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Abstract
Hypermethylated-in-Cancer 1 (Hic1) is a tumor suppressor gene frequently inactivated by epigenetic silencing and loss-of-
heterozygosity in a broad range of cancers. Loss of HIC1, a sequence-specific zinc finger transcriptional repressor, results in
deregulation of genes that promote a malignant phenotype in a lineage-specific manner. In particular, upregulation of the
HIC1 target gene SIRT1, a histone deacetylase, can promote tumor growth by inactivating TP53. An alternate line of
evidence suggests that HIC1 can promote the repair of DNA double strand breaks through an interaction with MTA1, a
component of the nucleosome remodeling and deacetylase (NuRD) complex. Using a conditional knockout mouse model of
tumor initiation, we now show that inactivation of Hic1 results in cell cycle arrest, premature senescence, chromosomal
instability and spontaneous transformation in vitro. This phenocopies the effects of deleting Brca1, a component of the
homologous recombination DNA repair pathway, in mouse embryonic fibroblasts. These effects did not appear to be
mediated by deregulation of Hic1 target gene expression or loss of Tp53 function, and rather support a role for Hic1 in
maintaining genome integrity during sustained replicative stress. Loss of Hic1 function also cooperated with activation of
oncogenic KRas in the adult airway epithelium of mice, resulting in the formation of highly pleomorphic adenocarcinomas
with a micropapillary phenotype in vivo. These results suggest that loss of Hic1 expression in the early stages of tumor
formation may contribute to malignant transformation through the acquisition of chromosomal instability.

Introduction

Hypermethylated-in-Cancer-1 (HIC1) was discovered dur-
ing a screen for highly methylated tumor suppressor genes
on chromosome 17p [1]. HIC1 resides immediately telo-
meric to TP53 at 17p13.3, and encodes a BTB/POZ domain
zinc finger transcriptional repressor closely related to the

PLZF family of proteins [1–5]. The locus also contains a
Tp53 response element, and two major CpG rich promoters
that generate different alternatively spliced transcripts [1, 6–
8]. Over the last decade, several groups have shown that
epigenetic gene silencing and/or loss of heterozygosity of
HIC1 is one of the most common events in human cancer
[9–12], and this is associated with poor outcomes in a wide
variety of tumor types [12–17], including lung cancer [18].

Homozygous deletion of Hic1 with a conventional
mouse knockout approach results in mid-gestation
embryonic lethality [19], whereas heterozygous mutants
develop a range of spontaneous tumors in an age-dependent
manner [7]. Furthermore, Hic1 mutant mice demonstrate an
accelerated tumor phenotype when crossed into established
genetic models of colorectal cancer [20], medulloblastoma
[21], and osteosarcoma [22].

The conventional model of Hic1 function is based on the
identification of transcriptional targets through a combina-
tion of Hic1 re-expression in cancer cells and gene
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expression profiling [5, 21, 23–25]. Based on this premise,
loss of Hic1 expression through promoter hypermethylation
results in aberrant overexpression of lineage-specific genes
that promote or maintain the malignant phenotype [5]. In
addition, Hic1 also has been shown to attenuate the effect of
oncogenic transcription factors complexes that mediate
WNT [26] or STAT3 [24, 27] signaling.

One important transcriptional target of Hic1 is the Sirtuin
ortholog Sirt1 [28]. Sirtuins belong to the NAD-dependent,
trichostatin-insensitive class III histone deacetylases that
mediate life span extension in response to caloric restriction
in yeast [29]. Importantly, Sirt1 actively deacetylates and
inactivates p53 [30], thus establishing a direct link between
loss of Hic1 and attenuation of Tp53 signaling [28]. By
contrast, mice carrying heterozygous mutations in both
Tp53 and Hic1 in cis rapidly develop osteosarcomas in
which the wild type copies of both genes are deleted [22],
suggesting that loss of both genes predisposes to tumor
development that cannot be fully explained through a Hic1-
Sirt1-p53 dependent mechanism.

To better define the function of Hic1 in suppressing
tumor initiation, we developed a conditional deletion mouse
mutant to overcome the embryonic lethality of the Hic1
knockout mouse, and bypass the reliance on stochastic
promoter methylation of the wild type allele in Hic1 het-
erozygous mutants [7].

