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Background: Type 2 diabetes mellitus (T2DM) and hepatocellular carcinoma (HCC) are both major 
health problems throughout the world. It has been reported that T2DM is an independent risk factor for 
HCC, although the pathophysiology is still unclear.
Methods: In order to identify differentially expressed genes (DEGs) in T2DM and HCC, gene expression 
datasets for T2DM (GSE15653), HCC (GSE60502) and metformin-treated cells (GSE69850) were obtained 
from the Gene Expression Omnibus database repository. Protein-protein interaction (PPI) networks for the 
DEGs were constructed and gene clusters selected for functional enrichment analysis. Ten genes with the 
highest degree of connectivity were selected as hub genes and prognostic analysis together with analysis of 
gene expression and protein distribution were performed for these genes. Lastly, we investigated associations 
between the hub genes and genes associated with metformin treatment in hepatocarcinoma cells. 
Results: In total, 256 common DEGs, including 155 up-regulated genes and 101 down-regulated genes, 
were identified. Enrichment analyses showed that the genes of the major module were largely associated 
with the cell cycle. All of the 10 hub genes (CCNA2, CCNB1, MAD2L1, BU1B, RACGAP1, CHEK1, BUB1, 
ASPM, NCAPG and TTK) have a strong association with lower overall survival in liver cancer patients and 
four genes (CCNA2, CCNB1, CHEK1 and BUB1) have reduced expression in metformin-treated samples. 
Conclusions: This study identified a number of genes that may play important roles in the association of 
T2DM and HCC, including four genes which may be the target of metformin treatment for diabetes and 
HCC. The specific mechanisms involved remain to be identified. 
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Introduction

Globally, liver cancers rank seventh for cancer incidence 
while their mortality ranks fourth among all types of  
cancer (1). Hepatocellular carcinoma (HCC) is a malignant 
tumor originating from hepatocytes and it is the most 
common cancer in the liver. Chronic viral hepatitis 
and alcoholism are the two main causes of HCC. Non-
alcoholic fatty liver disease (NAFLD) is also recognized 
as an important risk factor for HCC due to the increasing 
prevalence of obesity and Type 2 diabetes mellitus  
(T2DM) (2). T2DM is a disease of the endocrine system 
and is common, with one T2DM patient per every 11 
adults (3). Recently, there have been a number of reports 
researches showing that T2DM has a negative influence on 
the survival of HCC patients (4,5). 

Metformin is frequently used to treat hyperglycemia 
associated with T2DM and has also been reported to have 
anti-hepatocellular carcinoma effects (6). However, most 
of these studies have focused on epidemiology with only a 
few concentrating on possible genetic connections between 
HCC and T2DM.

We, therefore, undertook this study to explore the 
specific mechanism of the association between T2DM and 
HCC. We analyzed the gene expression profiles of T2DM 
and HCC tissue to identify differentially expressed genes 
(DEGs) in both diseases, followed by the construction 
of protein-protein interaction (PPI) networks for genes 
observed to be up-regulated or down-regulated in both 
T2DM and HCC. After construction of the PPI network, 
a gene cluster would be selected for functional enrichment 
analyses. Ten genes with the highest degree of connectivity 
were selected as hub genes. Prognostic analysis, gene 
expression analysis and protein distribution analysis 
were performed on the hub genes. We also investigated 
associations between the hub genes and genes implicated 
in metformin treatment for HCC. Lastly, we discuss our 
results in relation to published findings in an attempt to 
elucidate the relationship between T2DM and HCC. 

Methods

Microarray data

In order to avoid errors caused by platform differences, 
the datasets containing T2DM samples and HCC samples 
should use the same platform. Two gene expression datasets 
GSE15653 (GPL96; T2DM) and GSE60502 (GPL96; 

HCC) were chosen from the Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database 
repository. In addition, the dataset GSE69850 (GPL13667), 
a HepG2 hepatocarcinoma cell dataset which contains 
metformin-treated samples, was also downloaded from the 
GEO (Table 1).

