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Abstract
Skin wound healing is an intractable problem that represents an urgent clinical need. 
To	solve	this	problem,	a	large	number	of	studies	have	focused	on	the	use	of	exosomes	
(EXOs)	derived	from	adipose-derived	stem	cells	(ADSCs).	This	review	describes	the	
mechanisms	whereby	ADSCs-EXOs	regulate	wound	healing	and	their	clinical	appli-
cation.	In	the	wound,	ADSCs-EXOs	modulate	immune	responses	and	inflammation.	
They	also	promote	angiogenesis,	accelerate	proliferation	and	re-epithelization	of	skin	
cells,	and	 regulate	collagen	 remodelling	which	 inhibits	 scar	hyperplasia.	Compared	
with	ADSCs	therapeutics,	ADSCs-EXOs	have	highly	stability	and	are	easily	stored.	
Additionally,	they	are	not	rejected	by	the	immune	system	and	have	a	homing	effect	
and	their	dosage	can	be	easily	controlled.	ADSCs-EXOs	can	improve	fat	grafting	and	
promote wound healing in patients with diabetes mellitus. They can also act as a 
carrier	 and	 combined	 scaffold	 for	 treatment,	 leading	 to	 scarless	 cutaneous	 repair.	
Overall,	ADSCs-EXOs	have	the	potential	to	be	used	in	the	clinic	to	promote	wound	
healing.
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1  | INTRODUC TION

Wound	 healing	 is	 a	 complex	 biological	 process	 that	 takes	 place	 in	
skin	 tissue	 after	 injury	 by	 trauma,	 burn	 or	 diabetic	 ulcers.1 Chronic 
skin	wounds	are	difficult	to	heal,	for	example,	in	diabetic	or	long-term	
bedridden patients.2	Therefore,	wound	healing	is	one	of	the	most	in-
tractable	problems	for	clinicians	and	a	heavy	burden	for	patients,	both	
physically	and	financially.	Conventional	wound	care	methods,	with	the	
risk	of	atrophic	scars	and	pigmentary	abnormalities,	include	skin	graft-
ing,	 skin	 flap	 transplantation,	 laser	 therapy	 and	 biological	 stents.3,4 
Also,	biological	scaffolds	are	costly	and	slow,	and	they	are	not	suitable	
to treat large scale trauma.5,6

Other	treatments	include	local	application	of	specific	growth	fac-
tors7 and gene therapy.8	However,	local	growth	factors	are	easily	de-
graded	in	body	fluids,	whereas	dosage	cannot	be	easily	controlled	at	
the wound site.9	Hence,	there	is	a	crucial	and	urgent	need	for	alterna-
tive efficient and safe methods to promote wound healing.

Recently,	stem	cell	therapy	has	flourished	because	of	its	pluripo-
tency,	self-renewal	and	the	ability	to	promote	secretion	of	regenerative	
cytokines.10 Pluripotent stem cells are considered safe and overcome 
moral	concerns	associated	with	embryonic	stem	cells.	However,	stem	
cell therapy may present both problems of storage and transportation 
and risks of induced tumorigenesis and deformity.11 Stem cells have 
been	proposed	to	promote	wound	healing	in	a	paracrine	way	by	(1)	reg-
ulating	macrophages,12	T	cells,	B	cells	and	others13-15 to reduce inflam-
mation,	(2)	secreting	VEGF	to	promote	angiogenesis,16	(3)	promoting	
proliferation	and	differentiation	of	fibroblasts	and	keratinocyte-form-
ing	cells,	(4)	producing	anti-fibrosis	cytokines	and	(5)	transforming	into	
microvascular endothelial cells and keratinocytes.13,17

Exosomes are one of the components of paracrine and the main 
contributor to stem cells efficacy.18	They	 are	 small,	 single	membra-
nous,	secretory	organelles	rich	in	proteins,	lipids,	nucleic	acids	and	car-
bohydrate conjugates. They are also thought to have a wide variety of 
activities,	such	as	remodelling	the	extracellular	matrix	and	delivering	
signals and molecules to other cells. Their usage avoids many of the 
shortcomings	of	stem	cells,	since	they	are	stable	and	easily	stored.	In	
addition,	they	are	not	rejected	by	the	immune	system,	have	a	homing	
effect,	and	dosage	can	be	easily	controlled.19,20

Exosomes	 derived	 from	 adipose-derived	 stem	 cells	 (ADSCs-EXOs)	
have become a hot topic in the field of skin wound repairing and treat-
ment.	 Adipose-derived	 stem	 cells	 (ADSCs)	 are	 derived	 from	 adipose	
tissue,	where	they	are	nearly	500	times	more	abundant	than	in	an	equiva-
lent amount of bone.21,22 The abundance and the simple methods of sam-
pling	of	ADSCs	make	it	safer	against	trauma	and	other	adverse	reactions.

