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Abstract

Advances in biomedicine are largely fueled by exploring uncharted territories of human
biology. Machine learning can both enable and accelerate discovery, but faces a fundamental
hurdle when applied to unseen data with distributions that differ from previously observed
ones—a common dilemma in scientific inquiry. We have developed a new deep learning framework,
called Portal Learning, to explore dark chemical and biological space. Three key, novel components
of our approach include: (i) end-to-end, step-wise transfer learning, in recognition of biology’s
sequence-structure-function paradigm, (ii) out-of-cluster meta-learning, and (iii) stress model
selection. Portal Learning provides a practical solution to the out-of-distribution (OOD) problem
in statistical machine learning. Here, we have implemented Portal Learning to predict chemical-
protein interactions on a genome-wide scale. Systematic studies demonstrate that Portal Learning
can effectively assign ligands to unexplored gene families (unknown functions), versus existing
state-of-the-art methods. Compared with AlphaFold2-based protein-ligand docking, Portal
Learning significantly improved the performance by 79% in PR-AUC and 27% in ROC-AUC,
respectively. The superior performance of Portal Learning allowed us to target previously
“undruggable” proteins and design novel polypharmacological agents for disrupting interactions
between SARS-CoV-2 and human proteins. Portal Learning is general-purpose and can be
further applied to other areas of scientific inquiry.



1 Introduction

The central aim of scientific inquiry has been to deduce new concepts from existing knowledge
or generalized observations. The biological sciences offer numerous such challenges. The rise of
deep learning has spurred major interest in using machine learning to explore uncharted molecular
and functional spaces in biology and medicine, ranging from ‘deorphanizing’ G-protein coupled
receptors[l] and translating cell-line screens to patient drug responses[2][3], to predicting novel
protein structures[4][5][6], to identifying new cell types from single-cell omics data[7]. Illuminating
the dark space of human knowledge is a fundamental problem that one can attempt to address
via deep learning—that is, to generalize a “well-trained” model to unseen data that lies out-of-the-
distribution (OOD) of the training data, in order to successfully predict outcomes from conditions
that the model has never before encountered. While deep learning is capable, in theory, of simulating
any functional mapping, its generalization power is notoriously limited in the case of distribution
shifts|g].

The training of a deep learning model starts with a domain-specific model architecture. The
final model instance that is selected, and its performance, are determined by a series of data-
dependent design choices, including model initialization, data used for training, validation, and
testing, optimization of loss function, and evaluation metrics. Each of these design choices impacts
the generalization power of a trained model. The development of several recent deep learning-based
approaches—notably transfer learning[9], self-supervised representation learning[10], and meta-learning
[11][I2]—has been motivated by the OOD challenge. However, each of these methods focuses on only
one aspect in the training pipeline of a deep model. Causal learning and mechanism-based modeling
could be a more effective solution to the OOD problem [8], but at present these approaches can
be applied only on modest scales because of data scarcity and limited domain knowledge. Solving
large-scale OOD problems in biomedicine, via machine learning, would benefit from a systematic
framework for integrative, beginning-to-end model development, training, and testing.

Here, we propose a new deep learning framework, called Portal Learning, that systematically
addresses the three OOD vulnerabilities in a training pipeline: specifically, we employ biology-
inspired model initialization, optimization on an OOD loss, and model selection methods. We define
‘portal’ as a model with an initialized instance that is (preferably) close to the global optimum in
some learning ‘universe’. The universe includes a specific input data-set, specific tasks, and a model
architecture that provides a functional mapping from the data-set (and associated distributions) to
the tasks. Note that, even with the same model architecture, changes in a pipeline’s associated data-
set correspond to changes in the universe. Portal Learning takes a global view to design training
schemes that are task-specific and use domain knowledge as constraints to guide the exploration of
the learning space.

To assess the utility of Portal Learning, we implemented this concept as a concrete framework,
termed PortalCG, for predicting small-molecule binding to dark gene families (i.e., those with no
annotated ligands). Despite tremendous progress in high-throughput screening, the majority of
chemical genomics space remains unexplored or ‘dark’ [13] (more details in results). Elucidating dark
gene families can illuminate many fundamental but only poorly characterized biological pathways,
such as microbiome-host interactions mediated by metabolite-protein interactions. Such efforts
could also provide novel approaches for identifying new druggable targets and discovering effective
therapeutic strategies for currently incurable diseases; for instance, in Alzheimer’s disease (AD)
many disease-associated genes have been identified from multiple omics studies, but are currently
considered un-druggable [14]. Accurately predicting chemical-protein interactions (CPIs) on a
genome-wide scale is a challenging OOD problem[I]. If one considers only the reported area under
the receiver operating characteristic curve (AUROC), which has achieved 0.9 in many state-of-the-
art methods[I5][I6], it may seem the problem has been solved. However, the performance has
been primarily measured in scenarios where the data distribution in the test set does not differ
significantly from that in the training set, in terms of identities of proteins or types of chemicals.
Few sequence-based methods have been developed and evaluated for an out-of-gene family scenario,
where proteins in the test set belong to different (non-homologous) gene families than in the training
set; this sampling bias is even more severe in considering cases where the new gene family does not
have any reliable three-dimensional (3D) structural information. Therefore, one can fairly claim
that all existing work has been confined to just narrow regions of chemical genomics space, without
validated generalizability into the dark genome.