Identification of DEGs

We used GRO2R (https://www.ncbi.nlm.nih.gov/geo/
geo2r/), a web tool that allows users to identify DEGs 
between two or more groups of samples in a GEO series, 
analyze gene expression in GSE15653 and GSE60502. 
|logFC| ≥1.0 and P<0.05 were the criteria used for gene 
selection as DEGs and statistical significance, respectively. 
Genes showing up-regulation or down-regulation in both 
T2DM and HCC were investigated by Venn diagram, using 
the Venn diagram web tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/).

PPI network construction

We used STRING (https://string-db.org), a database 
of known and predicted protein-protein interactions, 
to construct the PPI network for genes that were up-
regulated or down-regulated in both T2DM and HCC. 
Interactions with a score >0.7 were considered statistically 
significant. We visualized the PPI networks by Cytoscape, 
an open-source software platform for visualizing molecular 
interaction networks and biological pathways. Ten genes 
with the highest degree of connectivity were selected as hub 
genes. The MCODE plugin in Cytoscape was used to find 
clusters with the degree cut-off, haircut on, k-core, node 
score cut-off, max depth set as 10, 0.2, 2, 0.2 and 100 in PPI 
network. Modules with the highest scores were selected for 
functional enrichment analyses.

Functional enrichment analyses for module genes

The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
is a database resource for understanding high-level functions 
of biological systems from molecular-level information. 
The Gene Ontology (GO) resource can be used to perform 
enrichment analysis. We used DAVID (https://david.
ncifcrf.gov/) for both KEGG pathway and GO enrichment 
analysis, including Biological Process, Cellular Component 
and Molecular Function for the selected module genes.

https://www.ncbi.nlm.nih.gov/geo/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org
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Analysis of hub genes

To identify the prognostic values of the hub genes, we used 
Kaplan-Meier Plotter database (https://kmplot.com) to 
construct Kaplan-Meier survival plots for 10 hub genes. 
GEPIA (http://gepia.cancer-pku.cn), a web server for 
cancer and normal gene expression profiling and interactive 
analysis, was used to analyze the expression of hub genes 
in HCC and normal tissue and to verify the prognostic 
values of hub genes in the Cancer Genome Atlas (TCGA) 
database. Lastly, the Human Protein Atlas (https://
www.proteinatlas.org) was used to analyze the protein 
distribution of hub genes in HCC and normal liver tissue.

Analysis of genes associated with metformin treatment

Unpaired t-tests were used in GraphPad Prism to analyze 
the expression of 10 hub genes in GSE69850, which 
contains nine samples of HepG2 hepatocarcinoma cells 
treated with metformin and 39 control samples treated 
with dimethyl sulfoxide (DMSO), in order to determine 
associations between the hub genes and metformin 
treatment for HCC. Results with P<0.05 were considered 
statistically significant (Figure 1).

Results

Identification of DEGs in HCC and T2DM

In total, 2,462 DGEs were identified from four T2DM 
samples and five control samples in dataset GSE15653 and 
1,760 DGEs were identified from 18 HCC samples and 18 
adjacent non-tumorous liver samples in dataset GSE60502. 
Then, 256 genes were found to overlap between the T2DM 
and HCC DGEs, including 155 up-regulated genes and 101 
down-regulated genes (Figure 2).

PPI network construction

PPI network maps yielded 223 nodes and 531 edges, 
indicating the interactions between the 256 overlapping 
genes. The ten hub genes with the highest degree of 
connectivity were CCNA2, CCNB1, MAD2L1, BUB1B, 
RACGAP1 ,  CHEK1 ,  BUB1 ,  ASPM ,  NCAPG ,  TTK  
(Figure 3A, Table 2). We use the MCODE plugin in 
Cytoscape to analyze the PPI networks and choose the 
module which has a highest score to create a cluster 
network including 31 nodes and 433 edges (Figure 3B). 

Functional enrichment analyses for module genes

We used DAVID to make functional enrichment analyses 
for the 31 module genes selected by MCODE. The major 
biological processes identified for these genes are “mitotic 
sister chromatid segregation” and “mitotic cell cycle 
phase transition” (Figure 4A). Cellular component analysis 
indicated that these genes are mainly enriched in “spindle” 
and “nuclear chromosome part” (Figure 4B). In terms of 
molecular function, these genes are mainly associated with 
“microtubule-binding” and “tubulin-binding” (Figure 4C). 
Lastly, through KEGG pathway analysis, we observed that 
these genes are mostly enriched in “cell cycle” (Figure 4D) 
(Tables 3-6).