2  | BIOLOGIC AL CHAR AC TERISTIC S OF 
E XOS

2.1 | Biogenesis and release

Exos,	as	a	subtype	of	extracellular	vesicles	(EVs),	are	derived	from	
endosome	 and	 plasma	 membranes	 through	 endocytosis,	 fusion	

and budding processes.23	 There	 modes	 of	 EXOs	 and	 other	 EVs	
biogenesis	 and	 release	 are	 as	 follows	 (Figure	 1).	 In	 the	 first,	 the	
primary endosomes produced by phagosomes and plasma mem-
brane are further acidified to form secondary endosomes. These 
subsequently	 bud	 inward	 to	 form	 multivesicular	 bodies	 (MVBs).	
Some	MVBs	 entering	 lysosomes	 are	 degraded,	whereas	 the	 rest	
release	EVs	when	they	fuse	to	the	plasma	membrane.	This	last	step	
has	 been	 shown	 using	 genetically	 encoded,	 pH-sensitive	 CD63–
pHluorin fusion proteins.24	 In	 the	 second,	EVs	directly	bud	 from	
the	plasma	membrane,	as	shown	by	atomic	 force	microscopy	ex-
periments	 which	 demonstrated	 that	 the	 budding	 of	 EVs	 at	 the	
plasma	membrane	of	stem	cells	occurs	at	rates	equal	to	their	pro-
duction.25	Moreover,	 findings	of	earlier	electron	microscope	and	
electron microscopy experiments also prove this mode.26-29 There 
may	 exist	 other	 modes	 of	 EXOs	 biogenesis.	 Recent	 researches	
illustrate	 that	 EXOs	 can	 be	 released	 in	 delayed	 by	 deep	 invagi-
nations	of	certain	cell	types	at	the	plasma	membrane,	which	are	in-
distinguishable	from	MVBs	by	conventional	transmission	electron	
microscopy.30-32	These	intracellular	plasma	membrane–connected	
compartments	 (IPMCs)	 form	 a	 continuum	 with	 the	 extracellular	
milieu	 via	 necks,	where	 vesicles	 can	be	 stored	 and	 released	 in	 a	
pulsatile form.30

Exosomes biogenesis and release is regulated by several factors.

1. Rab proteins determine organelle membrane identity and mediate 
organelle dynamics33	 but	 also	 regulate	 EXOs	 biogenesis	 that	
take place via endosomes and the plasma membrane. Rab27 
proteins	can	mediate	MVB	maturation	and	traffic	to	the	plasma	
membrane34,35	 and	 regulate	 plasma	 membrane	 PIP2	 dynamics	
to	 organize	microdomains	 involved	 in	 budding,28 together with 
Rab35.36	 Rab11	 proteins	 may	 affect	 EXOs	 release	 via	 a	 calci-
um-induced	 homotypic	 MVBs	 fusion/maturation	 process.37

2.	 EXOs	release	can	be	promoted	by	the	binding	of	the	vacuolar	pro-
tein	sorting	factor	4	(Vps4)	and	the	endosomal	sorting	complex,	
required	 for	 transport	 (ESCRT),	 to	 ubiquitination	 protein.	 The	
ESCRT	machinery	 contributes	 to	membrane	 deformation,	 seal-
ing	and	repairing	in	a	wide	array	of	processes	that	include	MVB	
biogenesis.38	Therefore,	EXOs	biogenesis	 is	 likely	 to	be	ESCRT-
dependent,39 although this mechanism depends on other factors 
such	as	VPS4	ATPase.38,40

3.	 EXOs	 biogenesis	 is	 also	 regulated	 by	 the	 Ral	 family	 of	 small	
GTPases.	Their	 inhibition	produced	accumulation	of	MVBs	near	
the	plasma	membrane	and	a	marked	reduction	in	secreted	EXOs	
and	 EXOs	 marker	 proteins.41	 The	 small	 GTPase	 Arf6	 and	 the	
phospholipase	PLD2	of	the	Ral	family	are	also	implicated	in	pro-
moting	EXO	biogenesis.42	PLD2	seems	to	be	dependent	on	a	pair	
of	exosomal	scaffolds,	syntenin	and	Alix.

