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Predictive models are mathematical expressions that describe the growth, survival,

inactivation, or biochemical processes of foodborne bacteria. During processing of

contaminated raw materials and food preparation, bacteria are entrapped into the food

residues, potentially transferred to the equipment surfaces (abiotic or inert surfaces)

or cross-contaminate other foods (biotic surfaces). Growth of bacterial cells can either

occur planktonically in liquid or immobilized as colonies. Colonies are on the surface

or confined in the interior (submerged colonies) of structured foods. For low initial

levels of bacterial population leading to large colonies, the immobilized growth differs

from planktonic growth due to physical constrains and to diffusion limitations within

the structured foods. Indeed, cells in colonies experience substrate starvation and/or

stresses from the accumulation of toxic metabolites such as lactic acid. Furthermore,

the micro-architecture of foods also influences the rate and extent of growth. The

micro-architecture is determined by (i) the non-aqueous phase with the distribution

and size of oil particles and the pore size of the network when proteins or gelling

agent are solidified, and by (ii) the available aqueous phase within which bacteria may

swarm or swim. As a consequence, the micro-environment of bacterial cells when they

grow in colonies might greatly differs from that when they grow planktonically. The

broth-based data used for modeling (lag time and generation time, the growth rate, and

population level) are poorly transferable to solid foods. It may lead to an over-estimation

or under-estimation of the predicted population compared to the observed population

in food. If the growth prediction concerns pathogen bacteria, it is a major importance

for the safety of foods to improve the knowledge on immobilized growth. In this review,

the different types of models are presented taking into account the stochastic behavior

of single cells in the growth of a bacterial population. Finally, the recent advances in the

rules controlling different modes of growth, as well as the methodological approaches

for monitoring and modeling such growth are detailed.
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INTRODUCTION TO PREDICTIVE

MICROBIOLOGY

Predictive food microbiology is a sub-discipline of food
microbiology that uses models (i.e., mathematical equations)
to describe the growth, survival, or inactivation of microbes
in food systems. Mathematical models refer to a set of basic
hypotheses supporting the target (bio-) processes which are
to be simulated and are possibly algebraic functions and/or
differential equations (Baranyi and Roberts, 1995). Therefore,
with predictive microbiology, all the knowledge of microbial
responses in different environmental conditions is summarized
as mathematical equations. McMeekin et al. (2008), stated that
“the model is often a simplified description of relationships between
observations of the system (responses) and the factors that are
believed to cause the observed responses.”

The long roadmap of predictive microbiology over the last
four decades, along with the advances toward understanding
and quantifying microbial responses down to single cell level,
have led to the appointment of predictive modeling as one
of the most promising decision-support methodologies for
food safety assessment by the Food Industry and competent
authorities. Predictive modeling has been greatly benefitted by
the technological and scientific evolution in both collection
and processing of data, through the introduction of—omics
(Rantsiou et al., 2011; Brul et al., 2012), the deployment of
advanced microscopy techniques (e.g., confocal laser microscopy
and fluorophores fused in the genome; Locke and Elowitz,
2009; Cox et al., 2010; Bridier et al., 2015), the application
of chemometrics, data mining and the emergence of advanced
data modeling techniques (e.g., artificial neural networks; Argyri
et al., 2010; Panagou et al., 2011). As a next step, the rising
trend for application of predictive modeling in daily practice
has intensified the need to systematically exploit the vast
number of available predictive models so far. Meeting this
demand is being markedly achieved through the development
of collective predictive modeling repositories (e.g., ComBase,
Pathogen Modeling Program, iRisk, Food Spoilage and Safety
Predictor, Sym’Previus, etc.). They are equipped with search
engines for guided-retrieval of the appropriate food-specific or
generic models (i.e., not food-specific) associated with particular
hazards and built-in fitting or simulation modules, in order
to visualize and numerically express the model outputs in
comprehensive and ready to use formats. Such a variety of
predictive models and risk assessment/risk ranking software
tools may indeed help the food producers, researchers and food
safety inspectors to apply the concepts of predictive modeling
in quality-by-design, identification of safe product formulations
and evaluation of products compliance with safety standards and
microbiological criteria. A comprehensive and quite extensive
review of the available software tools can be found in the study
by Tenenhaus-Aziza and Ellouze (2014).