Results and discussion

Growth arrest and premature senescence in Hic1-
deficient mouse embryonic fibroblasts

Using targeted homologous recombination in mouse
embryonic stem cells, we introduced loxP sites flanking
Exon 2 of the Hic1 locus (Fig. 1a). Mice homozygous for
the conditional allele (hereafter Hic1lox/lox) demonstrated no
developmental phenotype, were not cancer prone, and were
fertile (data not shown). To generate a conditional mutant
model in mouse embryonic fibroblasts (MEFs), we crossed
the Hic1lox/lox mouse with a line in which a Cre recombinase
transgene fused to the estradiol receptor has been introduced
into the constitutively expressed ROSA locus (hereafter
EsrCre) [31]. Ex-vivo treatment with tamoxifen induces
activation and translocation of Cre recombinase resulting in
loxP recombination with high efficiency.

Treatment of MEFs generated from Hic1lox/lox EsrCre
embryos (hereafter Hic1KO) with tamoxifen, followed by a
48 h incubation period confirmed deletion of Exon 2, which
contains the entire coding region of the Hic1 gene (Fig. 1b).
Loss of Hic1 protein expression in the same MEF model
was also confirmed by Western blot analysis (Fig. 1c).

In contrast to EsrCre MEFs, tamoxifen treated Hic1KO
MEFs displayed a marked G2/M arrest (Figs. 1d, e), and
premature activation of senescence-associated beta-galac-
tosidase (SA-βGal) (Figs. 1f, g). This was unexpected, since
Hic1 is a known tumor suppressor gene, and because its
capacity to prevent Tp53 deacetylation through transcrip-
tional repression of Sirt1 would have predicted that Hic1
deletion would phenocopy p53 deletion in this model.
Equally surprising was the pattern of gene expression in
Hic1KO MEFs 48 h after tamoxifen treatment (Fig. 1h).
Although an increase in the expression of the known Hic1
target genes Efna1 [24] and Tlr2 [32] was observed, no
changes in Sirt1 were seen (Supplementary Table S1).
Unexpectedly, gene expression microarray and gene
ontology analysis revealed highly significant enrichment for
pathways involved in the regulation of cell cycle, mitosis,
and DNA replication consistent with the induction of cell
cycle arrest (Figs. 1h, i; Supplementary Table S2). These
data are resemble a phenomenon in MEFs known as “tumor
suppressor inactivation-induced senescence”, best exempli-
fied by inactivation of the breast cancer tumor suppressor
gene Brca1, which results in overwhelming DNA damage
as the result of replication-dependent double-strand break
(DSB) formation, chromosomal instability and Tp53-
dependent senescence [33, 34].

Immortalized Hic1KO MEFs are phenotypically
distinct from p53KO MEFs

To determine whether the effects of Hic1 deletion could be
functionally separated from downregulation of Tp53 func-
tion through upregulation of Sirt1, we employed a condi-
tional Tp53 knockout allele (hereafter p53lox/lox) to generate
MEFs derived from p53lox/lox EsrCre embryos (hereafter
p53KO). Embryos heterozygous for the EsrCre allele were
used as controls (hereafter EsrCre). Serial passaging of
EsrCre, p53KO, and Hic1KO MEFs using a modified 3T3
protocol demonstrated that deletion of Hic1 can replicate
the effect of loss of Brca1 function in the MEF model (Fig.
2a). As expected, p53KO MEFs spontaneously immorta-
lized with high efficiency, while control EsrCre cells
escaped senescence with similar efficiency but in a much
longer timeframe. By contrast, Hic1KO MEFs immortalized
with low efficiency after a period of dormancy lasting over
60 days (Fig. 2a) in similar fashion to the Brca1 knockout
model [33].

One of the most rigorous tests of malignant transforma-
tion in the MEF model is the capacity of immortalized cells
to grow as allografts in athymic nude mice [35]. To asses
this, early passage immortalized MEF lines from each
genotype were injected subcutaneously into the flanks of
nude mice and observed. Fast growing Hic1KO tumors
rapidly appeared within 3 weeks, whereas tumors derived
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from p53KO MEFs developed with a longer latency period
(Fig. 2b). No tumors developed from EsrCre MEFs