4.	 Autophagy-related	 (Atg)	 proteins	 coordinate	 initiation,	 nuclea-
tion,	 and	 elongation	 during	 autophagosome	 biogenesis.	 A	 de-
crease	 in	 EXOs	 secretion	 was	 observed	 in	 cancer	 cells	 lacking	
ATG5,43	whereas	 secretion	of	 EXOs	 and	EXOs	 related	proteins	
increased	 in	CRISPR/Cas9-mediated	neuronal	 cells	 knockout	of	
Atg5.44
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5.	 UV	radiation,	oxygen-free	radical	stimulation,	changes	in	calcium	
levels or cholesterol content may all contribute to variations in 
EXOs	secretion.45,46

2.2 | Structure and composition

Exosomes,	 released	 by	 various	 types	 of	 cells	 to	 the	 extracellular	
space,	are	small	 (30-150	nm)	lipidic	vesicles	(LVs).35,47-51 Since they 
are	approximately	5-	to	10-fold	smaller	than	the	wavelength	of	vis-
ible	 light,	 they	 can	 be	 detected	 by	 conventional	 fluorescence	mi-
croscopy when fluorescently labelled instead of conventional light 
microscopy.28	 Cryo-electron	microscopy	 shows	 that	 EXOs	 display	
a	 spheroid	 morphology,	 although	 a	 small	 proportion	 has	 multiple	
membranes	 or	 presents	 elongated,	 tubule-like	 morphologies.	 The	
latter	may	be	generated	by	biological	processes,	by	physical	force-
induced fragmentation and mechanical resealing.52	 EXOs	 have	 a	
density of ~1.1-1.2	g/mL.53	Homogeneity	is	affected	by	protein,	lipid	

ratio,	expression	of	a	specific	single	exosomal	cargo	protein28,29 or 
exosomal	metabolic	pathways	(eg,	as	a	consequence	of	hydroxyapa-
tite	crystallization	by	osteogenic	EXOs54).

Several	 tetraspanin	proteins	are	highly	enriched	 in	EXOs,	 for	
example	CD81,	CD82,	CD37	and	CD63,	with	CD63	and	CD81	are	
the	least	and	the	most	enriched	in	B	lymphocytes,	respectively.55 
In	general	studies,	the	successful	isolation	of	EXOs	from	ADSCs	is	
based	on	 the	detection	of	EXO	markers	 (CD9,	CD63	and	CD81).	
Since	that	initial	report,	CD81	and	CD63	have	come	to	be	among	
the	most	commonly	used	exosomal	marker	proteins,	together	with	
CD9,56 also detected in large vesicles.57	 EXOs	 also	 have	 other	
transmembrane	 signal	 proteins	 acting	 as	 signal	molecules,58 and 
carry	 cytokines,	 fibronectin,	 tenascin	 C	 and	 other	 extracellular	
matrix	 proteins	 (ECM).	 These	 suggest	 they	 participate	 in	 multi-
ple signal platforms for autocrine and paracrine signaling.59-61 
The inner cortex of exosomes is rich in scaffolding proteins 
Syntenin	 and	 Alix.	 In	 addition,	 a	 large	 number	 of	 tetrameric	 as-
sociated	chaperones,	 including	major	histocompatibility	 complex	

F I G U R E  1  EXOs	bud	from	endosome	and	plasma	membranes.	Exosome	biogenesis	may	use	three	mechanisms:	(1)	vesicle	budding	
into	discrete	endosomes	that	mature	into	multivesicular	bodies,	releasing	EXOs	upon	plasma	membrane	fusion;	(2)	direct	budding	from	
plasma	membrane	and	(3)	delayed	release	by	budding	at	intracellular	plasma	membrane–connected	compartments	(IPMCs)	followed	
by	deconstriction	of	IPMC	neck(s).	We	note	that	this	is	not	a	comprehensive	list	and	it	is	just	to	illustrate	some	of	the	mechanisms.	
Abbreviations:	ECM,	extracellular	matrix;	ERM,	ezrin-radixin-moesin;	ESCRTs,	endosomal	sorting	complexes	required	for	transport;	MHC,	
major	histocompatibility	complex;	IGSF8,	immunoglobulin	superfamily	member	8;	ICAM-1,	intercellular	adhesion	molecule-1;	SDC1,	
syndecans	1;	HSPs,	heat	shock	proteins
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(MHC),53,55	 immunoglobulin	superfamily	member	8	 (IGSF8),62 in-
tercellular	adhesion	molecule-1	(ICAM-1),63	syndecans	1	(SDC1)	64 
and	integrins,65	are	also	present	in	the	endothelium	of	EXOs.	The	
presence	of	heat	shock	proteins	(HSPs)	in	EXOs	was	first	reported	
by	Mathew	et	al.66