Rigorous benchmarking studies, reported herein, show that PortalCG significantly outperforms
the leading methods that are available for predicting ligand binding to (dark) proteins. We applied
PortalCG to predict candidate drug compounds for undrugged disease genes in the dark human
genome, and we prioritized hundreds of undrugged genes that can be efficaciously targeted by existing
drugs (notably, many of which involve alternative splicing and transcription factor). These novel
genes and their lead compounds provide new opportunities for drug discovery. Furthermore, using
PortalCG, we identified polypharmacological agents that might leverage novel drug targets in order



to disrupt interactions between SARS-CoV-2 and human proteins. The rapid emergence of SARS-
CoV-2 variants has posed a significant challenge to existing vaccine and anti-viral development
paradigms. Gordon et al. experimentally identified 332 human proteins that interact with the SARS-
CoV-2 virus[17]. This PPI map provides unique opportunities for anti-SARS-CoV-2 drug discovery:
targeting the host proteins involved in PPIs can disrupt human SARS-CoV-2 interactions, thereby
thwarting the onset of COVID-19. By not aiming to directly kill virions, this indirect strategy
should lessen the selection pressure on viral genome evolution. A polypharmacological agent that
interacts moderately strongly with multiple human proteins could be a potentially quite effective and
safe anti-COVID-19 therapeutic: on the one hand, the normal functions of human proteins should
not be significantly perturbed while, on the other hand, the interactions required for successful
SARS-CoV-2 infection would be inhibited. Here, we virtually screened compounds in the Drug
Repurposing Hub[I8] against the 332 human SARS-CoV-2 interactors. Two drugs, Fenebrutinib and
NMS-P715, ranked highly; interestingly, both of these anti-tumorigenic compounds inhibit kinases.
Their interactions with putative human targets were supported by further (structure-based) analyses
of protein-ligand binding poses.
In summary, the contributions of this work are three-fold:

1. A novel, generalized training scheme, Portal Learning, is proposed as a way to guide biology-
inspired systematic design in order to improve the generalization power of machine learning
on OOD problems, such as is found in the dark regions of molecular/functional space.

2. To concretely illustrate the Portal Learning approach, a specific algorithm, PortalCG, is
proposed and implemented. Comprehensive benchmark studies demonstrate the promise
of PortalCG when applied to OOD problems, specifically for exploring the dark regions of
chemical genomics space.

3. Using PortalCG, we shed new light on unknown protein functions in dark genomes (viz.
small molecule-binding properties), and open new avenues in polypharmacology and drug
repurposing; as demonstrated by identifying novel drug targets and lead compounds for AD
and anti-SARS-CoV-2 polypharmacology.

2 Conceptual basis of Portal Learning

data split | Common practice a(':plgfisel; ?flhgrg% Portal learning specification
train IID train IID train / each batch is from the same distribution
OOD train differentiate sub-distributions in each batch
dev IID-dev IID-dev / from the same distribution as the train set
. / OOD-dev from a different distribution from the training set
test IID-test / / from the same distribution as the training set
/ OOD-test OOD-test from a different distribution from both OOD-dev and training set

Table 1: Data split for stress model instance selection

To enable the exploration of dark regions of chemical and biological space, Portal Learning rests
upon a systematic, well-principled training strategy, the underpinnings of which are shown in Figure
1. In Portal Learning, a model architecture together with a data set and a task defines a universe.
Each universe has some global optimum with respect to the task based on a pre-defined loss function.
The model-initialized instance in a universe—which could be a local optimum in the current universe,
but which facilitates moving the model to the global optimum in the ultimately targeted universe—is
called a portal. The portal is similar to a catalyst that lows the energy barrier via a transition state
for a chemical reaction to occur. The dark chemical genomics space cannot be explored effectively if
the learning process is confined only to the observed universe of protein sequences that have known
ligands, as the known data are highly sparse and biased (details in Result section). Hence, it is
critical to successfully identify portals into the dark chemical genomics universe starting from the
observed protein sequence and structure universe. For clarity and ease of reference, key terms related
to Portal Learning are given in the Supplemental Materials.

The remainder of this section describes the three key components of the Portal Learning approach—
namely, end-to-end step-wise transfer learning (STL), out-of-cluster meta-learning (OOC-ML), and
stress model selection.

End-to-end step-wise transfer learning (STL). Information flow in biological systems
generally involves multiple intermediate steps, from a source instance to a target. For example,
a discrete genotype (source) ultimately yields a downstream phenotype (target) via many steps of
gene expression, in some environmental context. For predicting genotype-phenotype associations,
explicit machine learning models that represent information transmission from DNA to RNA to
cellular phenotype are more powerful than those that ignore the intermediate steps [19]. In Portal



Learning, transcriptomics profiles can be used as a portal to link the source genetic variation (e.g.,
variants, SNPs, homologs, etc.) and target cellular phenotype (e.g., drug sensitivity). Using deep
neural networks, this process can be modeled in an end-to-end fashion.

Out-of-cluster meta-learning (OOC-MUL). Even if we can successfully transfer the information
needed for the target through intermediate portals from the source universe, we still need additional
portals to reach those many sparsely-populated regions of the dark universe that lack labeled data
in the target. Inspired by Model Agnostic Meta-Learning (MAML)[TTI], we designed a new OOC-
ML approach to explore the dark biological space. MAML cannot be directly applied to Portal
Learning in the context of the OOD problem because it is designed for few-shot learning under a
multi-task formulation. Few-shot learning expects to have a few labeled samples from the test data
set to update the trained model during inference for a new task. This approach cannot be directly
applied to predicting gene functions of dark gene families where the task (e.g., binary classification
of ligand binding) is unchanged, but rather there are no labeled data for a unseen distribution that
may differ significantly from the training data. In a sense, rather than MAML’s "few-shot/multi-
task" problem context, mapping dark chemical/biological space is more of a "zero-shot/single-task"
learning problem. A key insight of OOC-ML is to define sub-distributions (clusters) for the labeled
data in the source instance universe. An example demonstrated in this paper is to define sub-
distributions using Pfam families when the source instance is a protein sequence. Intuitively, OOC-
ML involves a two-stage learning process. In the first stage, a model is trained using each individual
labeled cluster (e.g., a given Pfam ID), thereby learning whatever knowledge is (implicitly) specific
to each cluster. In the second stage, all trained models from the first stage are combined and a new
ensemble model is trained, using labeled clusters that were not used in the first stage. In this way,
we may extract common intrinsic patterns shared by all clusters and apply the learned essential
knowledge to dark ones.

Stress model selection. Finally, training should be stopped at a suitable point in order to
avoid overfitting. This was achieved by stress model selection. Stress model selection is designed to
basically recapitulate an OOD scenario by splitting the data into OOD train, OOD development,
and OOD test sets as listed in Table[l} in this procedure, the data distribution for the development
set differs from that of the training data, and the distribution of the test data set differs from both
the training and development data.