Gene expression profiling of immortalized EsrCre,
p53KO, and Hic1KO MEFs revealed a highly divergent
transcriptional signature (Fig. 2c, d; Supplementary Tables
S3,4,5). When compared with p53KO cells, Hic1KO MEFs
upregulated gene sets strongly associated with DNA
synthesis, senescence, oxidative and nutrient stress (Fig.
2e). As expected, expression of Cdkn1a (which encodes
p21) was markedly downregulated in p53KO cells while
immortalization in response to deletion in Hic1 was

associated with dramatic loss of Cdkn1c gene expression
(which encodes p57) (Supplementary Table S5). Genomic
and RT-PCR sequencing also showed that immortalized
Hic1KO MEFs retained intact Tp53 and Cdkn2a genes (data
not shown), both of which are commonly inactivated in
MEFs that spontaneously escape senescence [36]. To fur-
ther define the status of Tp53 in this model, we treated WT
or immortalized Hic1KO MEFs with doxorubicin to induce
DNA damage. As shown in Fig. 2f, this resulted in robust
upregulation of Tp53 and phosphorylated Tp53 expression.
Using a Tp53-resposive reporter system, we further showed

Fig. 1 Conditional deletion of Hic1 in mouse embryonic fibroblasts
(MEFs). Experiments in this Figure were analyzed by an unblinded
observer unless otherwise stated. Female mice used in this study were
housed under SPF conditions with a standard day/night cycle and fed
ad libitum on a pure C57Bl6 background following approval by the
Monash Animal Ethics Committee (MMCA/2012/23; MMCA/2012/
24; MMCA/2013/26) in accordance with current National Health and
Medical Research Council guidelines. All mice were obtained from
Jackson Laboratories except for the conditional Hic1lox/lox transgenic
line, which was generated by Ozgene (Perth, WA, Australia). Geno-
typing was performed with Jackson Laboratory protocols except for
the Hic1lox/lox line which was genotyped using primers as follows: Fwd
5′-cgcagaccacgcacttcct-3′, Rev 5′-cccaggctaaggcactaaacag-3′, 486 wt;
312 mutant. MEFs were generated and cultured as described [65]. a
Targeting strategy, showing exons 1a, 1b and 2 and loxP sites in the
wild type (WT), targeted and floxed locus following Cre-mediated
excision. PCR primers to detect excision of exon 2 are shown as blue
arrows. Primers: Fwd 5′- caacctgtacgtgtgcatcc-3′ and Rev 5′- cagc-
taaagttgggctcagg-3′. b Genomic PCR using the primers indicated in
Fig. 1a. from wild type (WT) or EsrCre-Hic1lox/lox (Hic1KO) MEFs
treated with tamoxifen to induce Cre-mediated recombination. c
Western blot analysis of Hic1 and Actin expression in MEF cell
lysates from the same experiment shown in Fig. 1b. To generate the
Hic1 antibody, full length human HIC1 was cloned into the pET-15b
vector and soluble recombinant full length HIC1 protein. Antiserum
against full length HIC1 protein was raised in rabbits by the Antibody

Facility at Flinders University of South Australia. Hic1 antibodies
were purified from serum using a NAb Protein A Plus Spin Kit
(Thermo Scientific, Waltham, MA, USA, #89978). Validation
experiments relating to this antibody are shown in Supplementary Fig.
S1. The Actin antibody was obtained from Abcam, Cambridge, UK
(#abactn05). d Representative DNA histograms from EsrCre and
Hic1KO MEFs 48 h following treatment with tamoxifen. e Quanti-
tiative analysis of the data shown in Fig. 1f. n= 4, mean+ SEM, **P
< 0.01, *P< 0.05, one-way ANOVA with Bonferonni correction. Cell
cycle analysis and sample sizewas performed as described [66, 67]. f
Phase contrast photomicrographs of senescence-associated β-Galac-
tosidase (β-Gal) staining in EsrCre or EsrCre-Hic1lox/lox (Hic1KO)
MEFs 5 days following tamoxifen treatment. Scale bar= 50 μm. Cells
were stained and scored by an observed blinded to the MEF genotype
as described [68]. g Quantitative assessment of β-Gal staining in the
same experiment shown in Fig. 1h. n= 5–10, **P< 0.01 unpaired t-
test. h A heat map depicting differentially expressed genes from pre-
immortal wild type (WT), EsrCre and Hic1KO MEFs 48 h following
treatment with tamoxifen, performed by the Australia Genome
Research Facility (Melbourne, VIC, Australia) using the MouseWG-6
v2.0 Expression BeadChip (Illumina, San Diego, CA, USA) as pre-
viously described [69]. Detailed bioinformatic methods are described
in Supplementary Information. Array data are available through GEO,
GSE104394. i Gene ontology analysis of differentially expressed
genes in Hic1KO MEFs compared with WT and EsrCre MEFs 2 days
following tamoxifen treatment
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that both EsrCre and Hic1KO MEFs were able to induce a
p53-dependent transcriptional response when compared to
p53KO MEFs (Fig. 2g).

