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Multi-label Learning for Predicting 
the Activities of Antimicrobial 
Peptides
Pu Wang1,2,3, Ruiquan Ge1,2,5, Liming Liu1,4, Xuan Xiao3, Ye Li1 & Yunpeng Cai1

Antimicrobial peptides (AMPs) are peptide antibiotics with a broad spectrum of antimicrobial activities. 
Activity prediction of AMPs from their amino acid sequences is of great therapeutic importance 
but imposes challenges on prediction methods due to label interactions. In this paper we propose a 
novel multi-label learning model to address this problem. A weighted K-nearest neighbor classifier 
is adopted for efficient representation learning of the sequence data. A multiple linear regression 
model is then employed to learn a mapping from the classifier score vectors to the target labels, with 
label correlations considered. Several popular multi-label learning algorithms and feature extraction 
methods were tested on a comprehensive, up-to-date AMP dataset with twelve biological activities 
covered and its filtered version with five activities covered. The experimental results showed that our 
proposed method has competitive performance with previous works and could be used as a powerful 
engine for activity prediction of AMPs.

With an increasing number of drug-resistant microorganisms, the development of new-generation antibiotics 
turns into an urgent challenge1. Antimicrobial peptides (AMPs) are a potential therapeutic alternative, which 
are commonly found in the innate immune systems of nearly all kinds of life2. These peptides are broad spec-
trum antibiotics which have been demonstrated to kill bacteria, viruses, fungi and even cancer cells3. In addition 
to antimicrobial, natural AMPs also possess many other activities that are of therapeutic importance, such as 
wound healing, antioxidant and immune modulation4. In recent years, many machine learning methods have 
been applied in AMP analysis, which may become useful tools to speed up the classification and design of AMPs. 
However, most existing works only focused on the problem of identifying AMPs from peptide sequences (binary 
classification problem), or giving them one of several activities (multi-class classification problem)5–12. The activ-
ity prediction of AMPs is in fact a multi-label learning problem because any AMP may be relevant to one or more 
activities. In 2013 a two level classifier iAMP-2L was proposed, in which the first level was to identify an AMP, 
and then the second level involved predicting the activities of AMPs13. In this work, however, only five activities 
were considered and no existing multi-label learning methods were tested. To address these problems, firstly 
we constructed a new dataset with twelve biological activities covered based on the latest antimicrobial peptide 
database (APD) and a filtered dataset with only five activities covered but more biological significance; secondly, 
several previously described multi-label learning methods and an original method presented in this work were 
tested with both datasets.

As a trending topic in machine learning, multi-label learning is attracting more and more interest. Many 
multi-label learning algorithms have been proposed and applied in various fields. The easiest way to implement 
multi-label learning is the Binary Relevance (BR) method14–16, which decomposes a multi-label learning problem 
into multiple binary classification problems for each label respectively, and then all the classical binary classifica-
tion methods could be used here. The main drawback is that the label correlation is ignored completely, which has 
been shown to produce negative impacts on classification quality by many previous literature17. Label Powerset 
(LP) is another way to transform the multi-label learning into the traditional multi-class classification by treating 
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each possible label combination as a new class label18. There are two limits to the application of LP. Firstly, if a label 
set does not appear in the training dataset, it will not be predicted; secondly, if there are many candidate labels, 
then there will be abundant newly mapped classes, and the sample size may be too small for some new classes. 
RAkEL is an improvement version of LP by splitting the initial label set into small random subsets, and then 
employs LP method to build classifiers for each subset19. Based on the label distribution in K-nearest neighbors, 
MLKNN uses maximum a posteriori (MAP) to predict the label set of a query sample20. Rank-SVM is an adaption 
of Support Vector Machine which uses the minimum ranking error as the optimization goal21. Similarly, BP-MLL 
is an extension of the traditional Back-Propagationnetwork22 whose cost function was changed to rank loss. IBLR 
is a KNN-based multi-label learning algorithm which integrates instance-based learning and logistic regression15. 
Classifier Chains (CC) is another way to transform the multi-label learning into traditional single-label classifi-
cation, which also establishes multiple binary classifiers as BR, but the prediction of the subsequent classifier will 
be affected by the output of the preceding one, in such a way, the label correlation is considered in the classifier 
chains. Furthermore, ensemble method (ECC) with different ordered binary classifiers is adopted to reduce the 
order effect in the chains23.

