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Abstract

Common spatial pattern (CSP) is shown to be an effective pre-processing algorithm in order

to discriminate different classes of motor-based EEG signals by obtaining suitable spatial fil-

ters. The performance of these filters can be improved by regularized CSP, in which avail-

able prior information is added in terms of regularization terms into the objective function of

conventional CSP. Variety of prior information can be used in this way. In this paper, we

used time correlation between different classes of EEG signal as the prior information,

which is clarified similarity between different classes of signal for regularizing CSP. Further-

more, the proposed objective function can be easily extended to more than two-class prob-

lems. We used three different standard datasets to evaluate the performance of the

proposed method. Correlation-based CSP (CCSP) outperformed original CSP as well as

the existing regularized CSP, Principle Component Cnalysis (PCA) and Fisher Discriminate

Analysis (FDA) in both two-class and multi-class scenarios. The simulation results showed

that the proposed method outperformed conventional CSP by 6.9% in 2-class and 2.23% in

multi-class problem in term of mean classification accuracy.

Introduction

One of the most popular topics in computer science in the last decade has been research on

Brain-Computer Interface (BCI) systems. BCI systems consist of sensors and a signal process-

ing unit that can convert brain activities into logical commands for an external device or com-

puter application. The basis of these systems is decoding brain signals using feature extraction

and pattern recognition algorithms [1, 2].

Motor imagery (MI) is a dynamic state in the brain that a subject imagines a body move-

ment such as hand or tongue movements without any external movement or muscle activation

[3]. This imagination task leads to neural activities in the primary sensorimotor cortex so simi-

lar to real movement which has different pattern depends on the type of imagination [4]. MI

based-BCI systems have designed to detect different MI signals that can be helpful for people

with motor disabilities or mental injuries to do some activities such as moving an artificial

arm, spelling words or controlling a computer cursor [1, 5].
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One of the useful and powerful pre-processing methods for feature extraction in BCI is

Common Spatial Pattern (CSP). CSP approach was used for the first time in detection of EEG

abnormality [6]. Then, CSP filters applied to the multi-channel EEG signal for the classifica-

tion of left and right hand MI signals [7]. Initially, CSP algorithm finds spatial filters for two

classes of data. Through applying spatial filters to the data, the variance is maximized for one

class of data while it is minimized for the other one. Therefore, two classes have more distinc-

tive feature to be used in the classification stage.

Despite the mentioned advantages for the CSP method, this approach has such shortcom-

ings as noise sensitivity, overfitting and two-class issue, which has led quite a few studies to

propose extensions for it [5, 8–10].

CSP approach uses L2 norm in its optimization problem; as a consequence, it has noise sen-

sitivity problem. In other words, outlier data and artifacts maybe have exaggerated effect as

they mostly have large amplitude in brain signals. Therefore, L1 norm has been proposed

based on CSP for solving this problem in [11]. This work used L1-norm method in the objec-

tive function instead of L2 norm to find eigenvectors. In the other work, Sparse CSP-L1 (sp-

CSPL1) used L1 norm technique to solve optimization problem of CSP in two steps. The first

one finds the robust spatial filters, and the other one penalizes the objective function by adding

a penalty term to induce sparsity [12]. Correntropy Induced Metric based CSP (CSP-CIM) has

been proposed to obtain a robust algorithm against outliers in [13]. CIM is used instead of L2

norm to approximate the objective function of CSP in the different dynamic regions. Another

way to reduce the effect of artifacts and outlier data in obtaining spatial filters has been sug-

gested in [14]. In this approach artifacts of data are removed in the preprocessing stage; there-

fore covariance matrices are calculated more accurate, as result CSP filters improved. As we

know, an EEG signal includes amplitude and phase information; however, the phase informa-

tion entirely ignored in CSP filter calculation. To solve this problem, three different methods

have been presented in [15]. In the first method, phase information of EEG signal added to

CSP objective function. In the second method, the CSP filters obtained by adding both ampli-

tude and phase information to the objective function. Finally, the third approach has been

used to handle nonlinearity in complex data points by the non-linear counterpart of Principal

Component Analysis (NLPCA).

Non-stationarity of EEG signal occur for several reasons such as alternation in cognitive

state of subject arising from mental fatigue and etc. adaptive common spatial pattern (ACSP)

has been used to modify CSP filters based on mental fatigue of subject. The Results show

ACSP outperformed conventional CSP in the term of class separability [16]. Regularized CSP

(RCSP) has been proposed for solving noise sensitivity and non-stationarity problem in [17].

In this paper, CSP filters have been optimized by prior information about the noise of data.