Models alone should be applied in caution and with proper
disclaimers in the context of decision-making during Hazard
Analysis Critical Control Point (HACCP) plan development. Use
of models requires experience and judgment, both in modeling
and food microbiology. Therefore, it is of vital importance

to clearly perceive that the predictive models and associated
software tools should not replace the expert opinion, but rather
assist the experts (and sometimes even the non-experts) to elicit
a food safety plan (Tenenhaus-Aziza and Ellouze, 2014). When
models alone are used to make a decision, those models must be
shown to be valid for the food in question and should take into
consideration lot-to-lot variation. Validation may be based on
published or unpublished data for very similar or identical foods.
Nonetheless, even in cases when the available predictions are
obtained from lab-media based models, which may potentially
overlook some significant food-specific impacts on microbial
behavior, such predictions are still very useful in guiding more
focused and targeted challenge testing (Baranyi and Roberts,
1995; McDonald and Sun, 1999; McMeekin et al., 2008).

MODEL TYPES AND CLASSIFICATION

Based on microbial responses, expressed as change in numbers
and stress tolerance, the combinations of intrinsic and extrinsic
environmental determinants to which microorganisms may be
exposed, are divided into the following major domains: the
growth era and the domain including the combinations that allow
survival or cause death of microorganisms (Booth, 2002). The
conditions that lie between these two domains refer to a zone
where microbial responses are uncertain and characterized by the
growth/no growth interface (Le Marc et al., 2005). This zone is
strongly associated with the so-called cardinal values (T, pH, aw,
etc.) for growth and outlines the bio-kinetic range of microbial
proliferation. Such values are species- or even strain-dependent
and thus, introduce significant variability in the assessment of
the impact of marginal growth conditions on microbial growth,
an issue commonly encountered in quantitative microbial risk
assessment. To remedy that, models have been proposed which
embed the theoretical growth-limiting values for critical hurdles,
such as temperature, aw, pH, CO2 and preservatives as biological
meaningful parameters in the model structure. Notably, a
theoretical interface also exists between survival and inactivation
separating combinations that cause growth cessation but not
cellular death from those that are lethal (McKellar et al., 2002).

Depending on the conceptual modeling approach applied
to the target biochemical process and the final algebraic
form, the models can be characterized as empirical or
phenomenological, which mathematically describe specific
behavior, and mechanistic or theoretical models with a biological
basis, which search for the underlying mechanisms driving
already observed phenomena. Polynomial equations are the
most common empirical models. These models are easy to
use, straightforward and no knowledge of a particular process
is required. However, polynomial models have no theoretical
foundation and have numerous parameters without biological
meaning. Therefore, they do not offer any knowledge to
mechanisms underlying a process. Polynomial models are
commonly represented as quadratic response surfaces describing
the environment dependence of a parameter of a bacterial
population (Gibson et al., 1988).

Based on the type of dependent variable that is predicted,
the models can be classified as kinetic or probabilistic. Kinetic
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models predict the extent and rate of growth or inactivation
of a microorganism. The growth rate of a microorganism can
be modeled in order to be used for making predictions based
on the exponential growth of the corresponding microbial
population. Kinetic models can be used to predict changes in
microbial numbers with time, even if a controlling variable,
which can affect growth, is changing (McDonald and Sun, 1999).
This type of models constitutes a fundamental model category
in predictive microbiology, especially for ready-to-eat foods,
since they may assess the exposure of consumers to the doses
(levels) of pathogenic bacteria at the time of consumption. The
purpose of kinetic models is to estimate the time required
for a specified growth or inactivation response to occur
under certain intrinsic or extrinsic conditions. Such conditions
include temperature, pH, aw, packaging atmosphere (e.g., CO2