In this study we will propose a novel multi-label learning algorithm, which is composed of two sequential 
modules. The first module is used to calculate label score for each label respectively, which in fact belongs to BR 
method. Then the second module will comprehensively consider all label scores and give the final prediction. So 
the label correlation is considered in a very simple yet effective way in which we neither need to create many new 
class labels like the LP or RAkEL method, nor need to construct chains of classifiers like CC or ECC, which is 
very time-consuming. What’s more, the cost function used in our method is also different from the ones used in 
Rank-SVM or BPMLL. Experiments on the newly constructed AMP dataset will demonstrate the superiority of 
the proposed method.

Materials and Methods
Dataset.  The antimicrobial peptide samples were extracted from the APD database, which focused on the 
natural antimicrobial peptides with defined sequence and activity4. In May 2016, there were 2501 samples with 
APD ID as the identifier, which began with ‘AP’ and five-digit number followed. As we know, the activities of 
AMPs are not limited to antimicrobial. Among all the AMPs in this dataset, 12 activities (i.e. terminology ‘labels’ 
for machine learning) were covered. The biological terminology and number of sequences for each activity were 
listed in Table 1, from which we can see that the most popular activity was Antibacterial that covered about 90% 
of AMPs, and the Anti-protist was the rarest. The Label Cardinality (LC)18 and Label Density(LD)24 are used to 
measure the multi-labeled degree of this dataset. LC is the average number of labels per sample:
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where yi  is the number of activities (or labels) covered by the ith sample. LD is the average number of labels of the 
examples divided by number of labels: LD = LC/12 = 0.13. The numbers of AMPs with different number of activ-
ities were listed in Table 2. About 58% AMPs were relevant to only one activity.

The sequence length distribution of all AMPs in APD is shown in Fig. 1, from which we can see that most 
AMPs are 5~60 in length. In this dataset, the shortest sequence is AP02381 consisted of only two amino acid 
residues; while the longest one is AP02157 with 174 residues.

From Table 1 we can see that the original dataset derived from APD is very unbalanced, so we filtered this 
dataset by eliminating classes with less than 50 peptides. Additionally, because many small peptides would have 
AMP activity by chemical modification, and many proteins (>60 residues in length) may be proteolyzed into 
multiple peptides with multiple activities, so we also eliminated peptides with less than 10 residues or larger than 
60 residues. Then there will be 2,222 AMPs and 5 possible activities left and the number of sequences for each 
activity are listed in Table 3. For the filtered dataset, LC = 1.49 and LD = 0.30.

No. Activity Count

1 Antibacterial Peptides (Antibiofilms) 2255

2 Antiviral Peptides (Anti-HIV) 177

3 Antifungal Peptides 988

4 Antiparasitic Peptides (Antimalaria) 84

5 Anticancer Peptides 195

6 Anti-protist Peptides 4

7 Insecticidal Peptides 28

8 Spermicidal Peptides 12

9 Chemotactic peptides 56

10 wound healing 15

11 Antioxidant peptides 19

12 Protease inhibitors 22

Table 1.  Number of sequences for different activities.
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Feature Extraction.  Sequence feature extraction is the foundation of most machine learning methods, 
including multi-label learning. From some literature4 we know that the amino acid composition (AAC) is the 
most important factor for peptide classification and design, so it may be a good choice. AAC is defined as the 
20-dimensional feature vector consists of the frequencies of different amino acids, and it has been successfully 
used for many protein classification problems25–27. Concretely, given an amino acid sequence P with L in length,

= … AP A A A A A A (1)L1 2 3 4 5 6

where A1 is the first amino acid residue in sequence, A2 is the second one, and so forth. This sequence can be rep-
resented as the AAC vector as [a1, a2, …, a20]T, in which ai (i = 1, 2, …, 20) are the occurrence frequencies of the 
20 native amino acids, and T is the transpose operator.

The averaged AAC of AMPs with different activities in the filtered dataset are shown in Fig. 2. It seems that 
AMPs with different activities have different amino acid composition, which is the foundation of functional 
diversity. Some similar patterns could also be found among different activities. This is not useless because the label 
correlation may be reflected.