The other way to regularize the standard CSP algorithm is adding prior information to the

covariance matrix estimation. Four new RCSP algorithms, including two proposed regulariza-

tion terms for optimizing the objective function, are suggested in [18]. As a result, their pro-

posed Tikhonov Regularization CSP (TRCSP) and Weighted Tikhonov Regularized CSP

(WTRCSP) performed better than the CSP and other ones. Both of these approaches obtain

spatial filters by adding prior information to the objective function. CSP approach can only

extract spatial information of the brain activities. Regularizing Multi-bands CSP (RMCSP) has

been proposed that extracts data in spectral, temporal and spatial domains using Tikhonov

regularization method in [19]. CSP algorithm originally proposed to recognize between two

classes of data. CSP depends on frequency bands that it is different for each subject regarding

to individual characteristic nevertheless these differences have been neglected. Also CSP has

sample based covariance matrix. To overcome these problems, a feature extraction approach

has been suggested based on filter bank method in [20].
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Turning to the two-class problem, as CSP was originally proposed to discriminate between

two classes of data, first time Pair wise approach for multi-class problems has been proposed

in [21]. Furthermore, One-Versus-the-Rest (OVR) approach has been proposed to tackle with

multi-class problems [22], which cannot be considered as a genuine extension of two-class

CSP to more than two-class cases. In [23] a new classification method has been proposed

based on fuzzy system for multi-class problem. The proposed method outperformed in com-

parison with existing classifiers such as Linear Discriminant Analysis (LDA) and Support Vec-

tor Machine (SVM).

Correlation is a statistical criterion to measure similarity between two different signals. As

well as one of the useful methods for detection of task related activation in the brain is the cor-

relation based methods [24]. According to this fact, Local Temporal Correlation Common

Spatial Pattern (LTCCSP) has been proposed to obtain optimized spatial filters. Covariance

matric estimation is a noise sensitive step in obtaining CSP filters which is improved by impos-

ing local temporal correlation information into it [25]. In other work, a Correlation-based

Channel Selection (CCS) method was introduced for MI-based BCI. In this algorithms the

channels with high correlation coefficient selected to obtain spatial filters by using new RCSP

method [26]. In all the correlation-based approaches correlation calculated in the same class

and correlation between different classes is neglected. In the other hand MI signals are similar

to each other especially right hand and left hand MI signals. So these matters led us to propose

novel CSP method by adding correlation between different classes in the calculation of CSP fil-

ters. As mentioned, one of the methods to improve spatial filters is regularized CSP by adding

a suitable penalty term to the objective function. Temporal correlation between EEG channels

is a good criterion to measure the similarity of different channels (right hand and left-hand

movement in particular). Due to this fact, regularized CSP can be done using temporal correla-

tion between different classes of EEG signals as prior information. In this paper, a new regular-

ized CSP (CCSP) based on temporal correlation is proposed to improve spatial filters in two-

class scenario and it is further generalized to multi-class problem. Imposing the temporal cor-

relation as penalty term in solving objective function to obtain the spatial filters is shown to be

more effective than the existing methods in terms of discriminating the class-data, leading to

higher classification accuracy. In this work, our focus is on obtaining optimized spatial filters

using the proposed method for MI signals and all the simulation steps are done using this kind

of signals as inputs. It should be noted that the primary results of this paper have been pub-

lished in a conference paper [27].

The rest of this paper is organized as follows: First, we will provide the basis of the existing

CSP and RCSP methods are Section 2. Then the proposed regularized multi-class CSP method

will be given in Section 3. Furthermore, the block diagram of the proposed method, classifica-

tion, feature extraction, and data description is also presented in Section 3. In Section 4, the

simulation result of the proposed method is given and compared to the existing methods.

Finally, concluding remarks are presented in Section 5.

Background

In the following, the mathematical foundations of standard CSP as well as RCSP are given.

Common spatial patterns

As pointed out previously, CSP is one of the most popular approaches for feature extraction in

BCI technology. CSP finds spatial filters such that the variance of the transformed data is maxi-

mized for one class while it is minimized for the other one [7]. Suppose X1 and X2 stand for

the EEG signals for classes 1 and 2, respectively; where Xi 2 R
n�c

, n and c represent time
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sample and number of EEG channels, correspondingly. The solution of the following objective

function is the desired spatial filters.

arg max
w

JðwÞ ¼
wTXT

1
X1w

wTXT
2
X2w

¼
wTC1w
wTC2w

; ð1Þ

w denotes the spatial filter, T is the transposition operator and C1 and C2 represent covariance

matrices of X1 and X2 respectively. There are several methods for solving the maximization

problem (1). Using the Lagrange multiplier method, the constrained problem (1) is converted

to the following unconstrained problem:

Lðl;wÞ ¼ wTC1w � lðw
TC2w � 1Þ; ð2Þ

where λ is the Lagrange multiplier. Therefore, to calculate the spatial filter w, the derivative of