levels), redox potential (Eh), the rheological properties of the
food (structure-associated variables), relative humidity, nutrient
content and the concentration of antimicrobial compounds
(Theys et al., 2009b; Mejlholm et al., 2010; Møller et al., 2013).
Thermal inactivation was the first microbial inactivation process
modeled since 1920 by the canned food industry, in order to
control the risk of Clostridium botulinum toxigenesis. First-order
inactivation models were used to describe a log-linear trend of
C. botulinum spores in low acid canned food. Through the slope
of inactivation curves the thermal death time was estimated and
particularly in low acid canned foods, a 12-decimal reduction
(12D) of C. botulinum spores was shown to require exposure
to 121◦C/15 psi for 15min. Over the last decades the microbial
inactivation modeling was expanded to account for non-
thermal inactivation (Buchanan et al., 1997). In addition to the
classical linear inactivation curve, the concept of biphasic death,
associated with the pre-existence or emergence of a resistant
sub-populations throughout exposure to lethal conditions was
modeled with non-linear models (Whiting, 1993; Geeraerd
et al., 2005). Probabilistic models constitute the corner stone of
predictingmicrobial dynamics, acting as the filter, i.e., likelihood-
based decision of the primary microbial response (growth or
inactivation) and guiding the selection of the subsequent kinetic
modeling tool, i.e., growth or inactivation model, for predicting
the change in microbial numbers in time. As such, the fate
of microbial populations in foods is eventually dependent on
the probability of growth or inactivation phenomena defined
by the intrinsic and extrinsic factors of foods and processing
environment. From a closer perspective, the behavior of an
isogenic (homogeneous) population is the cumulative and
stochastic outcome of its individual cells (microscopic level;
Kutalik et al., 2005). Each cell within a microbial population
is characterized by a variable probability for growth initiation
(Koutsoumanis, 2008), followed by a stochastically defined lag
time, i.e., sampled from a probability distribution (Francois et al.,
2005, 2006a, 2007; Guillier et al., 2005, 2006), both resulting in
a fractional growth of the total population with various sub-
populations (mesoscopic level) initiating growth on different
times (McKellar and Knight, 2000; McKellar, 2001). It has been
suggested that under given conditions the geometric lag, i.e., the
intersection of the slope at exponential phase with horizontal
asymptote at the initial population level, is essentially dependent

on the cumulative behavior of the fraction(s) of the initial
population, which either possesses the shortest lag time (i.e.,
the earliest growth starters), and/or the fastest generation time
(McKellar and Knight, 2000; Koutsoumanis, 2008). As a mirror
image, under lethal conditions, e.g., pH < 3.0, or T > 60◦C, the
inactivation curve of a microbial population, represented by a
curve of survivors (%) vs. time, is the result of the cumulative
distribution of the individual cell death time, i.e., the time
required to kill every single cell (Aspridou and Koutsoumanis,
2014). In explicit terms, probability models can be used to predict
the likelihood of the occurrence of a microbial response as a
function of intrinsic and extrinsic factors of foods and processing
environment (Ross and Dalgaard, 2004). Microbial responses
which have been modeled with this approach include spore
germination, toxin formation by C. botulinum, growth initiation
and survival or death of bacteria as a result of lethal pH and
organic acid combinations. In the context of industrial practice,
such models together with cardinal growth models may be of
great assistance to HACCP, by offering science-based numerical
evidence for setting critical limits, establishing process or product
criteria and assessing the compliance of a given process to
these limits or the legislative microbiological criteria (e.g., EC
Regulation 2073/2005).

All the above model types may be further divided into the
following categories, based on the combination of dependent
(predicted) and independent (explanatory) variable (Whiting and
Buchanan, 1993; McDonald and Sun, 1999):

i. the primary models, which are used to describe the changes
of the microbial population density as a function of time
using a limited number of kinetic parameters (e.g., lag
time, growth or inactivation rate and maximum population
density);

ii. the secondarymodels expressing the effect of environmental
variables (e.g., temperature, NaCl, pH, etc.) on the kinetic
parameters estimated by the primary models;

iii. the tertiary models, which are computer tools that integrate
the primary and secondary models into user-friendly
units. The wider use of models in the food industry
and research depends on the availability of user-friendly
software (Psomas et al., 2011; http://www.aua.gr/psomas/
gropin/), which encompass predictive models and allow
different users to retrieve information from them in a rapid
and convenient way (McMeekin et al., 2008, 2013).

The impact on microbial growth of the aforementioned intrinsic
and extrinsic variables described by the models is strongly
dependent on the structure of food or the model substrate. Based
on that, in the following lines, a review is performed of existing
modeling approaches accounting for different forms of microbial
growth on surfaces, or in the interior of food matrices, either in
suspension or immobilized in colonies.