For additional details and perspective, the conceptual and theoretical basis of Portal Learning is
further described in the Methods section of the Supplemental Materials.

3 Results and Discussion

3.1 Overview of PortalCG

We implemented the Portal Learning concept as a concrete model, Portal CG, for exploring the dark
chemical genomics space. In terms of Portal Learning’s three key components (STL, OOC-ML, and
stress model selection), PortalCG makes the following design choices (see also Figure .
End-to-end sequence-structure-function STL. The function of a protein—e.g., serving as
a target receptor for ligand binding—stems from its three-dimensional (3D) shape and dynamics
which, in turn, is ultimately encoded in its primary amino acid sequence. In general, information
about a protein’s structure is more powerful than purely sequence-based information for predicting
its molecular function because sequences drift/diverge far more rapidly than do 3D structures on
evolutionary timescales. Although the number of experimentally-determined structures continues
to exponentially increase, and now AlphaFold2 can reliably predict 3D structures of most single-
domain proteins, it nevertheless remains quite challenging to directly use protein structures as input
for predicting ligand-binding properties of dark proteins. In PortalCG, protein structure information
is used as a portal to connect a source protein sequence and a corresponding target protein function
(Figure ) We begin by performing self-supervised training to map tens of millions of sequences
into a universal embedding space, using our recent distilled sequence alignment embedding (DISAE)
algorithm [I]. Then, 3D structural information about the ligand-binding site is used to fine-tune the
sequence embedding. Finally, this structure-regularized protein embedding was used as a hidden
layer for supervised learning of cross-gene family CPlIs, following an end-to-end sequence-structure-
function training process. By encapsulating the role of structure in this way, inaccuracies and
uncertainties in structure prediction are ‘insulated’ and will not propagate to the function prediction.
Out-of-cluster meta-learning. In the OOC-ML framework, Pfam gene families provide
natural clusters as sub-distributions. In each Pfam family, the data is split into support set and query
set as shown in Figure B). Specifically, a model is trained for a single Pfam family independently
to reach a local minimum using the support set of the Pfam family as shown in the inner loop IID
optimization in Figure C.l). Then a query set from the same Pfam family is used on the locally
optimized model to get a loss from the local loss landscape, i.e. outer loop IID meta optimization



in Figure C.l). Local losses from the query sets of multiple Pfam families will be aggregated to
calculate the loss on a global loss landscape, i.e. meta optimization in Figure (C.l). For some
cluster with very limited number of data, they don’t have a support set hence will only participate
in the optimization on the global loss landscape. There could be many choices of aggregations. A
simple way is to calculate the average loss. The aggregated loss will be used to optimize the model on
the global loss landscape. Note that weights learned on each local loss landscape will be memorized
during the global optimization. In our implementation, it is realized by creating a copy of the model
trained from the each family’s local optimization. In this way, the local knowledge learned is ensured
to be only passed to the global loss landscape by the query set loss.

Stress model selection. The final model was selected using Pfam families that were not used
in the training stage (Figure |2| right panel).

The Supplemental Materials provide further methodological details, covering data pre-processing,
the core algorithm, model configuration, and implementation details.

3.2 There are significantly unexplored dark spaces in chemical genomics

We inspected the known CPIs between (i) molecules in the manually-curated ChEMBL database,
which consists of only a small portion of all chemical space, and (ii) proteins annotated in Pfam-A
[20], which represents only a narrow slice of the whole protein sequence universe. The ChEMBL26[21]
database supplies 1,950,765 chemicals paired to 13,377 protein targets, constituting 15,996, 368
known interaction pairs. Even for just this small portion of chemical genomics space, unexplored
CPIs are enormous, can be seen in the dark region in Figure Approximately 90% of Pfam-A
families do not have any known small-molecule binder. Even in Pfam families with annotated CPIs
(e.g., GPCRs), there exists a significant number of ‘orphan’ receptors with unknown cognate ligands
(Figure |3). Fewer than 1% of chemicals bind to more than two proteins, and < 0.4% of chemicals
bind to more than five proteins, as shown in Supplemental Figures S1, S2 and S3. Because protein
sequences and chemical structures in the dark chemical genomics space could be significantly different
from those for the known CPIs, predicting CPIs in the dark space is an archetypal, unaddressed
OOD problem.

3.3 Portal Learning significantly outperforms state-of-the-art approaches
to predicting dark CPls

When compared with the state-of-the-art method DISAE[L], which already was shown to outperform
other leading methods for predicting CPIs of orphan receptors, PortalCG demonstrates superior
performance in terms of both Receiver Operating Characteristic (ROC) and Precision-Recall (PR)
curves, as shown in Figure a). Because the ratio of positive and negative cases is imbalanced,
the PR curve is more informative than the ROC curve. The PR-AUC of PortalCG and DISAE is
0.714 and 0.603, respectively. In this regard, the performance gain of Portal Learning (18.4%) is
significant (p-value < le — 40). Performance breakdowns for binding and non-binding classes can
be found in Supplemental Figure S4.

PortalCG exhibits much higher recall and precision scores for positive cases (i.e., a chemical-
protein pair that is predicted to bind) versus negative, as shown in Supplemental Figure S4; this is a
highly encouraging result, given that there are many more negative (non-binding) than positive cases.
The deployment gap, shown in Figure b), is steadily around zero for PortalCG; this promising
finding means that we can expect that, when applied to the dark genomics space, the performance
will be similar to that measured using the development data set.