Number of activities Number of AMPs Percentage (%)

1 1449 57.94

2 829 33.15

3 172 6.88

4 34 1.36

5 12 0.48

6 2 0.08

7 1 0.04

8 1 0.04

9 1 0.04

10 0 0

11 0 0

12 0 0

In total 2501 100

Table 2.  Number and percentage of AMPs with different number of activities.

Figure 1.  Sequence length distribution in APD.

No. Activity Count

1 Antibacterial Peptides (Antibiofilms) 2006

2 Antiviral Peptides (Anti-HIV) 155

3 Antifungal Peptides 903

4 Antiparasitic Peptides (Antimalaria) 70

5 Anticancer Peptides 178

Table 3.  Number of sequences for different activities in the filtered dataset.
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There is a material weakness for representing AMPs as AAC only because no sequence order information is 
considered. So the dipeptide composition (DC)28,29, the frequencies of different dipeptides (combinations of two 
adjacent amino acids), is also used to represent AMP sequence. The DC is a 400-dimensional vector as [d1, d2, …, 
d400]T, in which di (i = 1, 2, …, 400) is the occurrence frequency of the ith dipeptide. Now any AMP sequence can 
be converted to a 420-dimensional feature vector as below,

= … …x x x x x x x[ , , , , , , , ] (2)1 2 20 21 22 420
T

in which the first twenty features are AAC and the other ones are DC.

Notational Conventions for Multi-label Learning.  Let Ω ⊂ Rd denote a d-dimensional sample space, 
and γΓ = | = ...j c{ 1, , }j  be the finite label set with c possible class labels. Each sample x ∈ Ω is associated with a 
label set y ⊆ Γ. In general, the label set y is represented as a c-dimensional binary label vector, in which yi = +1 
means that label γi is relevant to x, while yi = −1 indicates that γi is irrelevant to x. The goal of multi-learning is to 
find a function h: Ω → P(Γ), the power set of Γ, from the training dataset = = x yD i n{( , ) 1, 2, , }i i . Then for 
any unknown sample x, the trained multi-label classifier can estimate its label set h(x) ⊆ Γ. In most cases, the 
multi-label learning system do not offer the predicted labels directly, but the output values for all labels by a 
real-valued function f: Ω × Γ → Rc, and the output f(x, γ) can be regarded as the confidence of label γ is associated 
with x. Based on these output values, the prediction label set can be obtained by threshold segmentation30.

γ γ γ= ≥ ∈ Γx xh f t( ) { ( , ) , } (3)

where ∈t R is a threshold value. The outputs of relevant labels should be larger than the outputs of irrelevant 
labels, i.e., γ γ′ > ″x xf f( , ) ( , ) when γ′ ∈ y and γ″ ∉ y16.

The Proposed Method.  There are two serial modules in the proposed method (Fig. 3). The first one is the 
weighted K nearest neighbor algorithm (WKnn), which is used to get a c-dimensional label score vector for any 
input sample, then the final outputs of this sample are obtained by the second module-multiple linear regression 
(MLR), which is the same with the output layer of Extreme Learning Machine(ELM)31. In the training procedure, 
the label scores of the training samples are calculated in Leave-one-out way, which means that for any training 
sample, the rest is used for neighbor searching. This prevents bias or else the label scores of training samples and 
testing samples will be very different. When all the label scores pass the MLR model, optimized parameters in 
MLR are estimated by minimizing a cost function like in Equation (7). After training, the outputs and predicted 
labels of any query sample will be easily got in the testing procedure. Now let’s give the detail of the two modules.

WKnn is an improvement on the original K nearest neighbor rule. Its basic idea is to weight the evidence of 
the neighbor according to the similarities with the unknown sample, and the larger the similarity is, the more vot-
ing rights the neighbor will have. The similarity of any two samples xA and xB is measured in a max-min method 
as below
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where ∧ means taking the small and ∨ taking the large. When an unknown sample x is to be classified, its K near-
est neighbors in the training dataset D associated with their class labels are given by ≤ ≤⁎ ⁎x y k K( , ), 1k k . Let the 
similarities between x and these neighbors be ≤ ≤s k K(1 )k  respectively, which have been ordered so that 

≤ ≤ ≤s s sK1 2 , then the weight of the kth nearest neighbor can be defined as the normalized similarities,

Figure 2.  Averaged amino acid composition of AMPs with different activities in the filtered dataset.
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With the weights of neighbors, we can calculate the score of x for each label as below
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γ ∈ =⁎
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Obviously, the more neighbors have the label γj, then the larger score may be obtained, and the score varies 
from a maximum of one when this label is relevant to all the neighbors down to a minimum of zero when no 
neighbor has this label.

