced by salinity and NH+

4 ,
NO−

2 , and NO−
3 contents (Figure 8).

FIGURE 3 | Rarefaction curves determined for the different 18S rRNA

gene clones. Rarefaction curves indicating the observed number of
operational taxonomic units (OTUs) at a genetic distance of 3% in four
different glaciers.

FIGURE 4 | Richness estimates of Pyrenean glaciers at a genetic

distance of 3%. Richness has been estimated by the richness estimator
Chao1, which is a non-parametric richness estimator based on distribution
of singletons and doubletons (blue), by the abundance-based coverage
estimator (ACE), which is a non-parametric richness estimator based on
distribution of abundant (>10) and rare (<10) OTUs (red), and by the
number of OTUs (green). Sample numbers are given below the graph. A
description of the samples is shown inTable 2.

DISCUSSION
Among the organisms that have successfully colonized extreme
cold environments, a variety of survival mechanisms have been
exploited. Microbial activity in ice is restricted to small amounts
of unfrozen water inside the permafrost soil or the ice, and to brine
channels. While there are sparse communities of lichens, mosses,
and soil microorganisms, the limited availability of liquid water
curtails biological activity for most of the year (Laybourn-Parry,
2002). Glaciers have truncated food chains with no animals or
plants and a dominance of protozoa, bacteria, fungi, and microal-
gae. These microorganisms may be trapped during ice formation
and remain inactive and frozen, but also active microorganisms
live within the ice, being subjected to strong physical and chemical
constraints. Contrary to what one might suppose, many of the
microorganisms in glaciers do not cease to function in the winter
months. Bacteria continue to grow all year, showing cycles that
appear to be related to the availability of dissolved organic carbon.
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FIGURE 5 | Correlation analysis between protist taxa from glaciers and environmental variables. Number of OTUs in glaciers with respect to
environmental parameters: (A) Altitude; (B) area; (C) salinity; (D) NH+

4 ; (E) NO−
2 /NO−

3 ; statistical differences were studied by Pearson’s r (*p < 0.05 and
**p < 0.01).

They provide potential energy for a spectrum of heterotrophic
and mixotrophic protozoans (Heath, 1988; Bell and Laybourn-
Parry, 1999).

In cold environments, organisms are confronted by contin-
uous low temperatures as well as a nutrient limitation. When
compared to other known microorganisms, psychrophiles possess
many unique qualities and molecular mechanisms that allow their
adaptation to cold environments (Alcazar et al., 2010). In order to
maintain activity in winter, microorganisms adopt one or more of
a variety of strategies that enable them to enter the summer with
actively growing populations. In this regard, some bacteria have
been found to contain polyunsaturated fatty acids in their plasma
membranes, which generally do not occur in other organisms. Fur-
ther, some of them use enzymes that continue to function at near
freezing ambient temperatures. And finally, they are able to pro-
duce proteins that are stable at cold temperatures (García-Descalzo
et al., 2011). Among the Protozoa, many of the most successful
species survive the winter in an active state by using endogenous
energy reserves or employing nutritional versatility. Mixotrophy is
also an important nutritional strategy (Laybourn-Parry, 2002). It
involves a combination of autotrophy and heterotrophy in varying
degrees. Some protozoa are forced to sustain a mixotrophic strat-
egy and cannot survive by photosynthesis alone. The dependence
on ingesting bacteria varies seasonally. One argument suggests that
it is a means of acquiring inorganic nutrients for photosynthesis

during phases of limitation (Nygaard and Tobiesen, 1993). Other
researchers contend that it is a means of supplementing the carbon
budget (Jones et al., 1993).

According to our results, the taxonomic affiliation of the
eukaryotic sequences associated to the samples from higher Pyre-
nean glaciers was markedly different from that of lower glacier. Ice
in samples from higher glaciers was characterized by a clear domi-
nance of Viridiplantae, fundamentally Chloromonas, and Rhizaria
(Figures 5 and 8) and these glaciers were quite similar in terms
of relative abundance of phyla with typical glacier protist lin-
eages, most notably Chlorophyta, Streptophyta, and Cercozoa
(Cameron et al., 2012). Generally the less thawed areas, located
in ANE, present a majority of Viridiplantae. Probably, ice main-
tains microorganisms isolated in clusters where they must survive
as photosynthetic and primary producers. However, frequently
thawed areas host a majority of Rhizaria that are heterotroph. In
this case, microorganisms are able to move into the meltwater,
reaching their preys. It is interesting to comment that although
PER conserves an intermediate extension of ice, it presents a
majority of Rhizaria, what could be due to the high level of frag-
mentation observed in the mass of ice which originates freeze-thaw
cycles.