Hub genes analysis

The results of the prognostic analysis showed that all of 
the 10 hub genes (CCNA2, CCNB1, MAD2L1, BU1B, 
RACGAP1, CHEK1, BUB1, ASPM, NCAPG and TTK) 
have strong associations with a lower overall survival rate in 
liver cancer patients (P<0.05) (Figure 5). Likewise, GEPIA 
analysis showed that the 10 hub genes are all overexpressed 

Table 1 Description of data used in this study

Accession Platform Normal/control Cancer/treat Type

GSE15653 GPL96 5 normal 4 diabetes Liver tissues

GSE60502 GPL96 18 normal 18 cancer HCC tissues

GSE69850 GPL13667 39 control 9 Metformin treated HepG2 cells

HCC, hepatocellular carcinoma.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
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Figure 1 Graphical abstract.

Figure 2 Differentially expressed genes among diabetes DEGs and HCC DEGs. DEGs1 represents the genes that up-regulated in both 
diabetes and HCC. DEGs2 represents the genes that down-regulated in both diabetes and HCC. DEGs, differentially expressed genes; 
HCC, hepatocellular carcinoma.
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in HCC (Figure 6). Lastly, using The Human Protein Atlas, 
we investigated the protein distribution data of six genes: 
CCNA2, CCNB1, MAD2L1, RACGAP1, NCAPG, TTK. All 
were found to be overexpressed in HCC (Figure 7).

Association between hub genes and metformin treatment

The GSE69850 dataset contains nine HepG2 samples 
treated by metformin and 39 controlled samples treated by 
DMSO. After analyzing the expression of the 10 hub genes 
in metformin-treated and control samples, we found that 
four genes, CCNA2, CCNB1, CHEK1 and BUB1, have a 

significantly lower expression in metformin-treated samples 
(P<0.05) (Figure 8), suggesting that these genes may be 
involved in the mechanism of metformin treatment for 
T2DM and HCC.

Discussion

Both T2DM and HCC are globally epidemic diseases that 
place a huge burden on the patients and health services 
throughout the world. Many reports have indicated that 
T2DM is an independent risk factor for HCC. In this 
study, we have identified 256 genes that overlapped between 
T2DM DGEs and HCC DGEs, including 155 up-regulated 
genes and 101 down-regulated genes. Enrichment analyses 
show that the genes of the major module are largely 
associated with the cell cycle. Considering the ten identified 
hub genes, Cyclin A2, encoded by the cyclin A2 (CCNA2) 
gene, is a regulator of cell division and which activates Cdk1 
and Cdk2, playing an important role in G1/S transition (7).  
Several studies have found that high levels of Cyclin A2 
may be associated with carcinogenesis (8,9). It has also been 
reported that CCNA2 affects β-Cell proliferation (10) in 
the pancreas. Cyclin B1 (CCNB1) is a mitotic regulatory 
protein which complexes with CDK1 (CDC2) to form the 
maturation phase-promoting factor (MPF) and induces 
the G2/M phase transition in G2 phase cells (11). A meta-
analysis has suggested that elevated expression of cyclin 
B1 may be associated with poor outcomes in lung cancer 
and esophageal carcinoma (12). It has also been found that 

Table 2 Top 10 hub genes

Rank Name

1 CCNA2

2 CCNB1

3 MAD2L1

3 BUB1B

3 RACGAP1

6 CHEK1

7 BUB1

7 ASPM

9 NCAPG

9 TTK

Figure 3 PPI network construction and module analysis on the DEGs1 and DEGs2. (A) PPI network on the DEGs1 and DEGs2, the 
red, orange and yellow nodes represent hub genes; (B) the chosen module which has a highest score using MCODE. DEGs, differentially 
expressed genes; PPI, protein-protein interaction.