Once any sample is converted to its label score vector, then its final output can be obtained through MLR 
model. Let ∈ × +RZ n c( 1) be the label score matrix with the ith row corresponding to the label score vector zi of the 
training sample xi, which has been augmented so that = z z z z[1 ]i i i i c,1 ,2 ,

T. Let ∈ ×RY n c be the label matrix 
with the ith row corresponding to the c-dimensional label vector of sample xi. To minimize the output error, we 
have the following optimization goal,

λ
Θ = − Θ + ΘJmin ( ) 1

2
Y Z

2 (7)F F
2 2

where Θ ∈ + ×R c c( 1)  is the coefficient matrix, • F indicates the Frobenius norm. On the right-hand side of the 
equation, the first term is the square of errors, while the second term is the regularization term, which is used to 
reduce the parameter value and avoid overfitting. The non-negative λ is the tradeoff of the two terms. The regres-
sion coefficient matrix Θ can be determined by setting ∇ Θ =ΘJ( ) 0, then we can get the best parameter 
estimation

λΘ = + −ˆ (Z Z I) Z Y (8)T 1 T

For any unknown sample x whose augmented score vector is z, then the output for all labels can be calculated 
by

Γ = Θ̂x zf ( , ) (9)T

This procedure is very useful to incorporate the label correlation. For example, the final output f(x, γi) is deter-
mined by not only its own label score zi but also the scores of the other labels zj (1 ≤ j ≤ c, i ≠ j). In the frame of 
minimizing the residual sum of squares, if a sample is relevant to one label, then the output of this label will tend 
to 1. By contrast, if it doesn’t have the label, then the output will tend to −1. The middle value zero is set as the 
threshold in Equation (3) to separate the relevant labels from the irrelevant labels.

Performance Measurements.  The evaluation criteria on the multi-label dataset are very different from 
the traditional singe-label dataset because each sample may have one or more class labels. Many complicated 

Figure 3.  Structure diagram of the proposed multi-label learning method.
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evaluation metrics have been proposed specially for multi-label learning in the literature16,18,19,32. The following 
ones are used in this work: (1) Hamming Loss, (2) Subset Accuracy, (3) One Error, (4) Coverage, (5) Ranking 
Loss, (6) Average Precision, and (7) Micro-averaging F1 (Fmicro). Hamming Loss, Subset Accuracy and Fmicro 
are label-based metrics, while the others are rank-based ones. It should be noted that a higher value is better for 
subset accuracy, average precision or Fmicro, but lower is better for the others.

Results and Discussion
Influence of Superparameters.  There are two superparameters in our proposed method, i.e. the number 
of neighbors K and the regularization parameter λ in Equation (7). Hold-out test was carried out to evaluate the 
influence of the two parameters, in which 1/3 samples were randomly picked out as the testing set and the remain-
der was for training. The metric values with different combinations of parameters are shown in Fig. 4, from which 
we can find that the influence of λ is not as much as K. With the increasing of K, the performance is improved 
quickly at first, and then reaches a plateau after about K = 10. Taking all metrics into account, K = 15 and λ = 1 
are set as the default.