With the advent of high-accuracy protein structural models, predicted by AlphaFold2 [5], it now
becomes feasible to use reversed protein-ligand docking (RPLD)[22] to predict ligand-binding sites
and poses on dark proteins, on a genome-wide scale. In order to compare our method with the RPLD
approach, blind docking to putative targets was performed via Autodock Vina[23]. After removing
proteins that failed in the RPLD experiments (mainly due to extended structural loops), docking
scores for 28,909 chemical-protein pairs were obtained. The performance of RPLD was compared
with that of PortalGC and DISAE. As shown in Figure [fa), both ROC and PR for RPLD are
significantly worse than for PortalGC and DISAE. It is well known that PLD suffers from a high false-
positive rate due to poor modeling of protein dynamics, solvation effects, crystallized waters, and
other challenges [24]; often, small-molecule ligands will indiscriminately ‘stick’ to concave, pocket-
like patches on protein surfaces. For these reasons, although AlphaFold2 can accurately predict
many protein structures, the relatively low reliability of PLD still poses a significant limitation, even
with a limitless supply of predicted structures [25]. Thus, the direct application of RPLD remains a
challenge for predicting ligand binding to dark proteins. PortalCG’s end-to-end sequence-structure-
function learning could be a more effective strategy: protein structure information is not used as
a fixed input, but rather as an intermediate layer that can be tuned using various structural and



functional information. From this perspective, again the role of protein structure in PortalCG can
be seen as that of a portal (sequence—function; Figure[1]) and a regularizer (Figure .

3.4 Both the STL and OOC-ML stages contribute to the improved performance

of PortalCG
PR-AUC ROC-AUC PR-AUC ROC-AUC
models (OOD-test set) | (OOD-test set) | Deployment gap | Deployment gap

PortalCG Portal learning 0.714+£0.010 0.677+0.010 0.005+0.010 0.010£0.009
DISAE PotalCG w/o STL or OOC-ML | 0.603+0.005 0.636+0.004 -0.345+0.012 -0.275+0.016
variant 1 PotalCG w/o OOC-ML 0.629+0.005 0.661+0.004 / /
variant 2 PotalCG w/o STL 0.698+0.015 0.654+0.062 / /
Alphfold2-docking | / 0.398 0.535 / /

Table 2: Ablation study of PortalCG.

To gauge the potential contribution of each component of PortalCG to the overall system
effectiveness in predicting dark CPIs, we systematically compared the four models shown in Table
] Details of the exact model configurations for these experiments can be found in the Supplemental
Materials Table S10 and Figure S13. As shown in Table 2] Variant 1, with a higher PR-AUC
compared to the DISAE baseline, is the direct gain from transfer learning through 3D binding site
information, all else being equal; yet, with transfer learning alone and without OOC-ML as an
optimization algorithm in the target universe (i.e., Variant 2 versus Variant 1), the PR-AUC gain
is minor. Variant 2 yields a 15% improvement while Variant 1 achieves only a 4% improvement.
PortalCG (i.e., full Portal Learning), in comparison, has the best PR-AUC score. With all other
factors held constant, the advantage of PortalCG appears to be the synergistic effect of both STL
and OOC-ML. The performance gain measured by PR-AUC under a shifted evaluation setting is
significant (p-value < le-40), as shown in Supplemental Figure S5.

We find that stress model selection is able to mitigate potential overfitting problems, as expected.
Training curves for the stress model selection are in Supplemental Figures S4 and S6. As shown in
Supplemental Figure S6, the baseline DISAE approach tends to over-fit with training, and IID-dev
performances are all higher than PortalCG but deteriorate in OOD-test performance. Hence, the
deployment gap for the baseline is -0.275 and -0.345 on ROC-AUC and PR-AUC, respectively, while
PortalCG deployment is around 0.01 and 0.005, respectively.

3.5 Application of PortalCG to explore dark chemical genomics space

A production-level model using Portal CG was trained with ensemble methods for the deployment.
Details are in the Supplemental Methods section. The trained PortalCG model was applied to two
case-studies in order to assess its utility in the exploration of dark space. As long as a protein
and chemical pair was presented to this model with their respective sequence and SMILES string,
a prediction could be made, along with a corresponding prediction score. To select high confidence
predictions, a histogram of prediction scores was built based on known pairs (Supplemental Figure
S7). A threshold of 0.67, corresponding to a false positive rate of 2.18e-05, was identified to filter
out high-confidence positive predictions. Around 6,000 drugs from the Drug Repurposing Hub[26]
were used in the screening. The remainder of this section describes the two case-studies that were
examined with Portal CG, namely (i) COVID-19 polypharmacology and (ii) the ‘undruggable’ portion
of the human genome.

3.5.1 COVID-19 polypharmacology

In order to identify lead compounds that may disrupt SARS-CoV-2-Human interactions, we screened
5,886 approved and investigational drugs against the 332 human proteins known to interact with
SARS-CoV-2. We considered a drug-protein pair as a positive hit and selected it for further analysis
only when all models in an ensemble vote as positive and the false positive rate does not exceed is
2.18e-05. Drugs involved in these positive pairs were ranked according to the number of proteins to
which they are predicted to bind. Detailed information is given in Supplemental Table S1. Most of
these drugs are protein kinase inhibitors and are already in Phase 2 clinical trials. Among them,
Fenebrutinib and NMS-P715 are predicted to bind to seven human SARS-CoV-2 interactors, as
shown in Table[3] In order to elucidate how these drug molecules might associate with a SARS-CoV-
2 interactor partner, we performed molecular docking for Fenebrutinib and NMS-P715. Structures
of two SARS-CoV-2 interactors were obtained from the Protein Data Bank; the remaining five
proteins do not have experimentally solved structures so their predicted structures (via AlphaFold2)
were used for docking. For most of these structures, the binding pockets are unknown. Therefore,
blind docking was employed, using Autodock Vina|23] to search the full surfaces (the accessible



molecular envelope) and identify putative binding sites of Fenebrutinib and NMS-P715 on these
interactors. Docking conformations with the best (lowest) predicted binding energies were selected
for each protein; the respective binding energies are listed in Table

Components of the exosome complex are predicted targets for both Fenebrutinib and NMS-P715.
The exosome complex is a multi-protein, intracellular complex which is involved in degradation of
many types of RNA molecules (e.g., via 3’5’ exonuclease activities). As shown in Figure |5 the
subunits of the exosomal assembly form a central channel; RNA passes through this region as part
of the degradation/processing. Intriguingly, SARS-CoV-2’s genomic RNA has been found to be
localized in the exosomal cargo, suggesting a key mechanistic role for the channel region in SARS-
CoV-2 virion infectivity pathways [27]. Fenebrutinib and NMS-P715 were also predicted to bind to
a specific exonuclease, RRP43, of the exosome complex, while NMS-P715 was also predicted to bind
yet another exonuclease, RRP46.