Exosomes	membrane	 riches	 (or	 riched)	 in	cholesterol	and	sphin-
gomyelin,	with	 a	 small	 amount	 of	 lecithin	 and	 phosphatidylethanol-
amine.67	Also,	the	outermost	surface	of	the	EXOS	consists	of	a	glycan	
canopy,	interrogated	by	lectin	panning	and	other	approaches.68,69

Exosomes	also	contain	nucleic	acids	 include	single-stranded,	ge-
nomic	double-stranded,	mitochondrial	or	reverse-transcribed	comple-
mentary	DNAs.70-72	RNAs	include	microRNA,	ribosomal	RNA	and	long	
non-coding	RNA,	which	can	be	transferred	in	functional	form	to	other	
cells and tissues.73-76

Adipose	tissue	is	not	only	a	reservoir	of	fat,	but	also	an	indispens-
able	endocrine	and	immune	organ.	EXOs	have	been	found	in	adipose	
tissue,77 adipocytes78,79	and	adipose-derived	mesenchymal	stem	cells	
(AMSCs).80	 EXOs	 derived	 from	 ADSCs	 were	 larger	 than	 common	
EXOs,81	but	expression	of	EXOs	markers	such	as	CD63	and	HSP-70	
was	positive,	indicating	that	the	size	range	of	EXOs	could	be	changed	
with	different	cell	types.	Adipocyte-derived	EVs	distributed	into	large	
extracellular	 vesicles	 (lEV)	 and	 small	 extracellular	 vesicles	 (sEVs),	 re-
spectively,48	with	different	protein	composition.	LEVs	presented	a	high	
content	of	phosphatidylserine,	whereas	sEVs	were	rich	in	cholesterol,	
which also confirmed that lipid composition depends on cell source.48,82

2.3 | Isolation and identification technology

Common	methods	used	to	characterize	EXOs	include	traditional	fluo-
rescence	microscopy,28	super-resolution	microscopy,83 dynamic light 
scattering	(DLS),	nanoparticle	tracking	analysis	(NTA),	tunable	resistive	
pulse	 sensing	 (TRPS)	 and	 single-particle	 interferometric	 reflectance	
(SPIR).	The	latter	can	detect	the	presence	and	abundance	of	specific	
lipids,	proteins,	carbonic	acids	and	carbohydrates.84

Exosomes	are	enriched	by	differential	centrifugation,	size-exclu-
sion	chromatography,	field	flow	fractionation,	microfluidic	filtration	
or	contact-free	sorting	immunoaffinity	enrichment.	Common	meth-
ods	for	detecting	EXOs-labelled	proteins	include	conventional	pro-
tein	analysis	(Western	blotting	and	ELISA,	mass	spectrometry),	flow	
cytometry	and	newer	protein	analysis	techniques,	such	as	micro	par-
ticle	flow	cytometry,	micro-nuclear	magnetic	resonance,	nanoplas-
monic	 EXO	 (nPLEX)	 sensor,	 integrated	 magnetic-electrochemical	
EXO	(iMEX)	sensor	and	ExoScreen.85	Of	these,	differential	centrif-
ugation	not	only	obtains	more	EXOs,	but	also	avoid	the	influence	of	
polyethylene glycol when using transmission electron microscopy.86

3  | PHYSIOLOGIC AL PROCESS AND 
MECHANISM OF WOUND HE ALING

Wound	 healing	 is	 a	 complex	 dynamic	 physiological	 process,	 which	
can	be	generally	divided	into	four	stages:	haemostasis,	inflammation,	

proliferation and remodelling.87	Initial	injury	causes	endothelial	dam-
age	 and	 basement	 membrane	 exposure,	 along	 with	 subsequent	
spillover of blood components. The immediate response to injury is 
vasoconstriction caused by the release of thromboxane and prosta-
glandins.	Meanwhile,	platelets	adhere	to	exposed	collagen	and	release	
the	 contents	 of	 their	 granules,	whereas	 tissue	 factor	 activates	 both	
platelets and coagulation cascades.88	Blood	clots	formed	by	collagen,	
platelets,	thrombin	and	fibronectin	not	only	control	haemorrhages	but	
protect the wound and provide matrix and soluble factors to promote 
adhesion. They also concentrate growth factors that serve as wound 
healing scaffolds.89,90	Blood	 clots	 also	 appear	 to	be	 inducers	of	 cell	
lineage differentiation during wound healing.91-93

