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Brain-computer interfaces (BCIs) are communication bridges between a human brain
and external world, enabling humans to interact with their environment without muscle
intervention. Their functionality, therefore, depends on both the BCI system and the
cognitive capacities of the user. Motor-imagery BCIs (MI-BCI) rely on the users’ mental
imagination of body movements. However, not all users have the ability to sufficiently
modulate their brain activity for control of a MI-BCI; a problem known as BCI illiteracy
or inefficiency. The underlying mechanism of this phenomenon and the cause of such
difference among users is yet not fully understood. In this study, we investigated
the impact of several cognitive and psychological measures on MI-BCI performance.
Fifty-five novice BCI-users participated in a left- versus right-hand motor imagery
task. In addition to their BCI classification error rate and demographics, psychological
measures including personality factors, affinity for technology, and motivation during the
experiment, as well as cognitive measures including visuospatial memory and spatial
ability and Vividness of Visual Imagery were collected. Factors that were found to have
a significant impact on MI-BCI performance were Vividness of Visual Imagery, and the
personality factors of orderliness and autonomy. These findings shed light on individual
traits that lead to difficulty in BCI operation and hence can help with early prediction of
inefficiency among users to optimize training for them.

Keywords: brain-computer interface, motor imagery, BCI illiteracy, BCI performance, cognitive abilities,
personality traits, vividness of visual imagery questionnaire, visuospatial memory and spatial ability

INTRODUCTION

Brain-computer interfaces (BCI) take brain activity as input and output an action that is carried out
by an external device. This makes it possible for humans to interact with the environment without
using their muscular system (Wolpaw et al., 2002). The electrophysiological signals of the brain are
most commonly measured with electroencephalography (EEG). EEG is low-cost, non-invasive and
user-friendly compared to other imaging techniques (Lee et al., 2019). BCI systems that rely on the
execution of motor imagery (MI-BCI) demand users to imagine moving of a body part in order
to cause a change in the brain activity of the motor cortex (Pfurtscheller and Neuper, 2001). The
BCI system then learns to classify these changes and carry out a command accordingly (Thompson,
2019). This system can be assistive for motor-impaired patients (Mane et al., 2020) and elderly, but
also has applications for healthy users (Belkacem et al., 2020).
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Typically in MI-BCIs, the brain activity associated with
motor imagery is recognized as event-related desynchronization
(ERD) in the sensorimotor rhythms (SMR) that are characterized
by the mu and beta frequency band over the sensorimotor
cortex. This desynchronization is followed by an event-related
synchronization (ERS) when motor imagery is over (Pfurtscheller
and Da Silva, 1999). However, not everyone is capable of
voluntary modulation of their brain activity in the way that is
recognizable by the system (Allison and Neuper, 2010). Studies
have indicated that fifteen to thirty percent of users are incapable
of generating the proper brain activity even after training and
thereby are unable to use a MI-BCI system. This lack of control
is called “BCI illiteracy” (Allison and Neuper, 2010) or “BCI
inefficiency” (Thompson, 2019).

The BCI inefficiency phenomenon is one of the biggest
challenges in MI-BCI research, attracting interest in multiple
previous studies. For instance, Lee et al. (2019) found that
of all first-time users, 55.6% did not meet the proficiency
threshold of 70% during the first session. Similarly, in the
study of Meng and He (2019), 18 out of 42 subjects could
not reach 70% performance across three training sessions. In
another study, Jeunet et al. (2016a) identified 16.7% of MI-
BCI novice users as inefficient because they did not reach the
proficiency threshold on performance. While studies have shown
that only one hour of BCI training could already induce structural
changes in neural plasticity (Nierhaus et al., 2019), and that
especially inefficient users could benefit from more training
(Meng and He, 2019), the fact remains that some users do
not exceed 70% accuracy (Meng and He, 2019). Despite the
reported magnitudes in these studies, the factors and neural
mechanisms that underlie the inefficiency phenomenon still
remain poorly understood, leading to criticism of the concept
of “BCI illiteracy,” which suggests that the inability to control
the BCI lies with the person (Thompson, 2019). It is crucial to
investigate the factors that impact MI-BCI performance among
different individuals in order to identify BCI inefficients early
on in research because as long as human users cannot modulate
their brain activity, even the most advanced classification
algorithms will be unable to operate the system sufficiently
(Alimardani et al., 2014, 2016).