Growth Rate of Microorganisms in

Different Forms of Growth
In foods, microbial growth occurs in the aqueous phase. The
structural characteristics (e.g., viscosity, 3D structured grid,
also called “micro-architecture”) of this phase, resulting from
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hydrophilic structure-inducing agents, in combination with the
total concentration and dispersion of water compared to fat
phase determine the form and rate of growth, i.e., the spatio-
temporal microbial dynamics. Food may be characterized as
liquid (e.g., juices), gelled (e.g., jellies, cottage, marmelades),
oil-in-water emulsions (e.g., mayonnaise, milk), or water-in-oil
emulsions (e.g., butter and margarine) and the composite form
of gelled emulsions (i.e., an immobilized oil-in-water emulsion).
The type of emulsion determines the distribution of available
water (Møller et al., 2013). The growth rate of microorganisms
in response to food structure, for a given set of intrinsic
and extrinsic parameters, is dependent on the motility of cells
in the aqueous phase, the extent of resulting (micro-)colony
immobilization and the diffusion kinetics of nutrient, oxygen,
and metabolites. Three different status of growth may occur
depending on the food structure:

(1) If bacteria are suspended in liquids, their growth is
planktonic and the motility of microorganisms may enable
taxis to certain nutrient-rich sites of the food (Wilson et al.,
2002). Access of cells to nutrients and transfer of metabolites
away from cells contribute to the formation of a temporarily
uniform environment, until the resources are depleted, or the
microbial metabolites are accumulated at self-toxic levels.

(2) If bacteria are growing in structured aqueous phase,
e.g., due to addition of thickeners, or gelling (structure-
inducing) agents, such as gelatin, pectins, starch, gums, etc.,
microbial cells are immobilized within the gelled regions
and constrained to grow as submerged colonies in three
dimensions. Their growth rates as colonies tend to be lower
than that of planktonically growing cells (Wilson et al., 2002;
Theys et al., 2008; Boons et al., 2013a,b, 2014; Aspridou
et al., 2014). This can be further enhanced by increasing
the fat concentration on the expense of water phase, thereby
increasing the size of oil droplets with concomitant trend of
reversal of oil-in-water emulsion. At low fat concentrations
and in the absence of any dense (3D structured) network,
e.g., such as that formed by proteins, the water phase may
allow cell motility that resembles planktonic growth. As the
fat concentration increases and compresses water, growth
is constrained and becomes colonial. In a homogeneous
protein network, cocci bacterial colonies are spherical while
when if fat is added within a protein network, such as
cheese, cocci bacterial colonies display an irregular shape.
A similar effect can be obtained by adding a structure-
inducing agent, such as gelatin, instead of proteins. The
type and density of the gelling agent impact the growth
rate of bacteria by influencing the diffusion of nutrients
and metabolites to and from the colonies, respectively, as
well as through the interaction of the gelling agent with
inhibitory compounds, i.e., quenching or reducing diffusivity
(due to entrapment) of antimicrobial agents, or due to bound
of NaCl to the gelling agent (Boons et al., 2013b; Tack
et al., 2015). The size and maximum achievable population
of viable cells in colonies immobilized inside a structured
matrix are affected by the proximity of colonies as well as
the oxygen diffusion, with growth rate reduced in hypoxic

or anoxic microenvironments (Noriega et al., 2008). The
spatial distribution of cells of a population determines a
critical population density level per colony, that renders
the limitations in nutrient diffusion and the inhibition by
metabolites sensible to adjacent colonies, leading to growth
cessation (Malakar et al., 2003). Conversely, at population
densities lower than the growth-limiting level, colony-to-
colony interactions are negligible and cells divide without
constraints. The latter critical level highly varies with the
strain and the structure-inducing agent which in turn
determines the chemical diffusion properties of the growth
matrix.