The predicted binding poses for Fenebrutinib and NMS-P715 with the exosomal complex components
are shown in Figure [5| The physicochemical /interatomic interactions between these two drugs and
the exosome complex components are also schematized as a 2D layout in this figure. The favorable
hydrogen bond, pi-alkyl, pi-cation and Van der Waals interactions provide additional support that
Fenebrutinib and NMS-P715 do indeed bind to these components of the exosome complex. The
predicted binding poses and 2D interactions maps for Fenebrutinib and NMS-P715 with other
targeted proteins are shown in Supplementary Figures S8, S9, and S10.

Docking scores of Fenebrutinib binding to predicted targets

Uniprot ID Protein name PDB ID Docking score

(kcal /mol)
Q96B26 Exosome complex component RRP43 2NN6_C -7.9
Q5JRX3 Presequence protease, mitochondrial 4L3T_A -10.8
Q99720 Sigma non-opioid intracellular receptor 1 5HK1_A -9.6
Q5VT66 Mitochondrial amidoxime-reducing component 1 6FW2_A -10.4
P29122 Proprotein convertase subtilisin/kexin type 6 AF-P29122-F1 (157-622) -8.5
QI6K12 Fatty acyl-CoA reductase 2 AF-Q96K12-F1 (1-478) -10.1
094973 AP-2 complex subunit alpha-2 AF-094973-F1 (3-622) -8.6

Docking scores of NMS-P715 binding to predicted targets

Uniprot ID Protein name PDB ID Docking score

(kcal/mol)
QIUNS6 Ras GTPase-activating protein-binding protein 2 5DRV_A -9.5
P67870 Casein kinase II subunit beta 1QF8_A -8.6
Q96B26 Exosome complex component RRP43 2NN6_C -9.3
P62877 E3 ubiquitin-protein ligase RBX1 2HYE_D -7.9
P61962 DDBI- and CUL4-associated factor 7 AF-P61962-F1 (9-341) -8.7
QINXHI tRNA (guanine(26)-N(2))-dimethyltransferase | AF-QINXHO9-F1 (53-556) -9.0
QINQT4 Exosome complex component RRP46 2NN6_D -8.6

Table 3: Docking scores for Fenebrutinib and NMS-P715

3.5.2 Illuminating the undruggable human genome

It is well known that only a small subset of the human genome is considered druggable [28]. Many
proteins are deemed “undruggable” because there is no information on their ligand-binding properties
or other interactions with small-molecule compounds (be they endogenous or exogenous ligands).
Here, we built an “undruggable” human disease protein database by removing the druggable proteins
in Pharos [29] and Casas’s druggable proteins [30] from human disease associated genes [14] and
applied PortalCG to predict the probability for these “undruggable” proteins to bind to drug-
like molecules. A total of 12,475 proteins were included in our disease-associated undruggable
human protein list. These proteins were ranked according to their probability scores, and 267 of
them have a false positive rate lower than 2.18e-05, as listed in the supplementary material Table
S2. Table [] shows the statistically significantly enriched functions of these top ranked proteins
as determined by DAVID [31]. The most enriched proteins are involved in alternative splicing of
mRNA transcripts. Malfunctions in alternative splicing are linked to many diseases, including several
cancers [32][33] and Alzheimer’s disease [34]. However, pharmaceutical modulation of alternative
splicing process is a challenging task. Identifying new drug targets and their lead compounds for
targeting alternative splicing pathways may open new doors to developing novel therapeutics for
complex diseases with few treatment options. Diseases associated with these 267 human proteins
were also listed in Table 5] Since one protein is always related to multiple diseases, these diseases
are ranked by the number of their associated proteins. Most of top ranked diseases are related
with cancer development. 21 drugs that are approved or in clinical development are predicted to
interact with these proteins as shown in Table S3. Several of these drugs are highly promiscuous. For



example, AI-10-49, a molecule that disrupts protein-protein interaction between CBFb-SMMHC and
tumor suppressor RUNX1, may bind to more than 60 other proteins. The off-target binding profile
of these proteins may provide invaluable information on potential side effects and opportunities for
drug repurposing and polypharmacology. The drug-target interaction network built for predicted
positive proteins associated with Alzheimer’s disease was shown in Figure[6] Functional enrichment,
disease associations, and top ranked drugs for the undruggable proteins with well-studied biology
(classified as Thio in Pharos) and those excluding Thio are list in Supplemental Table S4-S9.

David Functional Annotation enrichment analysis
Enriched terms in Number of Percentage of Pvalue Modified
UniProtKB keywords | proteins involved | proteins involved Benjamini p-value
Alternative splicing 171 66.5 7.70E-07 2.00E-04
Phosphoprotein 140 54.5 2.60E-06 3.40E-04
Cytoplasm 91 35.4 1.30E-05 1.10E-03
Nucleus 93 36.2 1.20E-04 8.10E-03
Metal-binding 68 26.5 4.20E-04 2.20E-02
Zinc 48 18.7 6.60E-04 2.90E-02

Table 4: Functional Annotation enrichment for undruggable human disease proteins selected by
PortalCG

DiseaseName # of undruggable proteins associated with disease
Breast Carcinoma 90
Tumor Cell Invasion 86
Carcinogenesis 83
Neoplasm Metastasis 75
Colorectal Carcinoma 73
Liver carcinoma 66
Malignant neoplasm of lung 56
Non-Small Cell Lung Carcinoma 56
Carcinoma of lung 54
Alzheimer’s Disease 54

Table 5: Top ranked diseases associated with the undruggable human disease proteins selected by
PortalCG

4 Conclusion

This paper confronts the challenge of exploring dark chemical genomics space by recognizing it as
an OOD generalization problem in machine learning, and by developing a new learning framework
to treat this type of problem. We propose Portal Learning as a general framework that enables
systematic control of the OOD generalization risk. As a concrete algorithmic example and use-
case, PortalCG was implemented under the Portal Learning framework. Systematic examination
of the PortalCG method revealed its superior performance compared to (i) a state-of-the-art deep
learning model (DISAE), and (ii) an AlphaFold2-enabled, structure-based reverse docking approach.
PortalCG showed significant improvements in terms of both sensitivity and specificity, as well as
close to zero deployment performance gap. With this approach, we were able to explore the dark
regions of the druggable genome. Applications of PortalCG to COVID-19 polypharmacology and to
the targeting of hitherto undruggable human proteins affords novel new directions in drug discovery.