L must be taken and set equal to zero with respect to w, that is:

dL
dw
¼ 2wTC1 � 2lwTC2 ¼ 0

) C1w ¼ lC2w

) C� 1

2
C1w ¼ lw

ð3Þ

So, we have the standard eigenvalue problem. The solution to (1) are the eigenvectors of

M ¼ C� 1

2
C1, corresponding to its largest and lowest eigenvalues.

Regularized CSP

RCSP has been proposed to overcome some shortcoming of CSP such as being sensitive to

noise and artifacts, non-stationary and overfitting. In the following, one of most common

ways of regularizing standard CSP is explained. For this purpose, some prior information from

data is used as a regularization term in the objective function [18]. Therefore the objective

function (1) is modified as follows:

arg max
w

JP1
ðwÞ ¼

wTC1w
wTC2w þ aQðwÞ

ð4Þ

Where α denotes the regularization parameter (α�0) and Q(w) is the penalty term (prior

information). Q(w) can be defined in the form of non-quadratic or quadratic function. Con-

sidering a quadratic function as penalty term, i.e., Q(w) = wTKw, where K denotes the prior

information from the signal; the solution of (4), following the same Lagrangian approach

gives:

LP1
ðl;wÞ ¼ wTC1w � lðw

TðC2 þ aKÞw � 1Þ ð5Þ

Taking the derivative with respect to w and setting it equal to zero, we have:

dL
dw
¼ 2wTC1 � 2lwTðC2 þ aKÞ ¼ 0

) C1w ¼ lðC2 þ aKÞw

) ðC2 þ aKÞ
� 1C1w ¼ lw

ð6Þ

The eigenvectors of M1 = (C2+αK)−1C1 corresponding to its largest eigenvalues are the

desired spatial filters. Also, to calculate the optimized CSP filters, the objective function JP2
ðwÞ
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should be solved in the same manner.

arg max
w

JP2
ðwÞ ¼

wTC2w
wTC1w þ aQðwÞ

ð7Þ

The obtained filters by solving maximization problem (7) are the eigenvectors corresponding

the largest eigenvalues of M2 = (C1+αK)−1C2. Thus, the spatial filters are obtained by putting larg-

est eigenvalue of M1 and M2 together. There are several penalty functions with the difference in

K as prior information. The simple assumption is K = I which I represent identity matrix [18].

Proposed Correlation-based CSP (CCSP) method

As mentioned before, CSP algorithm discriminates two classes of data by maximizing/minimiz-

ing their projected variance, which is initially designed for two classes of data. In order to over-

come the shortcomings of the standard CSP and obtain a feature extraction method which can

be easily generalized to multi-class cases, we proposed to exploit the temporal correlation between

signals as a measure of similarity between them and impose it as penalty term to obtain a regular-

ization CSP. In the following, at first the proposed CCSP algorithm is formulated for two-class

problem. Then, its generalization for multi-class problem is given in the subsequent section.

Two-class problem

In the previous section, the basis of the RCSP approach is presented. In this section, the formu-

lation of the proposed method based on the temporal correlation as a penalty term for two-

class problem is given. Consider the penalty term, Q1(w), to be a quadratic function of w as:

Q1ðwÞ ¼ wTRd1w ð8Þ

where Q1(w) denotes the penalty term in JP1
ðwÞ and Rd1 2 R

c�c
is the diagonal matrix in which

the elements of the main diagonal are the correlation between X1 and X2. X1 and X2 represent

the average of X1 and X2 for all of the trials, respectively; i.e. (in order to reduce computational

complexity, X1 and X2 are used instead of X1 and X2)

X i ¼

Xt

j¼1

Xij

t
; i ¼ 1; 2 ð9Þ

where i and j represent the class and trial indices, respectively, and t is the total number of trials

for each class. Assume R to be the correlation matrix between two different classes as:

R ¼

r11 r12 � � � r1c

r21 r22 � � � r2c

..

. . .
. ..

.

rc1 rc2 � � � rcc

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð10Þ

where rij ¼ corrðxi
1
; xj2Þ; i,j = 1,2,. . .c.
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xi
1

and xj2 denote the i-th and j-th column of the matrices X1 and X2 , respectively, and corr

(.) is the correlation operator. Having the correlation matrix R, Rd1 is constructed as follows:

Rd1 ¼

a1 0 � � � 0

0 a2 0

..

. . .
.