During	the	inflammatory	phase,	vasodilation	and	capillary	perme-
ability	results	in	oedema.	Bone	marrow-derived	immune	cells	prepare	
for	wound	healing	by	clearing	pathogens,	apoptotic	cells,	cell	debris	
and damage mechanisms at the wound site.87 Cytokines and other 
factors attract granulocytes to wounds.94,95	 Subsequently,	 neutro-
phils	 digest	 debris	 and	 injured	 tissues	 by	 secreting	 proteases.	 And	
clear	microbial	 pathogens	 through	 oxygen-dependent	mechanisms.	
Local	monocytes	 also	migrate	 into	 the	wound	 and	 become	macro-
phages,	which	 can	 phagocytose	 apoptotic	 cells	 and	 cell	 debris	 and	
secrete a large number of growth factors.96	 Lymphocytes	 are	 also	
involved	 in	 inflammation.	 Interestingly,	 CD4+ T cells are associated 
with	 healing,	 whereas	 CD8-T cells negatively affect this process.97 
Inflammation	 eventually	 promotes	 transformation	 of	 M1	 macro-
phages	to	M2	macrophages.98

In	the	proliferative	phase,	re-epithelization	occurs.	This	relies	on	
migration of epithelial cells from the wound margins and any remain-
ing adnexal structures in the dermis. Epithelial migration and prolif-
eration continue until the wound is completely covered and an intact 
epithelial barrier is reestablished.99	M2	macrophages	promote	tissue	
regeneration and a mass production of extracellular matrix by reg-
ulating	the	proliferation	and	migration	of	keratinocytes,	fibroblasts	
and endothelial cells.91	Fibroblasts	begin	to	secrete	high	levels	of	im-
mature	collagen	type	III	into	the	matrix.100

In	the	last	remodelling	period,	fibroblasts	continue	to	secret	col-
lagen101,102	and	over	time	collagen	type	III	decreases	and	is	replaced	
by	collagen	type	I.	Collagen	fibres	gradually	become	organized	and	
the tensile strength of the wound increases.103 Collagen breakdown 
and structural adjustment of the neonatal extracellular matrix re-
sults	in	reduced	wound	thickness,	degradation	of	newly	formed	cap-
illaries and narrowing of the wound edge through contraction of the 
subvascular connective tissue.87,93,104

4  | ADSCs-E XOs MEDIATE WOUND 
HE ALING

4.1 | Regulations of immune response and 
inflammation

Inflammation	 is	 the	 body's	 self-defence	 mechanism	 in	 response	
to	harmful	stimuli.	Wound	healing	can	be	delayed	by	chronic	and	
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excessive	 inflammation,	 therefore	 a	well-regulated	 inflammation	
guarantees wound healing.105	 Activated	 T	 regulatory	 cells	 can	
promote wound healing by reducing both production of interferon 
alpha	 (IFN-α)	 and	 aggregation	 capacity	 of	 M1	 macrophages.106 
ADSCs-EXOs	play	an	 immunosuppressive	role	by	reducing	IFN-α 
secretion,	 thus	 inhibiting	 activation	 of	 T	 cells.107	 Furthermore,	
ADSCs-EXOs	contain	 immunoregulatory	proteins	such	as	TNF-a,	
macrophage	colony-stimulating	factor	(MCSF)	and	RBP-4.108 The 
role	of	ADSCs-EXOs	 in	promoting	monocyte	differentiation	 into	
M1	 macrophages	 was	 confirmed	 by	 Kranendonk	 et	 al108	 It	 was	
also	 found	 that	 miR-155	 in	 ADSCs-EXOs	 can	 induce	 adipocyte-
derived	macrophages	 from	 obese	mice	 to	 differentiate	 into	M1,	
causing	chronic	inflammation	with	an	imbalance	in	the	M1-to-M2	
macrophage ratio in adipose tissue.109	ADSCs-EXOs	can	also	up-
regulate	 the	 expression	 of	macrophage	 inflammatory	 protein-1α 
and	 monocyte	 chemoattractant	 protein-1,	 promoting	 early	
inflammation.110