5 Methods
5.1 Full algorithm details

Portal learning as a system level framework involves collaborative new design from data preprocessing,
data splitting to model architecture, model initialization, and model optimization and evaluation.
The main illustrations are Figure [1] and Figure [2] Extensive explanation of each of the component
and their motivations are available in Supplemental Materials section Methods with Figure S11, and
Algorithm1.



5.2 Data

PortalCG uses three database, Pfam[20], Protein Data Bank (PDB)[35] and ChEMBL[2I]. Two
applications are demonstrated, COVID-19 polypharmacology and undruggable human proteins, for
which known approved drugs are collected from CLUE[26], 332 human proteins interacting SARS-
CoV-2 are listed in recent publication[36], 12,475 undruggable proteins are collected by removing the
druggable proteins in Pharos [29] and Casas’s druggable proteins [30] from human disease associated
genes [I4]. Detailed explanation of how each data set is used can be found in Supplemental Materials
section 2.1.

Major data statistics are demonstrated in Figure [3] and Supplemental Materials Figure S1, S2,
and S3.

5.3 Experiment implementation

Experiments are first organized to test Portal CG performance against baseline models, DISAE[T] and
AlphFold2[5]. DISAE is a protein language which predicts protein function based on protein sequence
information alone. AlphaFold2 uses protein sequence information to predict protein structure,
combing docking methods, can be used to predict protein function. Main results are shown with
Table 2] and Figure [d] Ablation studies is also performed mainly to test some variants of PortalCG
components such as binding site distance prediction as shown in Supplemental Figure S12. Since
Portal Learning is a general framework, there could be many interesting variants to pursue in future
studies. To enhance application accuracy, a production level model is built with ensemble learning,
and high confidence predictions are selected as demonstrated in Supplemental Material Figure S7.
Evaluation metrics used are F1, ROC-AUC and PR-AUC.
Extensive details can be found in Supplemental Materials section 2.3, 2.4 and 2.5.

5.4 Related works

A literature review of related works could be found in Supplemental Materials section Related Works.
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Figure 1: Ilustration of two of the three major Portal Learning components for OOD problems,
End-to-end step-wise transfer learning (STL) and out-of-cluster meta-learning (OOC-ML), using
the prediction of out-of-gene family chemical-protein interactions (CPIs) as an example: A. STL:
3D structure of protein ligand binding site is in the center connecting protein sequences to CPIs.
There are two portals, the first traveling from the protein sequence universe to the binding site
structure universe by pre-training a protein language model that is optimal in the protein sequence
universe and leads to a model initialization instance closer to the global optimum in the binding
site structure universe. The optimization based on this initialized instance leads to the discovery
of the second portal through which protein function universe gets a model initialization instance
closer to its own global optimum. B. Problem formulation of OOC-ML in comparison with
MAML: Different from MAML where training data is grouped based on the task, the training data
in OOC-ML is clustered in the instance space. Instead of decomposing the data in all clusters into
support and query set like MAML, there is only a query set in certain training clusters and all testing
clusters in OOC-ML to simulate OOD scenario. C. Optimization of OOC-ML in comparison
with MAML: Intuitively, OOC-ML first performs local optimizations on each cluster of training
data with the support/query decomposition, then meta optimizations on the training set that has
only query sets by ensembling the knowledge learned from the local optimization. The optimized
model is applied to the test data in a zero-shot learning setting. In contrast, the meta-optimization
in MAML requires query sets in the setting of few-shot learning.
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Figure 4: Comparison of PortalCG with the state-of-the-art method DISAE as baseline using the
shifted evaluation test. (a) ROC and Precision-Recall curves for the “best” model instance selected
by stress test; (b) Deployment gaps where the deployment gap of PortalCG is steadily around zero
as training step increases while the deployment performance of DISAE deteriorates.
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Figure 5: The 3D structure of the exosome complex and the binding conformations of Fenebrutinib
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structure; Left: yellow circles shows the binding pocket of NMS-P715 on RRP43 and RRP46, purple
hexagon shows the gate; Right: red circle shows the binding pocket of Fenebrutinib on RRP43. (b)
Fenebrutinib on RRP43. (¢) NMS-P715 on RRP43. (d) NMS-P715 on RRP46.

13



Q96J94

Q8N2M8

Q9BRK5

Q93074

Q9P2Q2

P62987

QoNQX4
QoY6X6 @

000192 ?
@

Figure 6: Drug-target interaction network for proteins associated with Alzheimer’s disease. Green
represents drugs and pink represents targets.

Q13948

P49459
P53004

P17600

QYUBK8

Q15388

14



Author Contributions

TC conceived the concept of Portal Learning, implemented the algorithms, performed the experiments,
and wrote the manuscript; Li Xie prepared data, performed the experiments, and wrote the manuscript;
MC implemented algorithms; YL implemented algorithms; SZ prepared data; CM and PEB refined
the concepts and wrote the manuscript; Lei Xie conceived and planned the experiments, wrote the
manuscript.

Data and software availability

Data, a pre-trained PortalCG model, and PortalCG codes can be found in the following link: https:
//github.com/XieResearchGroup/Portallearning

Acknowledgement

This project has been funded with federal funds from the National Institute of General Medical
Sciences of National Institute of Health (RO1GM122845) and the National Institute on Aging of the
National Institute of Health (RO1IADO057555). We appreciate that Hansaim Lim helped with proof
reading and provided constructive suggestions.

15


 https://github.com/XieResearchGroup/PortalLearning
 https://github.com/XieResearchGroup/PortalLearning

References

[1]

[10]

[11]

[12]

[13]

T. Cai, H. Lim, K. A. Abbu, Y. Qiu, R. Nussinov, and L. Xie, “Msa-regularized protein
sequence transformer toward predicting genome-wide chemical-protein interactions: Application
to gpcrome deorphanization,” Journal of Chemical Information and Modeling, vol. 61, no. 4,
pp- 1570-1582, 2021.