(3) If bacteria are growing on the surface of foods, such
as meat and vegetables, growth is also colonial, initially
in two dimensions (mono-layer), whereas the center of
colony gradually develops in the third dimension most likely
upward, depending on aeration and nutrient availability.
Replenishment of nutrients takes place only from the
bottom or the perimeter of the colony and soon cells
in the center of colony experience starvation and self-
toxication. This places growth constraints to the surface
colony as a whole and causes suppression of the growth
rate as compared to submerged growth within the food
matrix or planktonic growth. Thus, the growth rate of the
aforementioned different forms of growth is known to follow
the order: planktonic ≥ submerged > surface (Wilson et al.,
2002; Theys et al., 2008). It needs to be noted however,
that the differences in growth rates between these three
modes of growth likely range from significant (i.e., 0.5-or
1-fold difference) to non-significant and/or not consistent,
depending on themicroorganism and the structure-inducing
agent (Smet et al., 2015). The same accounts for lag times. In
contrast, unequivocal increase in growth rate is induced by
aeration of the growth medium, e.g., in shaking culture.

These observations have also been explored in relation to
the stochastic behavior of individual cells growing in liquid
media or immobilized inside or on the surface of solid media
(Guillier et al., 2005, 2006; Manios et al., 2012; Koutsoumanis
and Lianou, 2013; Tack et al., 2015). Starting from single
cell level and simulating the formation of colony or the
proliferation to high numbers in planktonic state, may assist in
drawing useful conclusions on the expected behavior of large
populations. These aspects are further discussed in the following
paragraphs.

Individual-based Modeling of Planktonic or

Immobilized Cells
The growth of a microbial population depends on the cumulative
behavior of individual cells. As described above, a great variability
is commonly evident in the growth responses, i.e., lag time,
generation time and probability of growth, among individual
cells of a homogeneous (or isogenic) population, due to the
so-called “noise” (Locke and Elowitz, 2009). This biological
variability (also termed “biovariability”; Billon et al., 1997)
markedly impacts the dynamics, e.g., geometrical lag and
germination time and time to reach detectable levels, of low
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populations such as 1–50 cells and increases with the intensity
of environmental stresses (Billon et al., 1997; Smelt et al., 2002,
2008; Francois et al., 2005, 2006a; Guillier et al., 2005; Guillier
and Augustin, 2006; Dupont and Augustin, 2009). For instance,
the distribution of germination times (lag) of individual C.
botulinum spores became less peaky (i.e., with lower kyrtosis
coefficient) and less positively skewed (i.e., skeweness factor
close to 1) as the incubation temperature decreased from 37
to 20◦C, suggesting that the variance of germination times
increased with the intensity of temperature stress (Billon et al.,
1997; Stringer et al., 2011; Smelt et al., 2013). Variability in
single cells behavior might be the result of diverse physiology
of individual cells due to diverse exposure to environmental
conditions in time and space of each daughter cell after the
division of the mother cell. To eliminate the latter spatio-
temporal diversity of the micro-environment of individual cells,
microfluidic Lab-On-A-Chip systems have been proposed, such
as Envirostat 2.0 (Dusny et al., 2012), which standardizes the
experimental substrate under which the behavior of single cells
is investigated.

However, the variable behavior of single cells is masked by
the massive behavior of large populations, e.g., >500 cells or it
is almost eliminated at optimal conditions (Llaudes et al., 2001;
Smelt et al., 2002; Métris et al., 2006). Most of the available
predictive models quantify the response of high microbial
populations at a given set of conditions, which may be constant
or varying with time. In order to model the variability of single
cells (or single spores), stochastic modeling, i.e., where the input
values are provided in the form of probability distributions
describing the variability and uncertainty of the independent
variables, may be applied, which is also the common approach in
Quantitative Microbial Risk Assessment (Pérez-Rodríguez et al.,
2007). Therefore, deterministic models, models based on input of
single values for the independent variables, apply to population
level, whereas stochastic models may describe the population
dynamics taking into account the variability in both the input
variables (i.e., extrinsic and intrinsic food parameters) and the
responses (e.g., lag time and generation time) of microbial
populations, either in large scale or at individual cell level.