Comparison with Different Multi-label Learning Methods.  In this section, we compared the pro-
posed method with several existing multi-label learning algorithms, including MLkNN20, BPMLL22, IBLR15, 
RAkEL, CC and ECC23. All the compared methods can be implemented in the Mulan library33, which is a Java 
package for multi-label learning. We grid-searched the parameters of the other methods by cross-validation on 
the AMP dataset and the best results were used for comparison. In the Mulan library, there is only one parameter 
for MLkNN and IBLR. The number of neighbors in both methods is determined from the values 2 to 20 with step 
2. The default set is used in BPMLL. For the other algorithms, we choose the J48 with default parameters as the 
base learner then tune the remaining arguments. RAkEL requires two parameters to be tuned. The values 1*c, 
2*c, and 3*c (c is the number of possible labels) are considered for the parameter NumberOfModel (number of 
models), while 3, 6, and 9 are considered for the parameter SizeOfSubset (size of subset). There are no extra argu-
ments for CC but three ones for ECC, i.e. NumOfModels, doUseConfidences (Whether the output is computed 
based on the average votes or on the average confidences), and doUseSamplingWithReplacement (Whether to 
use sampling with replacement to create the data of the models of the ensemble). The first parameter is set to 30 
and the others are set to ‘true’.

Using the above multi-label learning methods, 10 repeats of 5-folds cross validation (5-CV) are conducted on 
the original AMP dataset, and the averaged results of seven metrics together with their standard deviations are 
summarized in Table 4. As can be seen, the averaged results of the proposed method are better than all the oth-
ers nearly in all the metrics, and its standard deviations are always relatively small. The above evidence strongly 
suggests that our method is not only effective, but also robust. The performance of BPMLL seems to be the worst. 
BPMLL is a neural network based model with the rank loss as cost function for multi-label learning, however 
experiments in34 showed that the performance could be improved significantly by changing this cost function, 
so we also discard the rank loss cost function, and choose one like in Equation (7). MLkNN and IBLR are both 
KNN-based methods, and their results are very similar. Interestingly, despite the poor performance of CC, its 
ensemble version ECC is much improved.

Furthermore, to compare different multi-label learning methods with statistical significance, the paired 
t-test with the significance level 0.05 was carried out on the 10 repeats of 5-CV results. The comparison triplet 
CT(A, B) = (win/tie/loss) is used to count the events that algorithm A performs better than algorithm B, the 
two algorithms perform equally, or algorithm A performs worse than algorithm B. The results of comparison 
triplets are shown in Table 5, in which each triplet is obtained by the comparison between the algorithm in the 
row (algorithm A) and the other one in the column (algorithm B). The sum of each triplet is seven, which is 
the number of metrics to measure the performance of algorithms. The triplets in the last column are the sums 
of the triplets in each row. Amazingly, the proposed method performed significantly better than all the other 
ones in all metrics. The second place is taken by the ensemble method ECC, which surpasses nearly all the 
others except the proposed. IBLR and MLkNN are also KNN-based methods, and the former performs slightly 
better than the later, but they both fall far behind the proposed method. In terms of the total triplets in the 
last column of Table 5, all the multi-label learning methods can be ranked as Proposed > ECC > IBLR > MLk
NN > RAkEL > CC > BPMLL, where symbol > means ‘better than’. It should be noted that all the comparison 
is conducted on only the AMP dataset, so we cannot state that the proposed method is better than the other 
methods in other cases.

It is meaningful to compare the computational efficiency. We tested all the algorithms with default parameters 
by 5-fold cross-validation on a computer with the Intel Core i3 CPU @3.4 GHz and 4 GB memory. In Java IDE, the 
single-run execution time of the algorithms MLKNN, IBLR, BPMLL, RAKEL, CC and ECC were 98.67, 107.05, 
148.46, 583.49, 149.01 and 3248.32 in seconds, respectively. While in MATLAB IDE the proposed method ran for 
205.20 seconds. Prospectively the Java version of the proposed method will be more efficient. So the running time 
of the proposed is reasonably well.

It should be noted that some AMPs with very short length in the original dataset are antimicrobial because of 
chemical modification, and the learning or predicting based on amino acid composition lacks biological mean-
ing, so it is preferable to construct multi-label learning models using the filtered dataset.

When conducting Hold-out test on the filtered dataset with the proposed method, the metric landscapes 
in regard to the hyperparameters were very similar to Fig. 4. Therefore, K = 15 and λ = 1 are also set as the 
default parameters. For the other algorithms, all the parameters were grid-searched like the procedure above 
and the best results were chosen for comparison. Similarly, 10 repeats of 5-CV are conducted on the filtered 
dataset, and the averaged results of seven metrics together with their standard deviations are listed in Table 6. 
With the cross-validation results, the paired t-test with the significance level 0.05 is carried out and the results of 
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comparison triplets are shown in Table 7. From Tables 6 and 7 we can find that the proposed method is still the 
best one.