Several studies have reported psychological, cognitive, and
personal factors that influence MI-BCI performance in novice
users (e.g., Hammer et al., 2012, 2014; Jeunet et al., 2015, 2016a,b).
It has been established that subject-specific differences impact the
capability of BCI control (Hammer et al., 2012). Fundamental
user characteristics were reported by Randolph (2012), who
showed that females are likely to be better performers than males.
Additionally, the effect of gender is shown to be modulated by
that of the experimenter (Wood and Kober, 2018; Roc et al., 2019;
Pillette et al., 2021). Other fundamental characteristics include
age, which was reported to influence performance (Randolph
et al., 2010) and the dominant hand of the user (Zapała et al.,
2020). Moreover, playing a musical instrument and video game
experience also increased the likelihood of high BCI performance
(Randolph, 2012; Vourvopoulos et al., 2015). Users who were
more comfortable with technology tended to perform better
in the study of Burde and Blankertz (2006). Experience with

mindfulness training also improves BCI performance as it
strengthens similar brain activity patterns (Stieger et al., 2021).

In addition, temporal task-related factors as experienced by
the subject during the MI task have been shown effective in
their performance. For instance, mood was found to influence
MI-BCI performance in Nijboer et al. (2008, 2010). Also,
motivation of the user during the experiment has been shown
to have a significant effect on user performance and behavior
during BCI tasks (Nijboer et al., 2008; Bonnet et al., 2013;
Alimardani et al., 2014; Sannelli et al., 2019; Škola et al., 2019).
Nijboer et al. (2008) found that mastery confidence increased
BCI performance, but fear of incompetence was related to
decreased performance. While Hammer et al. (2012) could not
replicate the same effect, other studies have shown that indirect
ways of enhancing motivation such as multi-user BCI games
(Bonnet et al., 2013), biased feedback (Alimardani et al., 2014),
embodiment of robotic or virtual bodies (Alimardani et al., 2018;
Škola et al., 2019; Choi et al., 2020) and immersive technologies
(Coogan and He, 2018) can improve users’ performance. Task
motivation and engagement could also improve performance by
inducing internal competition (Perdikis et al., 2018) or through
a continuous pursuit task (Edelman et al., 2019). In a similar
way, tiredness and uneasiness were significant performance
predictors in the study of Sannelli et al. (2019). These reports
are in line with the results of Emami and Chau (2020), showing
that BCI performance decreased when mental workload was
rising. Another remarkable predictor of BCI performance is
the user’s projection of self-performance. In a study where
subjects did not receive any feedback, Ahn et al. (2018) showed
that users self-prediction of their performance during the
task correlated significantly with the observed accuracy after
completing more than one run.

The strength of a user’s motor imagery is the core of MI-
BCI and is categorized either as kinesthetic or visual imagery
of movement. For kinesthetic motor imagery, the subject has
to imagine the sensation of executing the movement, whereas
for visual imagery, the subject has to visualize the movement
execution (Malouin et al., 2007). The success of the MI-BCI
system depends on how strongly or vividly the user is able to
imagine the movement task to generate the distinctive ERD
patterns. There are contradictory reports regarding the impact of
kinesthetic versus visual motor imagery on MI-BCI performance;
Vuckovic and Osuagwu (2013) found a correlation between MI-
BCI performance and both types of imagination as measured by
subjective questionnaires, while Marchesotti et al. (2016) showed
that only a high score on the kinesthetic scale of the Revised
Motor Imagery Questionnaire (MIQ-RS; Gregg et al., 2010) was
indicative of high performing MI-BCI users, and the visual scale
did not distinguish between high or low aptitude users. On the
other hand, Rimbert et al. (2019) found no correlation between
MIQ-RS and MI-BCI performance. Hammer et al. (2012) tested
the Vividness of Movement Imagery Questionnaire (VMIQ; Isaac
et al., 1986) but found no effect on MI-BCI performance.