Although deterministic models average the behavior of
individual cells, the characteristics of the latter cannot be deduced
from population measurements (Kutalik et al., 2005). Indeed,
the growth of a population may be simulated by superimposing
the evolution of independent subpopulations derived from single
cells, each receiving a lag time value also termed “physiological
lag,” different from the geometrical population lag (Baranyi et al.,
2009), from a specific probability distribution. The evolution of a
microbial population can be modeled as a Poisson birth process
with constant birth intensity parameterµ (Baranyi, 1998; Baranyi
and Pin, 2001). A cell capable of dividing, will divide after an
initial delay consisting of the physiological lag and the generation
time of the cell. Then each cell produces a subpopulation which
consists of cells growing independently in the same habitat with a
constant growth rate (Baranyi, 1998; McKellar, 2001). However,
deviations from this rule are likely as a result of some novel
non-thermal microbial inactivation treatments, such as pulsed
light and electron beam irradiation, which may diversify the

growth rate, due to injury, of cell clusters within a homogeneous
population exposed to the treatment (Aguirre et al., 2013,
2015). For simplification purposes, to model the process of
consecutive generations of cells, it is assumed that (Baranyi,
2002; Métris et al., 2003): (i) after the first division of each
cell, the daughter cells enter directly in the exponential phase,
suggesting that the daughter cells have no additional lag time;
(ii) daughter cells do not interact by any means, e.g., competition
or quorum sensing. Both assumptions were applicable when
the experimental method used to describe the variability in
lag times was the time to detect visible changes in the optical
density of the liquid medium containing a single cell derived
by a series of 2-or 10-fold dilutions of a standard concentrated
microbial suspension, or even by sorting with flow cytometry
(Smelt et al., 2002, 2008; Francois et al., 2003; Standaert et al.,
2005; Baranyi et al., 2009). Indeed, when the population is
extremely low (i.e., down to a few cells) and the volume of
the liquid surrounding medium is large, it is reasonable to
speculate that the interaction between floating cells is negligible
or that the probability of each cell being affected by the presence
and metabolic activity of adjacent cells is very low. Individual
lag times commonly follow Weibull, Gamma, Exponential, or
Normal distribution (Francois et al., 2005, 2006a, 2007; Kutalik
et al., 2005; Métris et al., 2006; Standaert et al., 2007). The
development of sophisticated image analysis systems for real-
time monitoring of single cell division (or spore germination)
under the microscope, during continuous exposure of attached
cells to flowing liquid media, allowed further insight in the
variability assessment of single cells (Billon et al., 1997; Elfwing
et al., 2004). By targeting specific cells, it was observed that the
generation time of daughter cells removed after division, are not
the same for all cells but they follow a distribution, the variance
of which, decreases with the number of consecutive divisions
(Kutalik et al., 2005; Métris et al., 2005, 2006; Pin and Baranyi,
2006).

Exposure of bacterial populations to stresses (sublethal or
lethal), such as chlorine, heat shock, pH, osmotic stresses, those
related to minimal processing, such as irradiation and pulsed
light, as well as sub-optimal conditions in a new environment
shift the distribution of the time to first division to higher mean
values (i.e., movement of mean to the right) and increase its
variance (Francois et al., 2005, 2006a; Guillier et al., 2005; Guillier
and Augustin, 2006; Dupont and Augustin, 2009; Aguirre et al.,
2012, 2015). Furthermore, stress may decrease the probability
of a single cell to initiate growth and increase the number of
cells needed for growth initiation (Koutsoumanis, 2008; Dupont
and Augustin, 2009). As a result, both extension of individual
lag times and reduction of single cell growth probability may
lead to false negative detection, due to insufficient growth
above the threshold level of enrichment or no growth at all
during enrichment (Dupont and Augustin, 2009). Given that
stress increases the biological variability, interactions between
cells within colonies (e.g., due to competition for nutrients,
or the release of inhibitory metabolic products) may be an
additional indigenous stress factor, which possibly increases cell
lag variation, while retarding the growth of the total population
(Guillier et al., 2006).
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Real Time Monitoring of Single Cells and