0 0 ac

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð11Þ

where the diagonal entries, ai, are obtained as:

ai ¼

Xc

j¼1

jrijj

c
; i; j ¼ 1; 2; . . . ; c ð12Þ

and |.| denotes the absolute operator. Considering the penalty term for JP2
ðwÞ, i.e., Q2(w), it is

also defined in the similar fashion as:

Q2ðwÞ ¼ wTRd2w ð13Þ

where Rd2 2 R
c�c is the diagonal matrix of the form:

Rd2 ¼

b1 0 � � � 0

0 b2 0

..

. . .
.

0 0 bc

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð14Þ

and bj are calculated as:

bj ¼

Xc

i¼1

jrijj

c
; i; j ¼ 1; 2; . . .; c ð15Þ

The spatial filters are obtained by replacing the proposed penalty terms Q1(w) and Q2(w) in

(4) and (7) and solving the resulting objective functions. In order to maximize JP1
ðwÞ and

JP2
ðwÞ, Q1(w) and Q2(w) must be minimized. Therefore, the EEG channels of higher correla-

tion will have a lower contribution in solution of the optimization problem, which leads to

having more discriminative projected signals.

Two clear the computational complexity concept that is mentioned before, assume e and k
show the trials number of X1 and X2 respectively. Therefore the computational order to calcu-

late the correlation between two different classes is O(e×k×n×c) that n and c represent time

sample and number of EEG channels for Xi. By using X1 and X2 instead of X1 and X2 the

computational order of correlation matric is reduced to O(n×c). It must be noticed however

the computational complexity is decreased but it is still high in comparison to conventional

CSP.

Multi-class problem

In the following, the proposed two-class CCSP will be extended to more than two class prob-

lems by defining a suitable objective function for the spatial filters of each class. Considering
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the OVR classification method, the spatial filters for one class are calculated against the others

[8]. Likewise the two-class problem, the temporal correlations are used as penalty terms to the

objective functions. That is, the temporal correlations between one class and the remaining

classes are calculated. Then, sum of the calculated temporal correlations is used to impose

these correlations to the corresponding objective function. Take for example a four-class prob-

lem. Using the above described approach we have the following objective functions for:

arg max
w

JP1
ðwÞ ¼

wTC1w
wTC2w þ wTC3w þ wTC4wþ aQ1ðwÞ

ð16Þ

arg max
w

JP2
ðwÞ ¼

wTC2w þ wTC3w þ wTC4w
wTC1w þ aQ2ðwÞ

ð17Þ

In which Q1(w) and Q2(w) are calculated as follows:

Q1ðwÞ ¼ wTðR12

d1
þ R13

d1
þ R14

d1
Þw ¼ wTRd1w ð18Þ

Q2ðwÞ ¼ wTðR12

d2
þ R13

d2
þ R14

d2
Þw ¼ wTRd2w ð19Þ

where R12

d1
, R13

d1
and R14

d1
represent diagonal correlation matrices that are calculated using corre-

lation between class 1 and 2, class 1 and 3 and class 1and 4, respectively; entries of which are

calculated using (12). Likewise, R12

d2
, R13

d2
and R14

d2
denote diagonal correlation matrices between

classes 1 and 2, 1 and 3 and 1 and 4, respectively; entries of which are calculated using (15).

The problem for class 1 against the other classes is calculated by replacing Q1(w) and Q2(w) in

(16) and (17) and solve these functions. This procedure can be followed to obtain the spatial

filters for the remaining classes.

Block-diagram of the proposed MI signal classifier

Fig 1 shows the block diagram of the proposed method. Pre-processing step in this block-dia-

gram includes extracting different time duration from each trial of datasets and band-pass fil-

tering. At first, time segments (it is explained in more details in the date description section)

are extracted from each dataset. Then, each trial of data is band-pass filtered to make the mean

of EEG signals equal to zero. For this purpose, each trial of EEG signals is passed through an

8–30 HZ band-pass filter (Butterworth filter of order 5). Then, CCSP method was applied to

the filtered data to obtain the spatial filters. We used cross-validation to choose the best regu-

larization parameter (α) from [10−6: 5×10−5: 10−3]. The next step is feature extraction, which is

done using the log-variances method. In the fourth step, the extracted features are fed to the

classifier. It should be noted that the majority voting step is used only for multi-class problem.

Finally, the results are achieved.

Classification and feature extraction

In this paper, log-variances method, a traditional and powerful method, was used to extract

feature vector from the projected MI signals. As mentioned before CSP is a preprocessing

method based on maximization the variance between different classes. But it is not a proper

feature extraction method itself. So performing a method that uses variance as the feature can

be helpful. By using log-variances method, we extract feature vectors with more class separabil-

ity. Besides the data is projected into the normal distribution by using logarithm operator;

therefore it can cause the ease of classification step [7, 28]. Assuming a 2l×n dimensional

matrix as the filtered signal using 3 pairs of spatial filters (l = 3), the feature vector for each trial
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is calculated as:

fij ¼ log
varðzijÞ

X2l

j¼1

varðzijÞ
ð20Þ

where fij denotes feature from i-th class and j-th filter and zij represents the projected signal of

the i-th class and j-th filter. Furthermore, log(.) and var(.) denote the logarithm and variance

operators, respectively.