Comparison with iAMP-2L.  iAMP-2L is a two-level classifier for AMPs, in which the first level is used to 
identify a peptide sequence as AMP or not, if it is, then its activities will be predicted in the second level13. Because 
the proposition of the current work focuses on multi-label learning, only the method used in the second level of 
iAMP-2L is picked out for comparison. In fairness, two multi-label learning algorithms with two different feature 

Figure 4.  Metric values with different combinations of superparameters by hold-out test on the original dataset. 
The two horizontal axes represent the values of the two superparameters, and the vertical axis represents 
the values of the metrics. For clarity the big metric values are mapped in red color while the small values are 
mapped in blue color.
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Method

Proposed MLkNN BPMLL IBLR RAkEL CC ECCMetric

Hamming 
Loss ↓ 0.0454 ± 0.0004 0.0528 ± 0.0006 0.2977 ± 0.0227 0.0523 ± 0.0007 0.0540 ± 0.0007 0.0600 ± 0.0015 0.0502 ± 0.0008

Subset 
Accuracy ↑ 0.5988 ± 0.0049 0.5450 ± 0.0040 0.0014 ± 0.0010 0.5494 ± 0.0048 0.5258 ± 0.0069 0.4992 ± 0.0082 0.5662 ± 0.0082

Average 
Precision ↑ 0.9439 ± 0.0011 0.9326 ± 0.0016 0.6691 ± 0.0680 0.9326 ± 0.0013 0.8853 ± 0.0023 0.8474 ± 0.0044 0.9210 ± 0.0020

Coverage ↓ 0.9337 ± 0.0104 0.9859 ± 0.0105 2.0595 ± 0.1971 0.9980 ± 0.0084 1.8996 ± 0.0332 2.0774 ± 0.0698 1.3728 ± 0.0207

One Error ↓ 0.0607 ± 0.0018 0.0768 ± 0.0026 0.4820 ± 0.1523 0.0752 ± 0.0025 0.1028 ± 0.0029 0.1711 ± 0.0070 0.0756 ± 0.0030

Ranking 
Loss ↓ 0.0234 ± 0.0005 0.0269 ± 0.0006 0.1120 ± 0.0197 0.0275 ± 0.0005 0.0809 ± 0.0026 0.0947 ± 0.0045 0.0473 ± 0.0014

Fmicro ↑ 0.8082 ± 0.0015 0.7679 ± 0.0022 0.4437 ± 0.0190 0.7758 ± 0.0025 0.7828 ± 0.0030 0.7574 ± 0.0048 0.7896 ± 0.0035

Table 4.  Metric values of different multi-label learning methods through 5-CV on the original dataset. ↓ means 
lower is better; ↑ means higher is better.

B

Proposed MLkNN BPMLL IBLR RAkEL CC ECC In totalA

Proposed — 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 42/0/0

MLkNN 0/0/7 — 7/0/0 2/4/1 3/1/3 7/0/0 0/1/6 19/6/17

BPMLL 0/0/7 0/0/7 — 0/0/7 0/0/7 0/1/6 0/0/7 0/1/41

IBLR 0/0/7 1/4/2 7/0/0 — 3/1/3 7/0/0 0/0/7 18/5/19

RAkEL 0/0/7 3/1/3 7/0/0 3/1/3 — 7/0/0 0/1/6 20/3/19

CC 0/0/7 0/0/7 6/1/0 0/0/7 0/0/7 — 0/0/7 6/1/35

ECC 0/0/7 6/1/0 7/0/0 7/0/0 6/1/0 7/0/0 — 33/2/7

Table 5.  Comparison triplets CT(A, B) = (win/tie/loss) by paired t-test between each pair of methods on the 
original dataset.