Taken together, these data show that immortalization
following the loss of Hic1 occurs independent of Tp53.
Although we cannot exclude the possibility that attenuation
of Tp53 function plays a role in maintenance of the
immortalization phenotype in Hic1KO MEFs, the weight of
evidence strongly suggests that a significant component of
the tumor suppressive activity of Hic1 in the context of
tumor initiation outside the previously described Hic1-
Tp53-Sirt1 regulatory loop [28].

Loss of Hic1 in MEFs leads to chromosomal
instability

Chromosomal instability is a cardinal feature of tumors with
defective HR, typified by cancers with mutations in BRCA1
and BRCA2 [37]. Considering the similarities between

Hic1KO and Brca1 mutant MEFs, we asked whether loss of
Hic1 function in immortalized MEFs would result in
chromosomal instability. Quantitative anaphase analysis of
immortalized MEFs revealed largely normal chromosomal
morphology in EsrCre MEFs, whereas multipolar spindle
formation was the predominant defect in p53KO MEFs
(Fig. 3a, b), in keeping with previous reports [38]. The
prevalence of lagging chromosomes was similar across all
genotypes. By contrast, mitoses in Hic1KO MEFs were
characterized by frequent anaphase bridges (Fig. 3a, b),
consistent with a defect in HR mediated repair of DSB [39].

We next analyzed the consequences of this ongoing
chromosomal instability with karyotype analysis in each of
the immortalized MEF lines. Both EsrCre and p53KO cell
lines were near tetraploid, resembling the stable karyotype
of NIH-3T3 cells, a well-characterized MEF line generated
by spontaneous immortalization (Fig. 3e, f) [40]. In keeping
with the degree of anaphase bridge formation, numerical
and segmental aneuploidy with large numbers of marker

Fig. 2 Immortalization of MEFs lacking Hic1 results in a phenotype
distinct to MEFs lacking p53. a Growth of MEFs (shown as cumu-
lative population doublings) following tamoxifen treatment using the
3T3 protocol [65]. Data shown as mean+SEM. Sample size was
determined by the number of available immortalized MEF lines. Cell
lines were checked for Mycoplasma and genotype every 6 months. b
Kaplan–Meier survival analysis of athymic nude mice injected with
1× 106 immortalized MEFs with the genotypes indicated. **P<
0.005, log-rank analysis. 1× 106 MEFs were resuspended in 50 µl
media+50 µl Matrigel and injected subcutaneously in the right flank
and observed for 26 weeks, until the tumor reached 800 mm3 measured
by an observed blinded to the MEF genotype. c Principal component
(PC) analysis of gene expression in immortalized MEFs generated
from embryos with the genotypes indicated compared to control
MEFs. Detailed bioinformatic methods are described in Supplemen-
tary Information. Array data are available through GEO, GSE104394.
d A Venn diagram depicting differentially expressed genes in the