BA
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Table 3 KEGG pathway analysis

Term P value Genes

Cell cycle 2.30E-15 CCNA2; CCNB1; CCNE2; CHEK1; BUB1B; MCM4; TTK; CDC25C; BUB1; 
MAD2L1

DNA replication 2.69E-07 FEN1; PRIM1; POLE2; MCM4

Progesterone-mediated oocyte maturation 4.12E-07 CCNA2; CCNB1; CDC25C; BUB1; MAD2L1

Oocyte meiosis 1.31E-06 CCNB1; CCNE2; CDC25C; BUB1; MAD2L1

p53 signaling pathway 4.51E-06 CCNB1; CCNE2; CHEK1; GTSE1

Human T-cell leukemia virus 1 infection 2.03E-05 CCNA2; CCNE2; CHEK1; BUB1B; MAD2L1

Cellular senescence 1.05E-04 CCNA2; CCNB1; CCNE2; CHEK1

Base excision repair 0.0011914 FEN1; POLE2

Hepatitis B 0.0020202 CCNA2; CCNE2; BIRC5

Viral carcinogenesis 0.0036535 CCNA2; CCNE2; CHEK1

Table 4 GO biological process analysis

Term P value Genes

Mitotic sister chromatid segregation (GO:0000070) 3.97E-11 CCNB1; KIF18B; KIF14; NUSAP1; NCAPG; NCAPH; DLGAP5

Mitotic cell cycle phase transition (GO:0044772) 1.29E-09 PLK4; CCNA2; CCNB1; CCNE2; PRIM1; POLE2; MCM4; 
CDC25C

Spindle assembly checkpoint (GO:0071173) 1.11E-08 CENPF; BUB1B; TTK; BUB1

Mitotic spindle assembly checkpoint (GO:0007094) 1.11E-08 CENPF; BUB1B; TTK; BUB1

Mitotic spindle checkpoint (GO:0071174) 1.11E-08 CENPF; BUB1B; TTK; BUB1

regulation of mitotic cell cycle phase transition (GO:1901990) 1.13E-08 PLK4; CCNB1; CENPF; KIF14; BUB1B; HMMR; MAD2L1

Positive regulation of cell cycle process (GO:0090068) 1.42E-08 FEN1; CCNB1; RACGAP1; KIF14; NUSAP1; MAD2L1

DNA metabolic process (GO:0006259) 1.99E-08 WDHD1; FEN1; PRIM1; POLE2; CHEK1; MCM4; KPNA2; 
CDC25C

DNA replication (GO:0006260) 2.82E-08 WDHD1; FEN1; POLE2; CHEK1; MCM4; CDC25C

Regulation of G2/M transition of mitotic cell cycle 
(GO:0010389)

1.02E-07 PLK4; CCNB1; CENPF; KIF14; HMMR; DTL

increased cyclin B1 may promote the proliferation of HCC 
cells (13) and that it may be a biomarker and therapeutic 
target for recurrent HBV-related HCC (14). Mitotic 
arrest deficient 2 protein (MAD2L1) is an essential part of 
the mitotic spindle assembly checkpoint that ensures the 
proper alignment of chromosomes, strongly suggesting that 
MAD2L1 has a function in tumor suppression (15). Many 
studies have shown that the overexpression of MAD2L1 
promotes the proliferation and metastasis of HCC (16). In 
addition, interactions between MAD2L1 and the insulin 
receptor have been reported, suggesting that MAD2L1 

may influence the progression of diabetes (17,18). Genes 
budding uninhibited by benzimidazoles homolog 1 (BUB1) 
and budding uninhibited by benzimidazoles 1 homolog beta 
(BUB1B) encode serine/threonine protein kinases that play 
important roles in mitosis and are also essential components 
of the spindle checkpoint (19), with most studies suggesting 
both BUB1 and BUB1B may contribute to the proliferation 
and metastasis of some types of cancer including HCC  
(20-22). Gene Rac GTPase activating protein 1 (RACGAP1) 
encodes a GTPase-activating protein (GAP) which is an 
essential component of the central spindle complex and 
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Table 5 GO cellular component analysis

Term P value Genes

Spindle (GO:0005819) 3.30E-10 CCNB1; CENPF; RACGAP1; KIF14; NUSAP1; BUB1B; TTK; 
MAD2L1

Nuclear chromosome part (GO:0044454) 5.48E-09 WDHD1; FEN1; CCNB1; PRIM1; POLE2; BUB1B; MCM4; 
BUB1; NCAPH