There are various classification methods for classifying the MI signals which some of them

are popular and more efficient than the others such as LDA, SVM and K-Nearest Neighbor

(KNN). Also several extensions have been proposed for each of these classifiers to improve

their performances.

LDA is a simple and effective classifier which is separated two or more classes of data by

hyper-planes [29]. This classifier has been extensively used for classifying the MI signals that

reduce the risk of misclassification but it may do not work properly when the testing data out-

numbered training ones [30, 31].

As mentioned above KNN is one of the most common and powerful methods for classifica-

tion of EEG signals. In this method, each data devote to the class number which is most com-

mon amongst its K nearest neighbour by a distance function such as Euclidean distance [29,

32]. Two parameters affect on the performance of KNN classifier: 1) value of K 2) distance

function [32].

Another popular classifier for BCI applications is SVM which is a supervised learning

method. This method separates two classes of data by finding the best hyper-plane which can

create the largest distance from each class [33]. This method extended to classified multi-class

data in [34]. Unlike LDA, SVM method represents a good performance in the cases that the

number of features is high [33].

In this work, we have used SVM classifier for two and multi-class classification problems. It

is an efficient and suitable method for classifying motor imagery signals. In two-class problem,

feature vector is fed to the SVM classifier and the results are obtained but in multi-class prob-

lem after using classifier, output of the SVM classifiers are combined by the majority voting

strategy and the final results are obtained as follows:

o ¼ arg max
o¼1;2;3;4

pOVRðojxÞ ð21Þ

where pOVR(ω|x) denotes the probability of x to be classified as class 1, 2, 3 or 4.

It should be pointed out 5-fold cross-validation is used to choose the best hyper-plane in

the classification step.

Fig 1. Block-diagram of the proposed method.

https://doi.org/10.1371/journal.pone.0248511.g001
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Data description

In this study, three publically available datasets are used for simulation and comparison

between the performance of the proposed algorithm and the existing ones. Each subject per-

formed imagery movement and EEG signals of each subject have been recorded by several

electrodes. These datasets consist of 17 subjects in overall. The EEG signal of 12 subjects have

been used to simulate multi-class problem (dataset IIIa, BCI competition III and dataset IIa,

BCI competition IV), while all of them have been used for two- class problem. The details of

each dataset are given below:

1. Dataset IIIa, BCI competition III: In this dataset [35], 3 subjects participated in recording

EEG signals. Four motor imagery tasks have been performed by them namely the imagina-

tion of the right hand, left hand, foot and tongue. The dataset was recorded using 60 EEG

channels at 250 Hz sampling rate. There are 45 trials per class for training and 45 trials per

class for testing for subject 1. Also, there is 30 trial per class for training and 30 trial per

class for testing for each of the subject 2 and 3. We have used from right hand and left hand

trials for two-class problem and all of the trials in multi-class problem.

2. Dataset IVa, BCI competition III: This dataset [35] consists of three motor imagery move-

ments for 5 subjects including right hand, left hand and right foot, although only right hand

and right foot signals are provided in BCI competition datasets. Signal are sampled with

100 Hz and 118 electrodes have been used to record EEG signals. 280 trial are recorded for

each subject that 168, 224, 84, 56 and 28 trials were used for training set and rest of them

for testing set.

3. Dataset IIa, BCI competition IV: This dataset [36] consists of EEG signals from 9 subjects

for four motor imagery tasks (right hand, left hand, both feet and tongue). These data were

recorded using 25 electrodes that 3 of them were recording EOG signals. In this paper, only

EEG signals were used. There are 72 trials per class for training set and 72 trial per class for

testing set. The sampling rate is 250 Hz. Right hand and left hand imagination movement

have been used for simulating two-class problem.

Each dataset has particular settings; therefore, different time segment was extracted from

each of the datasets for training and testing purposes [19]. In dataset IIIa, BCI competition III,

time segments of duration 3.5-7s are extracted from each trial. This time range is 0–3.5s

(whole time interval) for dataset IVa, BCI competition III. Finally, time duration of 2.5-6s was

used for dataset IIa, BCI competition IV.