Method

Proposed MLkNN BPMLL IBLR RAkEL CC ECCMetric

Hamming 
Loss ↓ 0.0992 ± 0.0014 0.1083 ± 0.0009 0.6366 ± 0.0214 0.1073 ± 0.0007 0.1139 ± 0.0023 0.1258 ± 0.0025 0.1055 ± 0.0007

Subset 
Accuracy ↑ 0.6141 ± 0.0056 0.5874 ± 0.0033 0.0022 ± 0.0008 0.5901 ± 0.0040 0.5594 ± 0.0065 0.5280 ± 0.0108 0.5928 ± 0.0035

Average 
Precision ↑ 0.9553 ± 0.0010 0.9501 ± 0.0008 0.4018 ± 0.0416 0.9506 ± 0.0011 0.9289 ± 0.0022 0.8821 ± 0.0049 0.9505 ± 0.0009

Coverage ↓ 0.6899 ± 0.0054 0.7050 ± 0.0038 2.7546 ± 0.2624 0.7006 ± 0.0034 0.8208 ± 0.0108 1.0545 ± 0.0253 0.7032 ± 0.0051

One Error ↓ 0.0565 ± 0.0021 0.0669 ± 0.0012 0.9224 ± 0.0562 0.0670 ± 0.0020 0.0888 ± 0.0037 0.1517 ± 0.0085 0.0661 ± 0.0019

Ranking 
Loss ↓ 0.0444 ± 0.0010 0.0481 ± 0.0006 0.6203 ± 0.0829 0.0471 ± 0.0008 0.0714 ± 0.0025 0.1223 ± 0.0053 0.0473 ± 0.0010

Fmicro ↑ 0.8226 ± 0.0026 0.8011 ± 0.0020 0.4509 ± 0.0135 0.8050 ± 0.0014 0.8064 ± 0.0037 0.7834 ± 0.0038 0.8131 ± 0.0011

Table 6.  Metric values of different multi-label learning methods through 5-CV on the filtered dataset. ↓ means 
lower is better; ↑ means higher is better.

B

Proposed MLkNN BPMLL IBLR RAkEL CC ECC In totalA

Proposed — 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 42/0/0

MLkNN 0/0/7 — 7/0/0 0/3/4 6/0/1 7/0/0 0/4/3 20/7/15

BPMLL 0/0/7 0/0/7 — 0/0/7 0/0/7 0/0/7 0/0/7 0/0/42

IBLR 0/0/7 4/3/0 7/0/0 — 6/1/0 7/0/0 0/5/2 24/9/9

RAkEL 0/0/7 1/0/6 7/0/0 0/1/6 — 7/0/0 0/0/7 15/1/26

CC 0/0/7 0/0/7 7/0/0 0/0/7 0/0/7 — 0/0/7 7/0/35

ECC 0/0/7 3/4/0 7/0/0 2/5/0 7/0/0 7/0/0 — 26/9/7

Table 7.  Comparison triplets CT(A, B) = (win/tie/loss) by paired t-test between each pair of methods on the 
filtered dataset.
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extraction methods are all tested by 10 runs of 5-CV on the originally constructed dataset, so there are four sets of 
experiment results listed in Table 8, in which the best values of different metrics are bolded. Obviously, the feature 
extraction method in Equation (2) and the novel multi-label learning algorithm are the winning combination. 
With the same feature extraction, the proposed multi-label learning algorithm significantly outperforms the one 
used in iAMP-2L. With the same multi-label learning algorithm, the feature extraction method used in this work 
is slightly better than the pseudo amino acid composition (PseAAC)35,36. Perhaps this is because the minimum 
sequence length in the new dataset is two and only the first-order correlation factors could be extracted, so the 
power of PseAAC is restrained.

Because the results obtained from the original dataset lacks biological significance, we also compare 
the proposed method and the second level classifier in iAMP-2L on the filtered dataset, in which the min-
imum sequence length is ten, and higher-order correlation factors can be used. As did in iAMP-2L, five 
physical-chemical properties are used to code the peptide sequences, while the order of correlation factors 
are grid-searched from 2 to 8 with step 2, and the four-order is found to be the best choice. So each peptide 
sequence is converted to a 40-dimensional feature vector. We perform ten runs of 5-CV on the filtered data-
set using two different multi-label learning algorithms with two modes of feature extraction method respec-
tively and list the results in Table 9. As a whole, the proposed multi-label learning method is better than 
the one used in iAMP-2L. The performance of the feature extraction method used in this work is slightly 
better than PseAAC when using the proposed learning method, whereas the opposite is true for iAMP-2L. 
The dimension of PseAAC is much lower, and if more appropriate physical-chemical properties or chemical 
modification information can be incorporated, we believe it will improve its performance, yet this has to be 
tested in the future.