4.2 | Promoting angiogenesis in wounds

Angiogenesis	 provides	 blood	 supply	 for	 wound	 healing,	 facilitating	
the transport of nutrients and metabolic waste products.89	ADSCs-
EXOs	promote	the	proliferation	and	migration	of	vascular	endothelial	
cells,	 thereby	enhancing	 angiogenesis.111 Human adipose stem cells 
(hADSCs)–derived	 EXOs	 are	 rich	 in	 miRNA-125a	 and	 miRNA-31,	
which can be transferred to vascular endothelial cells to stimulate pro-
liferation	and	promote	angiogenesis.	Transfer	of	miR-125a	to	endothe-
lial cells has been demonstrated in vitro and in animal experiments.112 
MSCs-EXOs	could	inhibit	expression	of	angiogenesis	inhibitor	(DLL4),	
thus promoting migration and sprouting vascular endothelial tip cells. 
Transfer	 of	 miRNA-31	 to	 endothelial	 cells	 has	 also	 been	 shown,113 
where	 hADSCs-EXOs	 inhibited	 expression	 of	 the	 anti-angiogenesis	
gene	HIF1	in	vascular	endothelial	cells,	promoting	migration	and	en-
hancing	angiogenesis	in	human	umbilical	vein	endothelial	cells.	ADSCs-
EXOs	may	also	promote	the	survival	of	skin	flaps	and	increase	capillary	
density,	playing	a	role	in	repairing	ischaemia-reperfusion	injury.114

4.3 | Speeding up proliferation and re-
epithelialization of skin cells

During	 the	 proliferative	 phase,	 fibroblasts	 proliferate	 to	 produce	
ECM,	whereas	 epithelial	 cells	 proliferate	 and	migrate	 towards	 the	
wound	 centre	 to	 promote	wound	 healing.	 Thus,	 proliferation	 and	
re-epithelization	of	skin	cells	are	important	for	skin	regeneration.89 
ADSCs-EXOs	 are	 internalized	 by	 fibroblasts	 and	 stimulate	 pro-
liferation,	 migration	 and	 collagen	 synthesis	 in	 a	 dose-dependent	
manner.115	 ADSCs-EXOs	 accelerate	 cutaneous	 wound	 healing	 by	
optimizing	fibroblast	properties,	as	shown	in	in	vivo	experiments.113 
Finally,	 hADSCs-EXOs	 up-regulated	 199	miRNAs	 and	 down-regu-
lated	93	miRNAs	to	promote	dermal	fibroblast	proliferation	and	dif-
ferentiation that sped up skin regeneration.116

4.4 | Regulating collagen remodelling to inhibit scar 
hyperplasia

Scar hyperplasia is a morphological and histopathological change of 
skin and soft tissue after wound healing. Severe trauma and extensive 
burn	usually	lead	to	scar	proliferation,	affecting	aesthetic	appearance	
and impairing organ function.89	 ADSCs-EXOs	 can	 regulate	 colla-
gen	remodelling	 to	 inhibit	 scar	hyperplasia.	 In	an	early	stage,	EXOs	
promote collagen remodelling through synthesis of type Ⅰ and Ⅲ,	
whereas they reduce scarring in the late stage by inhibiting collagen 
formation.115	In	addition,	ADSCs-EXOs	can	stimulate	the	reconstruc-
tion of extracellular matrix by regulating fibroblast differentiation and 
gene	expression,	 thereby	promoting	wound	healing	and	preventing	
scar	proliferation.	Wang	et	al117	found	that	ADSCs-EXOs	prevented	
the differentiation of fibroblasts into myofibroblasts but increased 
the	 ratio	 of	 transforming	 growth	 factor-β3	 (TGF-β3)	 to	 TGF-β1 in 
vivo.	 ADSCs-EXOs	 also	 increased	 the	 matrix	 metalloproteinases-3	
(MMP3)	expression	in	skin	dermal	fibroblasts,	resulting	in	a	high	ratio	
of	MMP3	to	tissue	inhibitor	of	matrix	metalloproteinases-1	(TIMP1).	
This	 is	 beneficial	 for	 the	 remodelling	 of	 extracellular	matrix	 (ECM),	
reducing	 scaring.	 Instead,	 in	 diabetic	mice,	ADSCs-EXOs	 promoted	
collagen	deposition,	which	increased	in	the	late	stage	of	wound	heal-
ing.118	 However,	 this	 leads	 to	 scar	 hyperplasia,	 which	 is	 not	 con-
ducive to healing.18 These controversial results may be due to the 
complex	 function	 of	 collagen	 and	 EXOs	 during	 different	 stages	 of	
wound	healing.	More	studies	on	the	effect	of	ADSCs-EXOs	on	col-
lagen deposition and their association with scar proliferation need to 
be	performed	(Figure	2).