Simulation results

After applying spatial filters to the datasets and extracting features from them, they are classi-

fied by SVM. In order to test the performance of the CCSP algorithm and compare it with

other cases as the benchmark (CSP [7], TRCSP [18], PCA [28] and FDA [37]). The TRCSP

algorithm used K = I as prior information in penalty term Q(w). The PCA is a mathematical

method used for dimension reduction and feature extraction. This technique finds principal

components (PCs) to reduce the dimension of data in which the few first components have the

largest variances in comparison to the others [28]. FDA is a supervised feature mapping

method which is found linear projection so that between-class scatter is maximum; meanwhile

within-class scatter is minimum [37]. We used three measures namely classification of accu-

racy, sensitivity and specificity. Figs 2–6 illustrate the comparison between the classification

accuracy of all methods in two-class and four-class scenarios. According to these Figs and

regarding the two-class problem, the proposed CCSP algorithm had better performance in 9
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out of 17 subjects, while the accuracy results were the same for 4 subjects (k3, al, A03, A08)

within all datasets. To explain further, CCSP had better classification accuracy in 9 subjects

and same classification accuracy in 4 subjects compared to TRCSP and outperformed CSP in

all cases. In addition, CCSP excelled PCA and FDA methods in all cases. The proposed CCSP

algorithm had improved classification accuracy rate from 0.63–17.88% compared to the origi-

nal CSP regardless of the equal cases. This best improvement of classification accuracy

occurred in subject aw in the Dataset IVa, BCI competition III which had 90.72%, 88.74%,

72.84%, 64.23% and 52.98% for CCSP, TRCSP, CSP, PCA and FDA respectively. Turning to

Fig 2. Comparison between classification accuracy of methods for two-class problem in dataset IIIa, BCI

competition III.

https://doi.org/10.1371/journal.pone.0248511.g002

Fig 3. Comparison between classification accuracy of methods for two-class problem in dataset IIa, BCI

competition IV.

https://doi.org/10.1371/journal.pone.0248511.g003
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the four-class problem, CCSP outperformed in 7 out of 12 cases, and it had equal performance

in two of them (k3 and A04). In order to clarify more, CCSP had better performance in 8 sub-

jects and had same classification in the rest of them in comparison to CSP. As well as, CCSP

outperformed TRCSP in 9 cases but 3 of them. Moreover CCSP surpassed PCA and FDA.

Using the proposed approach, the improvement was from 0.69% to 6.67% compared to CSP

(regardless of the equal cases). In comparison to CSP, in four-class problem best improvement

of classification accuracy belongs to subject k6 in Dataset IIIa, BCI competition III. This sub-

ject shows 72.50%, 65%, 65.83%, 25.83% and 49.16% for CCSP, TRCSP, CSP, PCA and FDA

Fig 4. Comparison between classification accuracy of methods for two-class problem in dataset IVa, BCI

competition III.

https://doi.org/10.1371/journal.pone.0248511.g004

Fig 5. Comparison between classification accuracy of methods for multi-class problem in dataset IIIa, BCI

competition III.

https://doi.org/10.1371/journal.pone.0248511.g005
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respectively in term of classification accuracy. This must be pointed out that the proposed

algorithm never had worse performance than the original CSP in all of the subject and two-

class and multi-class scenarios. Nevertheless, CSP outperformed TRCSP in 5 subjects. Figs 7

and 8 show boxplots for two-class and multi-class problems, respectively which are shown

superiority of CCSP in comparison to the others. In Figs 7 and 8 the distribution of classifica-

tion accuracy for CCSP is negatively skewed so it shows more than 50% of subjects have classi-

fication accuracy more than mean of CCSP method. Maximum and minimum of all of the

data are specified in these diagrams. Table 1 reports mean, median and standard deviation of

classification accuracy for five methods in two-class and multi-class problems. Compared to

Fig 6. Comparison between classification accuracy of methods for multi-class problem in dataset IIa, BCI

competition IV.

https://doi.org/10.1371/journal.pone.0248511.g006

Fig 7. Boxplot of all subject for CSP, TRCSP and CCSP in two-class problem.

https://doi.org/10.1371/journal.pone.0248511.g007
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the CSP, the proposed method shows about 6.9% and 2.23% improvement in term of mean

accuracy in two-class and multi-class problems, respectively. Furthermore, CCSP approach

showed about 0.58% and 1.49% improvement in term of mean accuracy in two-class and

multi-class problem compared to TRCSP. As well as, in term of mean classification accuracy,

the CCSP represents 24.87% and 33.89% improvement in comparison to PCA and 19.23% and

15.43% improvement in comparison to FDA in two-class and multi-class problem respectively.

The standard deviation of the CCSP method is better than CSP and TRCSP methods in multi-

class problem and has better value than CSP and close to the TRCSP in two-class problem.

Table 2 shows sensitivity and specificity for all datasets in two-class problem. Kappa coefficient

is statistical method for measuring degree of agreement between classes which is more robust

criterion than classification accuracy by considering random agreement. This method assigns

zero to the random classification and one to the perfect classification [38]. Then in four-class

problem zero is equal to 25% and one is equal to 100% in term of classification accuracy.