In this study, the dominant taxa were present in all samples, and
corresponded roughly with those reported in other studies regard-
ing protist community composition in ice samples (Bachy et al.,
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Table 5 | Correlation analysis between taxa of small eukaryotes from glaciers and environmental variables.

Taxon Altitude Area Salinity pH NH+
4 NO-

2 NO-
3

Fungi

r 0.4981 0.8541 −0.04913 0.8843 −0.9670 −0.4966 −0.4940

p 0.5019 0.1459 0.4754 0.1157 0.0165* 0.5034 0.5060

Metazoa

r −0.4777 0.0033 0.7839 0.8467 −0.6172 0.4673 0.4697

p 0.5223 0.9967 0.1080 0.1533 0.1914 0.5327 0.5303

Rhizaria

r 0.7167 0.3152 −0.9594 −0.6392 0.3679 −0.7460 −0.7480

p 0.2833 0.6848 0.0203* 0.3608 0.3161 0.2540 0.2520

Viridiplantae

r 0.9654 0.9532 −0.6558 0.2951 −0.5976 −0.9144 −0.9132

p 0.0346* 0.0468* 0.1721 0.7049 0.2012 0.0856 0.0868

Stramenopiles

r −0.3209 −0.6954 0.05431 −0.8066 0.8018 0.4118 0.4099

p 0.6791 0.3046 0.4728 0.1934 0.0991 0.5882 0.5901

Total

r 0.9926 0.9223 −0.7566 0.1718 −0.4871 −0.9576 −0.9568

p 0.0074** 0.0777 0.1217 0.8282 0.2564 0.0424* 0.0432*

Statistical differences were studied by Pearson’s r (*p ≤ 0.05; **p ≤ 0.01).

FIGURE 6 | Microbial eukaryotic diversity. Relative 18 rRNA abundance
of major eukaryotic groups in gene libraries from ice samples.

2011). In general, our knowledge about microbial eukaryotic com-
munities in glaciers is quite limited. There are not many similar
reports to compare, but overall abundance and biodiversity in our
samples appear to be low, which may be due to the structure of ice,
that keeps the microorganisms isolated. LIT is the only one with
representatives of all phyla, since its deglaciation may allow greater
exchange of microorganisms. Samples were collected in summer,
when iced areas were minimal, and LIT virtually becomes a lake.

FIGURE 7 | Comparison of the microbial communities using the PCA

analysis. Numbers represent phylotypes as shown inTable 2 and Figure 8.
The diagram display circles representing sampling sites and arrows that
indicate the direction of increase for the abundances.

The retreat of glaciers is related to their geographical features
such as altitude and area, while other environmental variables
such as pH is dependent of mineral salts solubility, which in turn
increases with temperature. Moreover, pH may depend on the
chemical composition of the soil. We cannot determine whether
pH has a direct or indirect effect on community composition, as
a number of ice properties (e.g., salinity) are directly or indirectly
related to pH. Thus, the effect of a number of different factors is
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Table 6 | Summary of correspondence analysis and eigenvalues (λ).

No. of

analysis

Type of

analysis

Environmental variables Environmental

covariables

λ1 λ2 λ3 λ4

1 PCA – – 0.612 0.310 0.074 0.003

2 CCA Altitude, area, NO−
2 , NO−

3 , NH+
4 , pH, salinity – 1.000 0.798 0.200 0.003

3 CCA Altitude, area – 0.835 0.780 0.383 0.006

4 CCA Altitude, area, pH – 1.000 0.798 0.200 0.003

5 CCA Altitude, area pH 0.842 0.094 0.323 0.005

6 CCA Altitude, area, NO−
2 – 0.996 0.798 0.198 0.007

7 CCA Altitude, area NO−
2 0.798 0.198 0.007 0.005

FIGURE 8 | Canonical correspondence analysis. Ordination diagram
based on CCA, with respect to seven quantitative variables. The axes are
scaled in standard deviation units. Eigenvalues for the axes are detailed in
Table 6. The diagram display triangles that represent phyla, circles
representing sampling sites, and arrows that symbolize environmental
variables.

reflected by ice pH and these factors may also drive community
composition. Further, PER is placed in a calcareous massif, while
the other three glaciers are located in a granite massif (Arenillas
et al., 2008). However, in terms of biodiversity, the three high-
est glaciers are similar, regardless of their geochemical characte-
ristics.