5  | CLINIC AL APPLIC ATION OF 
ADSCs-E XOs FOR WOUND REPAIR AND 
TRE ATMENT

5.1 | Improving fat grafting

Fat	 grafting	 is	 used	 in	 cosmetic	 surgery,	 for	 example	 in	 the	 treat-
ment	 of	 hemifacial	 atrophy,	 depressed	 scars	 and	 breast	 recon-
struction.119,120	 Adequate	 blood	 supply	 in	 the	 early	 stage	 after	
transplantation	 is	 required	 for	 successful	 grafting121 which high-
lights	the	importance	of	promoting	angiogenesis.	ADSCs-EXOs	can	
promote	 proliferation	 and	 migration	 of	 vascular	 endothelial	 cells,	
thus promoting angiogenesis.122 They can also raise fat graft volume 
retention	 in	adipose-derived	mesenchymal	 stem	cells.	 Indeed,	EVs	
from	ADSCs	could	 improve	fat	graft	volume	retention	by	stimulat-
ing angiogenesis and regulating inflammatory response123	and	EXOs	
were	found	comparable	to	source	ADSCs	in	fat	graft	retention,	up-
regulating early inflammation and angiogenesis 110;	 thus,	 it	 is	clear	
that	ADSCs-EXOs	may	play	an	important	role	in	the	improvement	of	
fat	grafting	in	the	clinic.	Lastly,	EXOs	from	hypoxia-treated	human	
adipose-derived	mesenchymal	stem	cells	possessed	a	higher	capac-
ity to enhance angiogenesis in fat grafting.124 The latter may help 
develop new strategies to improve the survival of fat grafts.
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5.2 | Promoting wound healing of diabetic patients

According	to	the	World	Health	Organization	(WHO),	the	number	
of	 diabetes	 patients	will	 reach	 592	million	 by	 2035,125 and one 
of	 the	most	 challenging	complications	of	diabetes	mellitus	 (DM)	
is delayed wound healing.126	 Lack	of	 ideal	 treatments	among	all	
available ones appeals many scientists to develop new thera-
pies.127	Wang	et	al118	demonstrated	that	ADSCs-EXOs	could	pro-
mote	wound	healing	in	diabetic	mice	by	promoting	angiogenesis,	
proliferation and migration of fibroblasts and collagen synthesis. 
The	 capacity	of	ADSCs-EXOs	 to	promote	wound	healing	 in	dia-
betic foot patients was also reported.128 The latter study showed 
that	ADSCs-EXOs	can	simultaneously	express	antioxidant	recep-
tors	(Nrf2),	laying	an	experimental	foundation	for	clinical	applica-
tion	of	EXOs	 to	 treat	chronic	diabetic	wounds.	 In	diabetic	mice,	
ADSCs-EXOs	also	promoted	increased	collagen	deposition	in	the	
late	 stage	 of	 wound	 healing,118 but excessive collagen deposi-
tion may be unfavourable as it leads to scar hyperplasia.18 This 

controversy remains unsolved and therefore more research is re-
quired	on	the	effect	of	ADSCs-EXOs	on	collagen	deposition	and	
their association with scar proliferation.

5.3 | EXOs as a carrier and combined scaffold 
for treatment

The	natural	biocompatibility	and	cell-targeting	features	equip	EXOs	
for	carring	(delivering)	drugs.18	To	stabilize	their	concentration	fol-
lowing	local	application,	hydrogel	or	fibrin	can	be	used	as	scaffolds	
to	delay	EXOs	release	and	enhancing	their	wound	healing	ability.18 
Shilan et al129	used	EXOs	loaded	in	alginate	gel	as	a	bioactive	scaf-
fold in an in vivo study. This showed that this active wound dress-
ing	 technique	could	 significantly	promote	wound	healing,	 collagen	
synthesis	and	 local	angiogenesis,	providing	a	new	strategy	 for	 the	
composite structure of alginate hydrogel to speed up the healing 
process.

F I G U R E  2  Mechanisms	by	which	ADSCs-EXOs	may	promote	wound	healing.	(A)	adipose-derived	stem	cells	(ADSCs)-EXOs	contain	
immunoregulatory	proteins	and	reduce	the	secretion	of	IFN-α,	subsequently	inhibiting	activation	of	T	cells,	resulting	in	reduced	
inflammation.	Additionally,	miR-155	in	ADSCs-EXOs	can	induce	monocyte	differentiation	into	M1	macrophages,	causing	chronic	
inflammation;	(B)	ADSCs-EXOs	can	transfer	miRNA-125a	and	miRNA-31	to	vascular	endothelial	cells,	stimulating	proliferation	and	migration	
to	promote	angiogenesis;	(C)	In	the	early	stages,	ADSCs-EXOs	may	promote	proliferation,	migration	and	collagen	synthesis	in	fibroblasts,	
stimulating	N-cadherin,	cyclin-1,	PCNA	and	collagen	I,	III	expression	and	increasing	ECM	production;	(D)	in	late	stages,	ADSCs-EXOs	prevent	
the	differentiation	of	fibroblasts	into	myofibroblasts,	and	reduce	scarring	by	inhibition	of	the	formation	of	collagen	and	activation	the	ERK/
MAPK	pathway	to	increase	MMP3	expression.	Abbreviations:	ECM,	extracellular	matrix;	MCSF,	macrophage	colony-stimulating	factor
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5.4 | Promoting scarless cutaneous repair