Related to imagery, several studies reported the effect of
spatial ability, which is measured by the Mental Rotation Test
and is defined by the ability to rotate an object mentally
(MRT; Vandenberg and Kuse, 1978). The relationship between
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spatial ability and MRT was shown most prevalently by Jeunet
et al. (2015) who assessed performance on a three-class Mental
Imagery BCI system. A follow-up study by Jeunet et al.
(2016a) replicated the effect of spatial ability and showed a
correlation between the MRT score and two-class MI-BCI
performance of users. The correlation was only significant
for BCI peak performance, which is performance at the time
when classification accuracy over all trials is at its maximum.
However, the study did not find significant results for BCI mean
performance, which is calculated as an average of classification
accuracy over the total feedback period of all trials (Jeunet et al.,
2016a). Another study found that performance on a two-class
MI-BCI, which classified rest versus flexion of the arm, correlated
significantly with MRT (Pacheco et al., 2017). Furthermore, a
pilot-study by Teillet et al. (2016) confirmed that training of
spatial abilities could induce an improvement in accuracy on a
three-class Mental Imagery BCI.

Other cognitive metrics related to BCI performance include
spatial visualization ability (Pacheco et al., 2017), which was
measured by the Block Design Test (Wechsler, 1955) and
correlated with BCI performance. Memory consolidation of
verbal and spatial sequences, measured by the Corsi Block-
Tapping Test (Corsi, 1972), was also an important factor in linear
models predicting Mental Imagery BCI performance (Jeunet
et al., 2015) and Visuospatial memory, measured with the Design
Organization Test (Killgore et al., 2005), was found to be higher
in better MI-BCI performers (Leeuwis and Alimardani, 2020).

Additionally, personality factors were shown to impact BCI
performance by Jeunet et al. (2015); the personality factors
tension, abstractness, and self-reliance as measured by sixteen
personality factors (16PF; Cattell and Cattell, 1995) were
correlated with mental imagery BCI performance but only before
correcting for multiple comparisons. Hammer et al. (2012, 2014)
already studied effect of personality factors on BCI performance
using questionnaires assessing the Big Five personality traits,
which are the most commonly used factors to assess personality
(Goldberg, 1992) but did not find results. Other personality
dimensions that do not rely on the Big Five, such as the
temperament profile, have shown promising results; endurance
and perseverance were correlated with MI-BCI performance
(Zapała et al., 2019). Temperament characteristics are mostly
related to psychomotor efficiency; for instance, briskness and
endurance have been shown to correlate with better eye-hand
coordination (Biernacki and Tarnowski, 2008), which was a
predictor of MI-BCI control in Hammer et al. (2012), even
though, briskness was not found to correlate with MI-BCI
performance in the study of Zapała et al. (2019). Still, personality
traits are expected to impact motor imagery, since it is known
that certain traits affect imagery abilities, for example in dancers
(Budnik-Przybylska et al., 2019).

In sum, the evidence for factors impacting MI-BCI
performance is scattered and inconclusive. Additionally,
most previous reports suffer from limited subject number. In a
meta-analysis of MI-BCI studies, Wierzgała et al. (2018) reported
that more than 96% of studies used a subject pool smaller than
10 persons. The current study extends the literature by exploring
the relationship that exists between users’ cognitive abilities

and personality traits and their MI-BCI performance. More
importantly, this study differentiates itself from other reports
in the literature in that it has recruited a large sample size and
collected a large number of psychological and cognitive variables
from subjects. This has improved the statistical power and
reliability of the reported results.