J. Ma, S. H. Fong, Y. Luo, C. J. Bakkenist, J. P. Shen, S. Mourragui, L. F. Wessels, M. Hafner,
R. Sharan, J. Peng, et al., “Few-shot learning creates predictive models of drug response that
translate from high-throughput screens to individual patients,” Nature Cancer, vol. 2, no. 2,
pp. 233-244, 2021.

D. He, Q. Liu, and L. Xie, “Robust prediction of patient-specific clinical response to unseen
drugs from in vitro screens using context-aware deconfounding autoencoder,” bioRxiv, 2021.

N. Hiranuma, H. Park, M. Baek, I. Anishchenko, J. Dauparas, and D. Baker, “Improved
protein structure refinement guided by deep learning based accuracy estimation,” Nature
communications, vol. 12, no. 1, pp. 1-11, 2021.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Zidek, A. Potapenko, et al., “Highly accurate protein structure prediction with
alphafold,” Nature, pp. 1-11, 2021.

M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G. R. Lee, J. Wang, Q. Cong,
L. N. Kinch, R. D. Schaeffer, et al., “Accurate prediction of protein structures and interactions
using a 3-track network,” bioRziv, 2021.

Y. Li, P. Luo, Y. Lu, and F.-X. Wu, “Identifying cell types from single-cell data based on
similarities and dissimilarities between cells,” BMC' bioinformatics, vol. 22, no. 3, pp. 1-18,
2021.

B. Scholkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio,
“Toward causal representation learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 612-634,
2021.

W. Chen, Z. Yu, Z. Wang, and A. Anandkumar, “Automated synthetic-to-real generalization,”
in International Conference on Machine Learning, pp. 1746-1756, PMLR, 2020.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert for
self-supervised learning of language representations,” arXiv preprint arXiv:1909.11942, 2019.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep
networks,” CoRR, vol. abs/1703.03400, 2017.

T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-learning in neural
networks: A survey,” CoRR, vol. abs/2004.05439, 2020.

T. I. Oprea, “Exploring the dark genome: implications for precision medicine,” Mammalian
Genome, vol. 30, no. 7, pp. 192-200, 2019.

J. Pifiero, J. M. Ramirez-Anguita, J. Saiich-Pitarch, F. Ronzano, E. Centeno, F. Sanz, and L. 1.
Furlong, “The disgenet knowledge platform for disease genomics: 2019 update,” Nucleic Acids
Research, vol. 48, p. D845-D855, 1 2020.

M. Karimi, D. Wu, Z. Wang, and Y. Shen, “Deepaffinity: interpretable deep learning
of compound—protein affinity through unified recurrent and convolutional neural networks,”
Bioinformatics, vol. 35, no. 18, pp. 3329-3338, 2019.

H. Oztiirk, A. Ozgiir, and E. Ozkirimli, “Deepdta: deep drug-target binding affinity prediction,”
Bioinformatics, vol. 34, no. 17, pp. i821-i829, 2018.

D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O’Meara,
V. V. Rezelj, J. Z. Guo, D. L. Swaney, T. A. Tummino, R. Hiittenhain, R. M. Kaake, A. L.
Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, M. Modak, M. Kim, P. Haas, B. J.
Polacco, H. Braberg, J. M. Fabius, M. Eckhardt, M. Soucheray, M. J. Bennett, M. Cakir, M. J.
McGregor, Q. Li, B. Meyer, F. Roesch, T. Vallet, A. M. Kain, L. Miorin, E. Moreno, Z. Z. C.
Naing, Y. Zhou, S. Peng, Y. Shi, Z. Zhang, W. Shen, I. T. Kirby, J. E. Melnyk, J. S. Chorba,
K. Lou, S. A. Dai, I. Barrio-Hernandez, D. Memon, C. Hernandez-Armenta, J. Lyu, C. J. P.
Mathy, T. Perica, K. B. Pilla, S. J. Ganesan, D. J. Saltzberg, R. Rakesh, X. Liu, S. B. Rosenthal,

16



[19]

[20]

[21]

23]

[24]

[25]

[28]

[29]

L. Calviello, S. Venkataramanan, J. Liboy-Lugo, Y. Lin, X.-P. Huang, Y. Liu, S. A. Wankowicz,
M. Bohn, M. Safari, F. S. Ugur, C. Koh, N. S. Savar, Q. D. Tran, D. Shengjuler, S. J. Fletcher,
M. C. O’Neal, Y. Cai, J. C. J. Chang, D. J. Broadhurst, S. Klippsten, P. P. Sharp, N. A.
Wengzell, D. Kuzuoglu-Ozturk, H.-Y. Wang, R. Trenker, J. M. Young, D. A. Cavero, J. Hiatt,
T. L. Roth, U. Rathore, A. Subramanian, J. Noack, M. Hubert, R. M. Stroud, A. D. Frankel,
O. S. Rosenberg, K. A. Verba, D. A. Agard, M. Ott, M. Emerman, N. Jura, M. von Zastrow,
E. Verdin, A. Ashworth, O. Schwartz, C. d’Enfert, S. Mukherjee, M. Jacobson, H. S. Malik,
D. G. Fujimori, T. Ideker, C. S. Craik, S. N. Floor, J. S. Fraser, J. D. Gross, A. Sali, B. L.
Roth, D. Ruggero, J. Taunton, T. Kortemme, P. Beltrao, M. Vignuzzi, A. Garcia-Sastre, K. M.
Shokat, B. K. Shoichet, and N. J. Krogan, “A sars-cov-2 protein interaction map reveals targets
for drug repurposing,” Nature, vol. 583, pp. 459-468, 2020.

S. M. Corsellol-3, J. A. Bittkerl, Z. Liul, J. Gouldl, P. McCarrenl, J. E. Hirschmanl,
S. E. Johnstonl, A. Vrcicl, B. Wongl, M. Khanl, J. Asiedul, R. Narayanl, C. C. Maderl,
A. Subramanianl, and T. R. Golub, “The drug repurposing hub: a next-generation drug library
and information resource,” Nature Medicine, vol. 23, no. 4, pp. 405-409, 2017.