Derived Micro-colonies
Even though the variability of growth responses (e.g., individual
lag times and generation times) of planktonic cells has
been extensively characterized with OD or microscopic
measurements, the variability in relevant parameters of colonial
growth (i.e., doubling of cells attached on biotic surfaces)
associated with intra-colony cell-to-cell interactions are rarely
quantified due to technical difficulties (Aguirre et al., 2012),
nor even by direct imaging of cells when the daughter cell is
removed after division. Thus, as an alternative, direct time-lapse
imaging of microbial populations growing on agar surfaces of
different intrinsic properties has enabled the characterization of
population heterogeneity taking into account the interactions
between adjacent cells (Koutsoumanis and Lianou, 2013)
and colonies (Guillier et al., 2006). It may also depict the
history of cells residing in different sites of a colony and their
physiological adaptations, resulting from exposure to stresses,
such as starvation or anoxia and affecting their subsequent
resistance to inimical factors, e.g., sanitizers or lethal acid stress
(Zhao et al., 2014; Tack et al., 2015). Experimental protocols for
direct imaging of surface-growing cells include the gel-cassette
system (Brocklehurst et al., 1997), the systems introduced by
Billon et al. (1997), Niven et al. (2006), and later on adopted
by Koutsoumanis and Lianou (2013), consisting of an agar
layer on top of a microscope slide, covered by a cover slip,
sealed with paraffin wax and placed under the microscope
and the anopore strips (Ingham et al., 2005). Applications of
these methods at single cell or colony level may be found for
E. coli O157:H7, for which a comparison between growth rates
estimated from viable count data and changes in colony area
(in pixels) is made (Skandamis et al., 2007), Bacillus cereus in
response to salinity (den Besten et al., 2007, 2010) and Salmonella
showing the distribution of living and dead cells, during the
evolution of colonies in time and space (Theys et al., 2009a).
These techniques may also allow for identification of injured or
even dead sub-populations within bacterial micro-colonies as a
result of exposure to stresses or entrance into stationary phase
of growth. This is achievable through the use of well-established
fluorophores, such as SYTO 9, that stains living cells and
propidium iodide that stains cells with impaired membranes
(Bunthof et al., 2001). For instance, coupling direct cell imaging
with viability staining, made possible to monitor the evolution
of injury of various Lactobacillus brevis cells growing on the
surface of de Man Rogosa Sharp agar, in parallel to colony
growth kinetics, expressed through µmax, after short exposure
to peroxy-acetic acid (PAA), i.e., an strong oxidizing agent
(Zhao et al., 2014). The experimental approach applied was able
to unravel some interesting physiological responses that are
impossible to detect by classical plate counting. In particular, not
all cells that were unable to divide after exposure to PAA were
appeared red (i.e., injured), suggesting that growth inhibition
was not associated with membrane damage (Zhao et al., 2014). In
addition, elongation or clumps of cells experiencing starvation
is a very common cellular response that denotes a highly
stressful physiological state of cells that cannot be detected by

plate counting and probably characterize the emergence of a
viable-but-not culturable sub-population (Koutsoumanis and
Lianou, 2013; Zhao et al., 2014; Tack et al., 2015).

Advances in individual-based modeling (IbM) have suggested
that apart from the population measurements, the complete
characterization of lag time also requires the evolution of total
biomass and thus, the geometrical definition of lag time is not
quite reliable (Prats et al., 2008). Furthermore, since geometrical
lag depends on the time required by total viable population to
exceed the detection limit of the enumeration method, a part of
geometrical lag does not have practically biological meaning and
can also be termed “pseudo-lag” (Koutsoumanis, 2008), because
growth initiation of a fast growing sub-population, which will
eventually give the detection signal, might have started quite
earlier.

Individual-based Modeling in Foods
The well-established variability of single cells in laboratory media
is expected even more pronounced in natural food ecosystems
(Ferrier et al., 2013). This may be attributable to the combination
of multiple stress factors in foods, such as limitations in nutrient
diffusion, competition with natural flora, accumulation of
inhibitory metabolic products, structural constraints, and
spatio-structural variability of microenvironments where
microorganisms are located (Noriega et al., 2010). Despite the
low number of studies dealing with single cell variability in
foods, a common conclusion is that the behavior of low inocula
(e.g., <10 CFU/g) cannot be accurately approximated by models
based on the responses of higher inocula on the same food nor
by broth-based models (Schvartzman et al., 2010; Manios et al.,
2012). For instance, the time that L. monocytogenes required for
a 100-fold increase on vacuum packaged frankfurters stored at 4
and 8◦C, starting from 0.007 to 0.1 CFU/g was markedly higher
than that expected based on the responses of 10–20 CFU/g on
the safe food (Pal et al., 2009). Likewise, the simulated variability
in log-numbers of L. monocytogenes cells in liver pâté at 7◦C or
lettuce and cabbage fresh cut salads, based on broth data, differed
from the observed number (Francois et al., 2006b; Manios et al.,
2012). Notably, Monte Carlo simulation based on stochastic
description of lag times of individual L. monocytogenes cells
from broth data slightly over-predicted the growth of single cells
of L. monocytogenes after 12 days on lettuce. For instance, the
model predicted that there was 60% likelihood a single cell of
the pathogen to reach 1.5 log CFU/g, while the observed growth
under the same probability was 1 log CFU/g (Manios et al.,
2012). In contrast, remarked under-estimation of the observed
growth in cabbage was recorded, as the predictions showed that
60% of the individual cells could grow at 0.5 log CFU/g, whereas
the observed growth was 2.6 log CFU/g (Manios et al., 2012). It
is imperative that the evaluation of the response of single cells in
foods should receive more focus in parallel to the optimization
of laboratory media assays, which provide further theoretical
aspects under controlled conditions. Furthermore, improving
our ability to quantitatively characterize the micro-environment
surrounding single cells, e.g., by measuring the micro-scale pH,
water activity, nutrient, etc., might increase the robustness of