Chromosomal region (GO:0098687) 1.16E-07 CENPF; DSCC1; CHEK1; BIRC5; OIP5

Spindle midzone (GO:0051233) 1.44E-07 KIF18B; RACGAP1; KIF14; BUB1B

Mitotic spindle (GO:0072686) 1.92E-07 ASPM; KIF18B; RACGAP1; NUSAP1; MAD2L1

Condensed nuclear chromosome kinetochore (GO:0000778) 5.52E-07 CCNB1; BUB1B; BUB1

Chromosome, centromeric region (GO:0000775) 1.03E-06 CENPF; DSCC1; BIRC5; OIP5

Condensed chromosome kinetochore (GO:0000777) 3.21E-06 BUB1B; BIRC5; BUB1

Condensed chromosome, centromeric region (GO:0000779) 9.62E-06 BUB1B; BIRC5; BUB1

Spindle pole (GO:0000922) 2.26E-05 ASPM; CCNB1; CENPF; DLGAP5

Table 6 GO molecular function analysis

Term P value Genes

Microtubule binding (GO:0008017) 1.19E-05 KIF18B; RACGAP1; KIF14; NUSAP1; BIRC5

Tubulin binding (GO:0015631) 4.28E-05 KIF18B; RACGAP1; KIF14; NUSAP1; BIRC5

Kinase binding (GO:0019900) 4.27E-04 CCNA2; CCNB1; RACGAP1; KIF14; CDC25C

Protein kinase binding (GO:0019901) 9.17E-04 CCNA2; CCNB1; RACGAP1; KIF14; CDC25C

Protein kinase activity (GO:0004672) 0.0010748 PLK4; CCNA2; CHEK1; BUB1B; BUB1

ATP-dependent microtubule motor activity,  
plus-end-directed (GO:0008574)

0.0011202 KIF18B; KIF14

cyclin-dependent protein kinase activity (GO:0097472) 0.0013400 CCNA2; CCNB1

ATP-dependent microtubule motor activity (GO:1990939) 0.0026130 KIF18B; KIF14

Microtubule motor activity (GO:0003777) 0.0040194 KIF18B; KIF14

DNA-dependent ATPase activity (GO:0008094) 0.0057059 DSCC1; MCM4

plays an important role in cytokinesis its GAP activity (23). 
RACGAP1 can maintain cell survival (24) and has been 
reported to be associated with several cancers including 
HCC, particularly with the migration and invasion process 
(25-28). Gene non-SMC condensin I complex subunit G 
(NCAPG) encodes a subunit of the condensin complex, 
which plays a central role in mitotic chromosome assembly 
and segregation (29). Recently, some studies have suggested 
that NCAPG is overexpressed in HCC and suppression 
of NCAPG inhibits proliferation and induces apoptosis 
in HCC cells (30-32), while normal hepatocytes show 

low expression of NCAPG (31). CHEK1 encodes a serine/
threonine kinase, which is required for checkpoint-mediated 
cell cycle arrest in response to DNA damage or the presence 
of unreplicated DNA. It is reported that CHEK1 plays an 
essential role in cell cycle progression and survival whether 
in the presence or absence of DNA damage (33). CHEK1 
is reported to be significantly overexpressed in HCC (34), 
which may be the result of reduced miR-497 in HCC (35). 
Interestingly, another study has suggested that CHEK1 may 
induce the overexpression of CCNB1 to promote tumor 
growth in human colorectal cancer (36), while a CHEK1 
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Figure 6 mRNA expression of hub genes. mRNA expression of hub genes in HCC tissue (red; n=369) and normal tissues (black; n=50). (A) 
CCNA2; (B) CCNB1; (C) MAD2L1; (D) BUB1B; (E) RACGAP1; (F) CHEK1; (G) BUB1; (H) ASPM; (I) NCAPG; (J) TTK; * represents P 
value <0.05.
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Figure 7 Protein expression of CCNA2, CCNB1, MAD2L1, RACGAP1, NCAPG, TTK. The tissue microarray using paired tumor tissue 
and adjacent normal tissue from the margin of the tumor. Immunohistochemistry of tissue microarray was performed by using the antibody 
(CAB000114, CAB003804, HPA003348, HPA043912, HPA039613, CAB013229, Abcam). (A) Protein expression of CCNA2 in normal tissue 
(not detected); (B) protein expression of CCNA2 in tumor tissue (staining: medium; intensity: strong; quantity: <25%); (C) protein expression 
of CCNB1 in normal tissue (not detected); (D) protein expression of CCNB1 in tumor tissue (staining: medium; intensity: strong; quantity: 
<25%); (E) protein expression of MAD2L1 in normal tissue (not detected); (F) protein expression of MAD2L1 in tumor tissue (staining: 
low; intensity: weak; quantity: 75–25%); (G) protein expression of RACGAP1 in normal tissue (not detected); (H) protein expression of 
RACGAP1 in tumor tissue (staining: medium; intensity: moderate; quantity: 75–25%); (I) protein expression of NCAPG in normal tissue (not 
detected); (J) protein expression of NCAPG in tumor tissue (staining: medium; intensity: moderate; quantity: >75%); (K) protein expression 
of TTK in normal tissue(not detected); (L) protein expression of TTK in tumor tissue (staining: low; intensity: moderate; quantity: <25%).
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inhibitor has been observed to have a significant effect 
in treating tumors (37). Abnormal spindle microtubule 
assembly (ASPM), a key gene for microcephaly (38),  
plays an essential role in regulating spindle poles (39). 
Several studies have suggested that ASPM is closely related 
to HCC and can be used as a marker for HCC metastasis 
and early recurrence (40,41). Gene TTK encodes a dual-
specificity protein kinase with the ability to phosphorylate 