MATERIALS AND METHODS

Participants
Fifty-seven novice subjects participated in this study (36 females,
21 males, MAge = 20.71, SDAge = 3.52). Subjects were all
right-handed with (corrected to) normal vision. The study was
approved by the Research Ethics Committee of Tilburg School of
Humanities and Digital Sciences (REDC #20201003). Prior to the
experiment, participants read an information letter and singed an
informed consent form.

Instruments
Personality traits and cognitive abilities were evaluated through
five questionnaires and two cognitive tests. Questionnaires
were administered using Qualtrics software (Qualtrics, Provo,
UT, United States) and cognitive tests were conducted via
psychometric toolboxes. In the following sections, each evaluated
factor is explained in detail.

Questionnaires
The Demographic questionnaire evaluated background
characteristics such as age, gender and education. Several
questions relevant to the present study were added, such as
experience and number of hours spent on video gaming, sports
participation, and music practice. In addition, participants were
asked about their prior experience with BCI.

The Affinity for Technology Interaction Scale (ATI; Franke
et al., 2019) assesses a person’s tendency to engage in technology
interaction actively. ATI included 10 questions and was answered
on a 6-point Likert scale ranging from “completely disagree” to
“completely agree.”

The Vividness of Visual Imagery Questionnaire (VVIQ;
Marks, 1973) measures vividness of visual imagery. It quantifies
the intensity to which people can visualize settings, persons, and
objects in mind. The VVIQ consists of 16 items clustered in four
groups in which the participant rates the vividness of the image
formed in the mind when thinking about specific scenes and
situations. The mental image was rated along a 5-point Likert
scale where 5 indicated “perfectly clear and as vivid as normal
vision,” and 1 indicated “no image at all.” The original VVIQ was
adapted to fit the present study better. Item scoring was reversed
to increase interpretability; a higher VVIQ score indicated a
higher vividness of the mental image. Moreover, in the original
questionnaire each item was imagined once with open and once
with closed eyes. Nevertheless, here items were addressed only
once with eyes open because visual imagery with closed eyes is
meaningless for BCI operation; the participant has to see the
motor imagery cue and the feedback to complete the task.
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The Five Factor Personality Inventory (FFPI; Hendriks
et al., 1999) assesses a person’s personality on five dimensions
of Extraversion, Autonomy, Orderliness, Emotional Stability,
and Mildness. The FFPI consists of 100 questions. Each
question was answered on a 5-point Likert scale, ranging from
“Strongly disagree” to “Strongly agree.” The key advantage of
the FFPI compared to Big Five Personality Inventory (Goldberg,
1992) used by Hammer et al. (2012), is the introduction
of anchored scores, where the midpoint is not presented
as a true zero, but as the average score in the population
(Hofstee and Hendriks, 1998).

The Questionnaire for Current Motivation (QCM;
Rheinberg et al., 2001) is designed to assess motivational
factors in learning and achievement conditions. Nijboer et al.
(2010) adapted the questionnaire to assess motivational factors
in learning and achievement conditions specified to brain
computer interface training. The version by Nijboer et al.
(2010) was used in the present study. The motivational factors
include Mastery Confidence, Incompetence Fear, Interest and
Challenge (Nijboer et al., 2010). The questionnaire consists of
18 statements, each statement contributing to one of the four
motivational factors. Items seven, nine, fourteen, seventeen
and eighteen were removed from the questionnaire, since these
items require familiarity with BCI interaction. This left the
questionnaire with 13 statements. The ratings were made on a
7-point Likert scale ranging from “strongly disagree” to “strongly
agree.” Item three was a negatively worded statement, hence
the rating was reversed. The score for each motivational factor
was computed by calculating the mean score of corresponding
items. Higher ratings indicate higher motivation levels. To
determine if it is justifiable to interpret the QCM test scores after
the removal of several items, Cronbach’s alpha (CA; Cronbach,
1951) was calculated and some items were removed from the
analysis to increase the CA. The factor Interest displayed a
CA of 0.49, factor Incompetence Fear displayed a CA of 0.79,
factor Mastery Confidence showed a CA of 0.65 after removing
one item (CA before removal was 0.45) and factor Challenge
revealed a CA of 0.75 after removing two items (CA before
removal was 0.62). A generally agreed rule is that a CA larger
than 0.70 indicates an acceptable level of reliability (Tavakol
and Dennick, 2011). Therefore, factor Challenge was kept and
factors Mastery Confidence and Interest therefore were excluded
from the analysis.