Conclusion
There have been many bioinformatics tools with good ability proposed for identifying a peptide sequence as AMP 
or not, some of them can obtain the testing accuracy of more than 90%6,8,12,13. When we get a peptide with high 
antimicrobial potential by these tools, then we want to know its specific activities, yet there is few research about the 
activity prediction of AMPs from the point of multi-label learning. In this work, a new AMP dataset and its filtered 
version are created. After a detailed analysis of the sequence and activity information, the amino acid composition 
and dipeptide composition are extracted to represent any AMP sequence as a feature vector. Then several multi-label 
learning algorithms are tested on the newly constructed datasets. As far as we know, this is the first time to evaluate 
so many multi-label learning methods for AMP activities prediction. What’s more, a novel multi-label learning 
method is proposed, in which the label correlation could be taken into account effectively. Results by cross-validation 
show that the proposed method outperforms the others significantly. At last, we compare the methods used in this 
work with the ones in iAMP-2L, including feature extraction and multi-label learning algorithm. Experiments show 
that the newly proposed method is competent for the prediction of AMP activities.

Method

Proposeda Proposedb iAMP-2La iAMP-2LbMetric

Hamming Loss ↓ 0.0454 ± 0.0004 0.0483 ± 0.0005 0.0580 ± 0.0003 0.0581 ± 0.0007

Subset Accuracy ↑ 0.5988 ± 0.0049 0.5733 ± 0.0040 0.4880 ± 0.0041 0.4848 ± 0.0043

Average Precision ↑ 0.9439 ± 0.0011 0.9383 ± 0.0012 0.9361 ± 0.0010 0.9353 ± 0.0015

Coverage ↓ 0.9337 ± 0.0104 0.9816 ± 0.0096 1.1006 ± 0.0116 1.1121 ± 0.0161

OneError ↓ 0.0607 ± 0.0018 0.0689 ± 0.0018 0.0658 ± 0.0013 0.0682 ± 0.0025

Ranking Loss ↓ 0.0234 ± 0.0005 0.0259 ± 0.0005 0.0385 ± 0.0006 0.0400 ± 0.0010

Fmicro ↑ 0.8082 ± 0.0015 0.7955 ± 0.0021 0.7852 ± 0.0010 0.7851 ± 0.0026

Table 8.  The means and standard deviations of 5-CV results with the proposed method and iAMP-2L when 
testing on the original dataset. The superscript a indicates the feature extraction method in this work, and b 
indicates the PseAAC. ↓ means lower is better; ↑ means higher is better. The best value for each metric is in bold.

Method

Proposeda Proposedb iAMP-2La iAMP-2LbMetric

Hamming Loss ↓ 0.0992 ± 0.0014 0.1018 ± 0.0012 0.1221 ± 0.0020 0.1212 ± 0.0023

Subset Accuracy ↑ 0.6141 ± 0.0056 0.6033 ± 0.0041 0.5149 ± 0.0063 0.5228 ± 0.0078

Average Precision ↑ 0.9553 ± 0.0010 0.9534 ± 0.0010 0.9526 ± 0.0014 0.9527 ± 0.0016

Coverage ↓ 0.6899 ± 0.0054 0.6946 ± 0.0034 0.6911 ± 0.0055 0.6953 ± 0.0064

OneError ↓ 0.0565 ± 0.0021 0.0615 ± 0.0019 0.0652 ± 0.0022 0.0638 ± 0.0028

Ranking Loss ↓ 0.0444 ± 0.0010 0.0457 ± 0.0007 0.0494 ± 0.0014 0.0498 ± 0.0015

Fmicro ↑ 0.8226 ± 0.0026 0.8176 ± 0.0023 0.8083 ± 0.0028 0.8091 ± 0.0033

Table 9.  The means and standard deviations of 5-CV results with the proposed method and iAMP-2L when 
testing on the filtered dataset. The superscript a indicates the feature extraction method in this work, and b 
indicates the PseAAC. ↓ means lower is better; ↑ means higher is better. The best value for each metric is in bold.
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