tyrosine, serine and threonine. It is an essential component 
of the spindle assembly checkpoint and is commonly 
overexpressed in many human tumors (42). TTK has been 
shown to have significant effects on HCC proliferation and 
sorafenib resistance, and it can serve as a biomarker and 
potential target for HCC treatment (43,44). We found that 
all ten hub genes are overexpressed in cancers, including 
HCC, and most of them play an important role in cell 
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Figure 8 Changes of gene expression of HepG2 cell lines after Metformin treatment. (A-J) Represent the gene expression in 9 Metformin-
treated HepG2 cell lines (black) and 39 controlled HepG2 cell lines (grey). (A) CCNA2; (B) CCNB1; (C) MAD2L1; (D) BUB1B; (E) 
RACGAP1; (F) CHEK1; (G) BUB1; (H) ASPM; (I) NCAPG; (J) TTK. * represents P value <0.05; ** represents P value <0.01.
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division. However, there are few reports of an association 
between these genes and T2DM.

Metformin is a commonly used hyperglycemic drug. It 
has been reported to have inhibiting effect on many types 

of tumors including colorectal cancer, prostate cancer (45), 
lung cancer (46), pancreatic cancer (47) and HCC (6). It 
appears that its anti-tumorigenic effect may be related to 
the activation of AMP-activated protein kinase (AMPK) (48).  
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In this study, we found that four of the hub genes, CCNA2, 
CCNB1 ,  CHEK1  and BUB1 ,  may participate in the 
metformin treatment mechanism for T2DM and HCC and 
that these genes are all enriched in cell cycle control.

It is possible that T2DM could promote the genesis of 
HCC via insulin resistance (49), over-activation of mTOR 
and chronic inflammation caused by adipokines (50).  
Besides, T2DM can also lead to NAFLD and non-
alcoholic steatohepatitis (NASH), which are the main 
causes of HCC (51). Very few studies discuss the specific 
mechanism of the correlation between T2DM and HCC. 
Li et al. has suggested that high glucose promotes HCC 
cell proliferation and migration through the MEG3-MiR-
483-3p-ERp29 pathway (52). The current study is the first 
exploration of the role of these 10 genes implicated in the 
combination of HCC and T2DM together with genes 
associated with metformin treatment for T2DM and HCC 
using a bioinformatics analysis.

This study has several limitations. Firstly, the sample 
sizes of the datasets we used are small and, secondly, our 
findings still need to be verified in clinical practice.

In conclusion, we have identified 256 DEGs and selected 
10 genes (CCNA2, CCNB1, MAD2L1, BUB1B, RACGAP1, 
CHEK1, BUB1, ASPM, NCAPG and TTK) which may 
function biomarkers in both HCC and T2DM. We found 
four genes (CCNA2, CCNB1, CHEK1 and BUB) which may 
be the target of metformin treatment for T2DM and HCC. 
The specific mechanisms of action of these genes, however, 
require further investigation. 
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