immortalized MEF lines shown in Fig. 1c when compared with control
MEFs. e Gene ontology analysis of differentially expressed genes
when comparing immortalized p53KO vs. Hic1KO MEFs. The ana-
lysis was performed by an observer with no a priori knowledge of the
cellular phenotype. f Western blot analysis of lysates from wild type
(WT) or Hic1 KO MEFs showing the expression of p53 phosphory-
lated at serine 15 (pSer15-p53, Cell Signaling Technology, Danvers,
MA, USA, #9284S), p53 (Santa Cruz Biotechnology, Dallas, TX,
USA, sc-6243), phosphorylated-γH2AX (γH2AX, Novus Biologicals,
Littleton, CO, USA #NB100-74435), total H2AX (Cell Signaling
Technology, 2595 S) and Actin [66, 67]. Cells were treated with
vehicle or doxorubicin (Dox; 1 μM, 6 h). g Activity of a p53-
responsive luciferase reporter (Qiagen, Hilden, Germany, #CCS-004L)
in MEFs 24 h after treatment with doxorubin, 1 μM, for 6 h. n= 4
indepdent cell lines performed, each performed in triplicate, mean+
SEM, *P< 0.05
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chromosomes was seen in Hic1KO MEFs (Fig. 3e, f).
Histologic analysis of the MEF allograft tumors described
in Fig. 2b showed that Hic1KO MEFs formed aggressive,
pleomorphic sarcomas with some features of skeletal mus-
cle differentiation resembling adult pleomorphic rhabdo-
myosarcoma (Fig. 3h). By contrast, p53KO MEFs form
sarcomas more consistent with pediatric rhabdomyo-
sarcoma, with a more regular nuclear morphology. Con-
sistent with our in vitro findings, Hic1KO MEF nude mouse
allograft tumors exhibited marked nuclear pleomorphism, as
well as numerous anaphase bridges and multinucleated

giant cells (Fig. 3i), These histological findings are con-
sistent with marked chromosomal instability [41–43].

Cooperation between inactivation of Hic1 and
oncogenic KRas in vivo

Our data suggest that loss of Hic1 in the setting of the
replication stress and impending senescence induced by
culture of MEFs [44] can lead to chromosomal instability
and spontaneous transformation. To test the functional
importance of this observation in vivo, we made use of a

Fig. 3 Deletion of Hic1 results in chromosomal instability. a Repre-
sentative confocal photomicrographs showing anaphases in MEFs
with the genotypes indicated. Cells were stained for tubulin (Red) and
DNA (DAPI) (Blue) as described [66]. Scale bar= 5 μm. Anaphases
in cell culture were scored as described previously by an observer
blinded to the MEF genotype [66]. b–d Quantitative analysis of
aberrant anaphase events in MEFs with the genotypes from the same
experiment shown in Fig. 1a, n= 3 (ESRCre), 6 (p53KO) and 4
(Hic1KO) cell lines, average of 55 anaphases per cell line. Mean
+SEM. *P< 0.05; **P< 0.01, one-way ANOVA with Bonferonni
correction. Sample size was chosen by the number of available MEF
lines. e Examples of karyotypes from immortalized MEFs with the

genotypes shown. Karyotyping was performed as previously described
[70]. f, g Quantification of chromosome number and the number of
marker chromosomes, n= 4 ESRCre, n= 6 p53KO and n= 5 Hic1KO
cell lines, average of 15 metaphase cells per genotype. **P< 0.01,
one-way ANOVA with Bonferonni correction. h Representative
photomicrographs of hematoxylin and eosin (H&E) stained sections
from formalin-fixed, paraffin-embedded nude mouse allograft tumors
with the genotypes indicated. Scale bar= 20 μm. i Representative
high-powered photomicrographs of H&E stained sections of Hic1KO
nude mouse allograft tumors. Scale bar= 5 μm. MAR marker
chromosomes
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conditional mouse model of lung adenocarcinoma in which
an oncogenic mutant KRasG12D allele is knocked into the
endogenous KRas locus downstream of a loxP-STOP-loxP
cassette (hereafter KRas) [45]. When treated with an inhaled
recombinant adenovirus expressing Cre recombinase
(Ad5Cre), these mice develop multiple lung adenocarcino-
mas within 6–8 weeks [46]. We chose this model based on
(i) the ability of mutant KRas to trigger replication stress
and senescence in the absence of a cooperating mutations in
Tp53 or p16 [47, 48]; (ii) the cooperating effect in this
model on tumor progression due to combined deletion of
Tp53 [49]; (iii) the prevalence of HIC1 hypermethylation in
human lung adenocarcinoma [50]; and (iv) the clinical
significance of HIC1 methylation in non-small cell lung
cancer [18].