Frontiers in Microbiology | www.frontiersin.org 6 October 2015 | Volume 6 | Article 1178

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Skandamis and Jeanson Modeling of bacterial growth in colonies

predictions for growth or inactivation of these cells and explain
their variable behavior based on spatio-temporal distribution of
each cell (or cluster of cells) in the food matrix (Ferrier et al.,
2013).

CONCLUSION—FUTURE ASPECTS

The deviation of broth-based predictions from the observed
growth in foods is a well-known challenge of numerous
predictive models, including some pioneer models of the last
decades, addressing the issue of poor transferability of broth-
based data to foods. Indeed, broth-based data are collected
easily and under controlled conditions, thereby requiring low
labor costs and assuring high reproducibility. However, such
models do not adequately encompass the effect of critical
factors explaining bacterial behavior in real foods, especially
structured foods. Such critical factors may be associated with
the constraints of colonial growth because of food micro-
structure, cell-to-cell or colony-to-colony (inter-/intra-species)
interactions (Habimana et al., 2011), along with the limitations
due to availability of nutrients and oxygen and/or the removal
of bacterial metabolites away from colonies. The impact of these
factors is amplified at low microbial populations, manifested
by the stochastic behavior of single cells. Thus, extrapolating
broth-based predictions of microbial growth from single cells to
foods may lead to significant over- or under-estimation of actual
microbial behavior in foods, with important consequences on
food safety and spoilage. In this context, one of the current trends
in predictive microbiology is to define food micro-architecture in
quantifiable (metric) variables, so that their impact on microbial

growth or inactivation is quantitatively described. Advances in
relevant instrumentation, such as Nuclear Magnetic Resonance
(Møller et al., 2013) for assessing the distribution of water and
oil particles in emulsified foods, or the development of micro-
electrodes technology (Ferrier et al., 2013) measuring ion fluxes,
pH or aw in the food microenvironment (i.e., measurements
in micro-scale; Lobete et al., 2015) have enabled the collection
of useful data for the above purpose. In addition, bottom-up
approaches are more and more adopted by food microbiologists
in the context of predictive modeling, i.e., investigating the
behavior of single cells forming adjacent micro-colonies, as a
means to predict the behavior of larger microbial populations
in 2 or 3 dimensions, including biofilm formation (Habimana
et al., 2011). Deep insights in this area, such as stochastic
description of individual lag times in the form of probability
distributions, are feasible via the use of time-lapse microscopy
(e.g., confocal laser scanning microscope), coupled with the use
of viability- respiratory activity- or gene expression-associated
fluorophores at single cell level (Habimana et al., 2011; Bridier
et al., 2015; Lobete et al., 2015). The latter, apart from assisting in
visualization of cellular division and monitoring changes in cell
number in real time, they may reveal physiological trends (e.g.,
virulence, stress resistance, protein expression, etc.) of single cells
resulting from their interaction with the liquid or solid substrate
they habituate. Finally, the challenge of integrating—omics data
into predictive modeling is still open and microbiologists thrive
to exploit the vast amount of such type of data collected so

far so as to unravel the most critical aspects of the interaction
between microorganisms and foods or between cell-to-cell
interactions.
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