Fig 8. Boxplot of all subject for CSP, TRCSP and CCSP in multi-class problem.

https://doi.org/10.1371/journal.pone.0248511.g008

Table 1. Mean, median and standard deviation (std.) for two and multi-class problem (Best values are in

boldface).

All of the datasets

Mean Median Std.

Two-class PCA 58.61% 56.66% 9.78

FDA 64.25 59.82% 15.99

CSP 76.58% 77.77% 15.62

TRCSP 82.9% 87.41% 13.43

CCSP 83.48% 88.07% 13.71

Multi-class PCA 37.65% 37.84% 9.31

FDA 56.11 58.64% 12.79

CSP 69.31% 73.26% 16.22

TRCSP 70.05% 75.51% 15.42

CCSP 71.54% 76.07% 14.93

https://doi.org/10.1371/journal.pone.0248511.t001
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Table 3 reports kappa coefficient for all datasets in multi-class problem. It shows CCSP outper-

form other methods in term of kappa coefficient. Best performance for each subject has been

reported in boldface in Tables 2 and 3. Table 4 represents running time of five algorithms for

all subjects. Running time is the period of all simulation stage including preprocessing, apply-

ing spatial filters, feature extraction and classification for testing sets. As it is seen, running

time for the proposed CCSP algorithm is approximately as same as the four other approaches.

Fig 9 illustrates the first spatial filter using 3 methods for subjects aw (recorded by 118 elec-

trodes), k3 (recorded by 60 electrodes), A06 and A08 (recorded by 22 electrodes) in two-class

problem. It can be observed that CSP filter had large electrode weights spread over the unex-

pected area while CCSP filters provided more emphasis on the electrodes which is located in

the motor cortex area [39]. It should be mentioned that the simulation is performed on a com-

puter with 8 gigabytes of RAM and core i7 Intel CPU. Also MATLAB is used as a software in

the simulation stage to obtain the results.

Conclusion

Regularized CSP is used to overcome the shortcomings such as overfitting and noise sensitivity

in conventional CSP, by imposing appropriate prior information to its objective function. Sev-

eral regularization terms are suggested for this purpose. Using prior information in terms of

time correlation of the underlying signals can be useful in both two-class and multi-class prob-

lems. In this article, we introduced a novel term of prior information to penalize solution of

the original CSP, named temporal correlation, which has the advantage of easy extension to

multi-class problems. In order to evaluate the performance of the proposed CCSP method, we

Table 2. Specificity and sensitivity for all of datasets in two-class problem (Best values are in boldface).

Dataset IIIa, BCI

competition III

Dataset IVa, BCI competition III Dataset IIa, BCI competition IV

Subject k3 k6 l1 aa al av aw ay A01 A02 A03 A04 A05 A06 A07 A08 A09

Sensitivity PCA 0.73 0.86 0.6 0.56 0.6 0.43 0.4 0.48 0.36 0.7 0.4 0 0.11 0.34 0.11 0.79 0.76

FDA 0.86 0.7 0.6 0.45 0.92 0.52 0.1 0.57 0.77 0.31 0.72 0.59 0.12 0.59 0,84 0.93 0.84

CSP 1 0.76 0.76 0.65 0.96 0.48 0.46 0.81 1 0.62 0.81 0.48 0.84 0.63 0.61 0.95 0.93

TRCSP 1 0.76 0.83 0.8 1 0.52 0.92 0.94 0.94 0.36 0.93 0.58 0.7 0.79 0.61 0.97 0.93

CCSP 1 0.86 0.86 0.83 1 0.53 0.9 0.92 0.95 0.38 0.93 0.7 0.51 0.77 0.7 0.95 0.95

Specifity PCA 0.44 0.26 0.53 0.61 0.92 0.74 0.88 0.85 0.7 0.33 0.66 1 0.87 0.55 0.83 0.51 0.88

FDA 0.6 0.36 0.4 0.76 0.92 0.58 0.94 0.48 0.66 0.66 0.95 0.62 0.86 0.55 0.45 0.84 0.91

CSP 0.95 0.6 1 0.75 1 0.52 0.98 0.81 0.66 0.5 1 0.81 0.16 0.62 0.94 0.97 0.88

TRCSP 1 0.93 0.96 0.71 1 0.69 0.85 0.8 0.91 0.83 1 0.9 0.5 0.65 0.91 0.97 0.9

CCSP 1 0.73 1 0.73 1 0.7 0.9 0.84 0.93 0.83 1 0.86 0.59 0.65 0.9 0.98 0.88

https://doi.org/10.1371/journal.pone.0248511.t002

Table 3. Kappa coefficient for dataset IIIa, BCI competition III and dataset IIa, BCI competition IV in multi-class problem (Best values are in boldface).