We crossed KRas and Hic1lox/lox mice to generate wild
type, Hic1KO, KRas, and KRas× Hic1KO experimental
cohorts, and administered inhaled Ad5Cre at 6–8 weeks of
age. Wild type and Hic1KO mice treated with Ad5Cre
showed no abnormalities and did not develop lung lesions
by 12 months of age (data not shown). As shown in Fig. 4a,
KRas × Hic1KO mice treated with inhaled Ad5Cre had a
shorter lifespan compared to KRas littermates, consistent
with a reduced tumor latency. Consistent with this obser-
vation, quantitative histologic analysis showed a marked
increase in tumor size (Fig. 4b, c). Immunohistochemical
staining for Pancytokeratin, Surfactant Protein C and
Thyroid Transcription Factor-1 confirmed the identity of the
tumors as primary lung adenocarcinomas (Supplementary
Fig. S1). Early KRas tumors retained Hic1 expression,
whereas this was lost in the KRas × Hic1KO tumors (Fig.
4e). KRas × Hic1KO tumors retained intact Cdkn2a and
Tp53 alleles (data not shown).

Tumors in the KRas animals displayed a well differ-
entiated adenocarcinoma morphology consistent with pre-
vious reports [45]. In contrast, KRas × Hic1KO mice
developed adenocarcinomas with prominent micropapillary
and pleomorphic features (Fig. 4d), both of which are
known to be associated with a poor prognosis in human
lung cancer [51, 52]. To our knowledge, this is the first
description of mouse model in which both these histologic
features have been identified, and are distinct from tumors
arising in KRas/p53 mutant animals [49]. In keeping with
this aggressive phenotype, tumors from KRas× Hic1KO
animals were more proliferative, evidenced by quantitative
analysis of Pcna immunohistochemistry (Fig. 4f, g). Despite
this proliferative advantage, KRas × Hic1KO tumors dis-
played prominent expression of nuclear γH2AX (Fig. 4f, g),
indicative of spontaneous DSB formation. Although we
cannot exclude the possibility that deregulation of Hic1
target genes may contribute to the micropapillary lung
adenocarcinoma phenotype seen in KRas × Hic1KO mice,
these data support our findings in the MEF model, and

demonstrate that loss of Hic1 in the setting of oncogenic
KRas activation in the adult airway epithelium leads to
chromosomal instability and a distinct mouse lung adeno-
carcinoma phenotype.

A novel role for Hic1 as a tumor suppressor

Using a conditional mutant mouse model, we have identi-
fied a new and unexpected function for Hic1 as tumor
suppressor by maintaining chromosomal stability in the
setting of sustained DNA replication stress. Although our
model may not be broadly applicable to the models in
which the functions of Hic1 have been described pre-
viously, our results do suggest that loss of Hic1 function in
the early phases of tumor initiation may have a major
impact on the subsequent tumor phenotype. These data
support the notion that the acquisition of chromosomal
instability during the early phases of tumor evolution can
have a major effect on tumor phenotype and genotype
through deletion of tumor suppressors, amplification of
oncogenes, and transcriptional deregulation [53–55]. Our
results are also consistent with the idea that chromosomal
instability can drive tumor evolution, as well as genomic,
epigenetic and phenotypic heterogeneity [53–55].

Several lines of evidence support a potential role for
Hic1 in maintaining chromosomal stability independent of
Tp53. In a human cell line model, Dehennaut et al. showed
that HIC1 promotes the response to DNA double strand
breaks through an ATM-SIRT1-HDAC4 dependent
mechanism [56]. Importantly, this was dependent on the
interection between HIC1 and MTA1, a component of the
nucleosome remodeling and deacetylase (NuRD) complex.
Interestingly, this complex is required for the effective DNA
repair during S phase [57–59]. By contrast, Paget et al.
recently showed that in response to repairable DNA
damage, HIC1 was more important in mounting a tran-
scriptional response to DSB than directly promoting DNA
repair [60]. Although our data do not resolve this apparent
contradiction, our findings are consistent with both papers
in they support a role for Hic1 in mediating DNA repair
and/or in triggering cell death in response to DNA damage.

Interestingly, HIC1 is also known to interact with the
tumor suppressor gene ARID1A [61], a component of the
SWI/SNF chromatin remodeling complex that also has
important roles in maintaining genome stability during
DNA replication [62, 63]. This concept is strengthened by
the observation that mouse embryonic stem cells lacking
SWI/SNF protein Brg1 undergo cell cycle arrest associated
with chromatin bridge formation and a defective decatena-
tion checkpoint [64]. Taken together, these observations
suggest that genome-wide interactions between Hic1 and
both the NuRD and SWI/SNF complexes may play a role in
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maintaining chromosomal instability during DNA
replication.
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