Climate change is one of the most important problems that
concern modern society. Until now, scarce data are available to
evaluate the environmental impact on living organisms due to the
climate change. It is necessary to develop a rigorous investiga-
tion before undertaking any intervention, and that is why accurate
data are needed about possible responses from living organisms
to climate change. It is important to know how microbial pat-
terns are being altered and how these changes are affecting to
climate, as these microorganisms are essential components of the
microbial food webs and are often dominant primary produc-
ers. Although the full range of ecological implications remains
poorly understood, changes at the base of food webs necessar-
ily entail consequences for higher trophic levels, while modifying
the biochemical cycling of major elements including, but not

limited to carbon, nitrogen, phosphorous, and silicon (Hobbs
et al., 2010). The evaluation of the effect of global warming at the
microbial community level is a difficult task because of the many
mutually dependent response variables, non-linear responses, etc.
These difficulties can be partially overcome using CCA, which
enables an evaluation of the influence of the environment on the
composition of the community and provides a distribution-free
Monte Carlo test of significance (Jongman et al., 1995). The anal-
ysis of protist diversity in Pyrenean glaciers revealed statistically
significant differences in protist diversity and community struc-
ture between four glaciers melted to different extent. The analysis
of influences of ice chemical properties on protist community
structure revealed that pH had the strongest effect on protist
community structure of the analyzed ice properties. NO−

2 and
NO−

3 contents appear to have a minor impact on psychrophilic
protist community structure and diversity. In this survey, the cor-
relations between ice melting and community composition were
obvious.

The effect of altitude and glacier area on the composition of
the microbial community is essential, as demonstrated by CCA
analysis (Figure 8). This analysis also demonstrated that it is effec-
tively possible to discriminate between the effect on microbial
community of area/altitude and the effect of chemical parameters.
Chemical composition differences appear associated to ice melting
in lower glaciers, in which NO−

2 and NO−
3 contents are correlated

to community composition.
Further work is needed to evaluate whether our observations

can be generalized to other glacial regions. The retreat of mountain
glaciers subsequent to ongoing climate change has been docu-
mented extensively in the last years (Meier, 1984; Gómez et al.,
2003; Paul et al., 2004; Zemp et al., 2006; Citterio et al., 2007). Sev-
eral studies developed analytical models to forecast the retreating
trend of glaciers in the future. They predicted that a consistent loss
(or even the complete extinction) of most of the ice masses will
be observed by the end of this century in which case should the
current climate trend continue, and concluded that small glaciers
of southern Europe will be among the most reliable witnesses
of global warming (Oerlemans, 1997; Zuo and Oerlemans, 1997;
Zemp et al., 2006). Accordingly, such southern glaciers can be con-
sidered important for studying climate and environmental changes
occurring in the Mediterranean region.
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Future studies will be useful to better understand the impact of
global warming on microbial communities that behave as biosen-
sors. In our results, two main groups appear to be indicators of
glacier retreat, Stramenopiles and Metazoa, meanwhile Viridiplan-
tae is the dominant group in the less melted glaciers. There are
still many unanswered questions relating to the physiology and
biochemistry of psychrophilic protists that beg to be addressed.
These eukaryotic microorganisms in Pyrenean glaciers raise the
question of whether they have been preserved in an inactive state
or were able of maintenance their metabolism for long periods
of time in cold glacier environments. We also need information
on the species diversity, as well as much more data on biochem-
istry of surviving the cold and adaptation to warming, particularly
as there is a huge biotechnological potential in such psych-
rophiles.

Canonical correspondence analysis (CCA) was performed to
analyze the relationships between the observed taxa in Table 2 and
environmental variables in Table 1. Seven environmental variables

were taken into account. Two of them, altitude and glacier area are
related to the glacier degree of conservation, as ice melting is less
dramatic in higher glaciers, which maintain wider areas of ice.
The rest of environmental variables, pH, salinity, NH+

4 , NO−
2 , and

NO−
3 are associated to the ice chemical composition. To sepa-

rate the sources of variability in the microbial community various
combinations with different environmental variables were applied
(Table 6).
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