Dataset IIIa, BCI competition
III

Dataset IIa, BCI competition IV

Subject k3 k6 l1 A01 A02 A03 A04 A05 A06 A07 A08 A09

Kappa coefficient PCA 0.27 0.01 0.24 0.36 0.05 0.2 0.14 0.004 0.09 0.05 0.19 0.37

FDA 0.7 0.32 0.41 0.5 0.19 0.48 0.38 0.15 0.16 0.52 0.5 0.62

CSP 0.94 0.54 0.7 0.71 0.3 0.66 0.55 0.13 0.29 0.62 0.75 0.77

TRCSP 0.91 0.53 0.71 0.73 0.38 0.68 0.54 0.16 0.34 0.65 0.73 0.79

CCSP 0.94 0.63 0.7 0.72 0.4 0.7 0.55 0.2 0.35 0.66 0.78 0.77

https://doi.org/10.1371/journal.pone.0248511.t003
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used 17 subjects in two-class problem and 12 subjects in multi-class problem. We further com-

pared its simulation results with the classical CSP, TRCSP, PCA and FDA. In two-class prob-

lem, the results show that our approach outperforms CSP, TRCSP, PCA and FDA by 6.9%,

0.58%, 24.87% and 19.23% in the mean of classification accuracy, respectively. Likewise, in

multi-class scenario, the proposed CCSP achieves an improvement of 2.23%, 1.49%, 33.89%

and 15.43% in classification accuracy mean in comparison to the CSP, TRCSP, PCA and FDA

methods. Also CCSP method provided neurophysiological plausibility spatial filters. We can

suggest using the proposed algorithm as a processing unit in the MI-based BCI systems to

have better recognizing between the MI signals. It should be noticed we did not investigate the

Table 4. Running time for two-class and multi-class problems.

time (sec)

Dataset IIIa, BCI

competition III

Dataset IVa, BCI competition III Dataset IIa, BCI competition IV

Subject k3 k6 l1 aa al av aw ay A01 A02 A03 A04 A05 A06 A07 A08 A09

Two-class PCA 2.11 1.73 2.15 2.57 2.58 2.55 2.39 2.36 3.95 3.01 3.24 3.08 3.10 3.13 3.24 3.49 3.06

FDA 2 1.75 1.59 1.67 1.71 1.72 1.77 2.21 2.65 2.41 2.47 2.46 2.43 2.39 2.43 2.47 2.52

CSP 1.86 1.53 1.54 1.81 1.85 1.80 1.78 1.73 2.32 2.47 2.30 2.27 2.31 2.35 2.29 2.35 2.55

TRCSP 1.91 1.53 1.58 1.84 1.83 1.82 1.76 1.84 2.28 2.32 2.26 2.27 2.33 2.28 2.29 2.29 2.38

CCSP 1.92 1.57 1.54 1.87 1.81 1.81 1.83 1.82 2.32 2.32 2.28 2.34 2.36 2.28 2.29 2.34 2.31

Multi-class PCA 2.95 2.51 2.52 - - - - - 3.12 3.06 3 3.1 3.03 3.04 3.2 3.15 3.15

FDA 2.9 2.44 2.54 - - - - - 2.98 2.95 3.07 2.96 2.92 2.96 2.98 2.91 3.06

CSP 2.17 2.16 2.70 - - - - - 2.99 2.90 2.84 2.84 2.92 2.78 2.95 2.91 2.83

TRCSP 2.81 2.20 2.21 - - - - - 3.02 2.98 2.93 2.99 2.98 2.88 3.01 3.06 2.93

CCSP 2.87 2.34 2.31 - - - - - 3.03 3.06 3 2.96 3.09 2.96 3.06 3.06 3.03

https://doi.org/10.1371/journal.pone.0248511.t004

Fig 9. The scalp topography for the first spatial filter using CSP, TRCSP and CCSP methods for the subjects aw,

k3, A06 and A08.

https://doi.org/10.1371/journal.pone.0248511.g009

PLOS ONE Correlation-based common spatial pattern (CCSP)

PLOS ONE | https://doi.org/10.1371/journal.pone.0248511 March 31, 2021 15 / 18

https://doi.org/10.1371/journal.pone.0248511.t004
https://doi.org/10.1371/journal.pone.0248511.g009
https://doi.org/10.1371/journal.pone.0248511


performance of proposed method in datasets with small training data. As well as when EEG

has been recorded with few numbers of electrodes our algorithms need to more investigation.

As well as the proposed method needs more calculation to obtain optimized spatial filters

therefore in the systems with weak hardware it maybe takes time to operate.
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