D. He and L. Xie, “A cross-level information transmission network for hierarchical omics data
integration and phenotype prediction from a new genotype,” Bioinformatics, 2021.

J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. Sonnhammer, S. C.
Tosatto, L. Paladin, S. Raj, L. J. Richardson, et al., “Pfam: The protein families database in
2021,” Nucleic Acids Research, vol. 49, no. D1, pp. D412-D419, 2021.

A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers, D. Mendez, P. Mutowo,
F. Atkinson, L. J. Bellis, E. Cibrian-Uhalte, M. Davies, N. Dedman, A. Karlsson, M. P.
Magarinos, J. P. Overington, G. Papadatos, I. Smit, and A. R. Leach, “The ChEMBL database
in 2017,” Nucleic Acids Research, vol. 45, pp. D945-D954, 11 2016.

H. Huang, G. Zhang, Y. Zhou, C. Lin, S. Chen, Y. Lin, S. Mai, and Z. Huang, “Reverse
screening methods to search for the protein targets of chemopreventive compounds,” Frontiers
in chemistry, vol. 6, p. 138, 2018.

O. Trott and A. J. Olson, “Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization and multithreading,” Journal of Computational
Chemistry, vol. 31, pp. 455—461, 2010.

S. Z. Grinter and X. Zou, “Challenges, applications, and recent advances of protein-ligand
docking in structure-based drug design,” Molecules, vol. 19, no. 7, pp. 10150-10176, 2014.

M. Jaiteh, I. Rodriguez-Espigares, J. Selent, and J. Carlsson, “Performance of virtual screening
against gpcr homology models: Impact of template selection and treatment of binding site
plasticity,” PLoS computational biology, vol. 16, no. 3, p. 1007680, 2020.

S. M. Corsello, J. A. Bittker, Z. Liu, J. Gould, P. McCarren, J. E. Hirschman, S. E. Johnston,
A. Vrcic, B. Wong, M. Khan, et al., “The drug repurposing hub: a next-generation drug library
and information resource,” Nature medicine, vol. 23, no. 4, pp. 405—408, 2017.

E. Barberis, V. V. Vanella, M. Falasca, V. Caneapero, G. Cappellano, D. Raineri, M. Ghirimoldi,
V. D. Giorgis, C. Puricelli, R. Vaschetto, P. P. Sainaghi, S. Bruno, A. Sica, U. Dianzani, R. Rolla,
A. Chiocchetti, V. Cantaluppi, G. Baldanzi, E. Marengo, and M. Manfredi, “Circulating
exosomes are strongly involved in sars-cov-2 infection,” Front Mol Biosci 8:632290, 2021.

C. Finan, A. Gaulton, F. A. Kruger, R. T. Lumbers, T. Shah, J. Engmann, L. Galver, R. Kelley,
A. Karlsson, R. Santos, et al., “The druggable genome and support for target identification and
validation in drug development,” Science translational medicine, vol. 9, no. 383, 2017.

T. K. Sheils, S. L. Mathias, K. J. Kelleher, V. B. Siramshetty, D.-T. Nguyen, C. G. Bologa,
L. J. Jensen, D. Vidovi¢, A. Koleti, S. C. Schiirer, A. Waller, J. J. Yang, J. Holmes, G. Bocci,
N. Southall, P. Dharkar, E. Mathé, A. Simeonov, and T. I. Oprea, “Utcrd and pharos 2021:
mining the human proteome for disease biology,” Nucleic Acids Research, vol. 49, pp. D1334—
D1346, 1 2021.

C. Finan, A. Gaulton, F. A. Kruger, R. T. Lumbers, T. Shah, J. Engmann, L. Galver, R. Kelley,
A. Karlsson, R. Santos, J. P. Overington, A. D. Hingorani, and J. P. Casas, “The druggable
genome and support for target identification and validation in drug development,” Science
Translational Medicine, vol. 9, p. eaagl166, 3 2017.

17



[31]

[32]

[33]

[34]

[35]

[36]

X. Jiao, B. T. Sherman, D. W. Huang, M. W. B. Robert Stephens, H. C. Lane, and
R. A. Lempicki, “David-ws: a stateful web service to facilitate gene/protein list analysis,”
Bioinformatics, vol. 28, p. 1805-1806, 7 2012.

D. O. Bates, J. C. Morris, S. Oltean, and L. F. Donaldson, “Pharmacology of modulators of
alternative splicing,” Pharmacological reviews, vol. 69, no. 1, pp. 63-79, 2017.

K.-q. Le, B. S. Prabhakar, W.-j. Hong, and L.-c. Li, “Alternative splicing as a biomarker and
potential target for drug discovery,” Acta Pharmacologica Sinica, vol. 36, no. 10, pp. 1212-1218,
2015.

J. E. Love, E. J. Hayden, and T. T. Rohn, “Alternative splicing in alzheimer’s disease,” Journal
of Parkinson’s disease and Alzheimer’s disease, vol. 2, no. 2, 2015.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne, “The Protein Data Bank,” Nucleic Acids Research, vol. 28, pp. 235-242, 01
2000.

D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O’Meara,
V. V. Rezelj, J. Z. Guo, D. L. Swaney, et al., “A sars-cov-2 protein interaction map reveals
targets for drug repurposing,” Nature, vol. 583, no. 7816, pp. 459-468, 2020.

18



Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

» portallearningsupplemental.pdf


https://assets.researchsquare.com/files/rs-1109318/v1/92f63dac604ba2136e10cff2.pdf

	Introduction
	Conceptual basis of Portal Learning
	Results and Discussion
	Overview of PortalCG
	There are significantly unexplored dark spaces in chemical genomics
	Portal Learning significantly outperforms state-of-the-art approaches to predicting dark CPIs
	Both the STL and OOC-ML stages contribute to the improved performance of PortalCG
	Application of PortalCG to explore dark chemical genomics space
	COVID-19 polypharmacology
	Illuminating the undruggable human genome


	Conclusion 
	Methods
	Full algorithm details 
	Data
	Experiment implementation
	Related works

	Author Contributions
	Data and software availability
	Acknowledgement
	Reference