Scar formation after skin wounds have healed is an intractable medical 
problem,	 affecting	 both	 aesthetic	 appearance	 and	organ	 function.89 
In	murine	incisional	wounds,	intravenous	injection	of	ADSCs-Exos	de-
creased	the	size	of	scars,	increased	the	ratio	of	collagen	III	to	collagen	
I	and	regulated	fibroblast	differentiation	and	gene	expression117;	thus,	
ADSCs-EXOs	may	be	a	new	treatment	for	scarless	cutaneous	repair.

6  | DISCUSSION

Adipose-derived	stem	cells-EXOs	have	a	great	potential	in	the	clinic	
for	wound	repair	and	regeneration	(Figure	3).	They	can	participate	in	
the regulation of the immune response and wound inflammation and 
promote	angiogenesis	by	 transferring	miRNA-125a	and	miRNA-31	
to	 vascular	 endothelial	 cells.	Also,	ADSCs-EXOs	 can	 stimulate	 the	
proliferation of fibroblasts and keratinocytes and regulate collagen 
remodelling. This inhibits scar hyperplasia by activating the ERK/
MAPK	 pathway	 that	 regulates	 the	 secretion	 of	 related	 cytokines.	
These properties make them an optimal tool to improve fat grafting 
application,	promote	wound	healing	of	diabetic	patients	and	scarless	
cutaneous repair and also to act as a carrier for combined scaffolds 
used	for	treatment.	Recently,	more	attention	is	given	to	self-derived	

and	 free-cell	 auxiliary	 agents,	 especially	 ADSC-Exos.	 Oral	 wound	
repair	may	use	free-cell	 therapies	to	promote	oral	mucosa	defects	
healing130 and reduce inflammatory process in wound after tooth 
extraction.131	Moreover,	these	therapies	are	also	used	 in	the	heal-
ings	of	acute	and	chronic	ulcers,132	postoperative	hand	wounds,133 
chronic	 lower-extremity	wounds.134	We	have	 every	 reason	 to	 be-
lieve	 there	 is	more	 potential	 in	 the	 use	 of	ADSC-Exos	 in	 free-cell	
therapies to be discovered.

However,	although	their	efficacy	has	been	proved,	 the	mecha-
nism	is	not	yet	clear.	There	remains	a	burning	question	in	this	field	
about	the	pro-	or	anti-cancer	status	of	ADSCS-EXOs.	Thus,	safety	
and	efficacy	of	ADSCs-EXOs	cannot	be	guaranteed.	The	problems	
of	lacking	of	easy	process	of	extraction	and	purification	of	EXOs	and	
standard	methods	 for	 identifying	 EXOs	 from	 specific	 cell	 sources	
also	need	to	be	solved.	To	better	isolate	and	identify	ADSCS-EXOs	
and	 understand	 their	 mechanism	 of	 action,	 further	 research	 is	
needed	in	the	expect	of	more	efficient	ADSCs-EXOs	products	and	
boarder applications in clinical practice.

7  | CONCLUSION

In	 summary,	 ADSCs-EXOs	 are	 a	 highly	 promising	 therapeutic	
for	 wound	 repair	 and	 regeneration.	 In	 the	 wound,	 ADSCs-EXOs	

F I G U R E  3  Potential	clinical	applications	of	adipose-derived	stem	cells	(ADSCs)-EXOs:	improvement	of	fat	grafting	(A),	wound	healing	
therapy	for	diabetic	patients	(B),	scarless	repair	(C)	and	carrier	and	combined	scaffold	for	treatment	(D)
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modulate	 immune	 responses	 and	 inflammation,	 promote	 angio-
genesis,	 accelerate	 proliferation	 and	 re-epithelization	 of	 skin	 cells	
and regulate collagen remodelling which inhibits scar hyperplasia. 
ADSCs-EXOs	 can	 improve	 fat	 grafting,	 promote	 wound	 healing	
of diabetic patients and act as a carrier and combined scaffold for 
treatment,	leading	to	scarless	cutaneous	repair.	ADSCs-EXOs	have	
a board applications in clinical practice and are likely to achieve the 
best fictionally skin wound healing.
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