Cognitive Tests
The Mental Rotation Test (MRT; Shepard and Metzler, 1971)
quantifies the ability to mentally rotate or mirror 2D or 3D
representations of objects. An adjusted implementation of Quent
(2017) was used to administer the MRT in this study. The
stimuli were obtained from Peters and Battista (2008) and were
presented in MATLAB 2019a (The MathWorks, Inc.) using the
Psychtoolbox (Psychophysic Toolbox Version 3.0.16, Kleiner
et al., 2007). Eight reference stimuli were included in the test, each
with 5 regular rotations and 5 mirrored rotations. The objects
to compare with were rotated 80, 130, 190, 240, or 290 degrees
around the x-axis relative to the original object (see Figure 1).
The presented reference stimulus was already rotated 30 degrees

FIGURE 1 | Stimuli in the Mental Rotation Test. A reference stimulus is
presented in every trial next to a rotated object. The task of the participant
was to determine whether the presented objects were the same or mirrored
version of each other. Extracted and modulated from Peters and Battista
(2008).

around the x-axis relative to the original object in the stimulus
library of Peters and Battista (2008). This is because the original
object showed overlapping legs when displayed on a 2D screen,
which made the object unrecognizable.

The test was divided in two blocks of 40 trials, each block
containing 20 normal and 20 mirrored stimuli. Subjects were
instructed to press the right arrow key if two presented stimuli
were the same, and left arrow key if the presented objects were
mirrored versions of each other. There were ten practice trials
before the start of the test in which subjects received feedback
for their performance. However, the actual test trials did not
report feedback. Each trial started with a fixation cross that was
shown in the middle of the screen for 0.25 s. Subjects had 6 s to
respond and if they did not, the trial was registered as incorrect
and the test automatically continued to the next trial. The inter-
trial interval was 0.25 s. The subject’s MRT score was obtained
as the percentage of the correctly answered trials from the total
number of the trials in the test.

The Design Organization Test (DOT; Killgore et al., 2005)
is designed to evaluate visuospatial working memory. The task
requires the participant to reproduce black-and-white square
grids with a given pattern in them using a numerical code
key that translates small pieces of the pattern (see Figure 2).
Participants were instructed to reproduce as many patterns as
possible within the time limit of 60 s. The DOT consisted of
one practice round and two test rounds. Performance score was
evaluated by counting the total number of correct responses that
the participant produced in both test rounds.

BCI System and Motor Imagery Task
Electroencephalography signals were recorded from 16 electrodes
according to the 10-20 international system (F3, Fz, F4, FC1,
FC5, FC2, FC6, C3, Cz, C4, CP1, CP5, CP2, CP6, T7, and T8).
A reference electrode was set on the right earlobe and a ground
electrode on AFz. EEG signals were amplified by a g.Nautilus
amplifier (g.tec Medical Engineering, Austria). A 48-52 Hz Notch
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FIGURE 2 | An example of the Design Organization Test (DOT). The task is to
reproduce the pattern shown in the square grid using the numerical code
given at the top. The participant was instructed to fill out the empty squares at
the bottom with the number associated with each piece of the pattern.
Extracted and modulated from Killgore et al. (2005).

filter and 0.5-30 Hz bandpass filter were applied to reduce the
noise in the data. The sampling rate was 250 samples/s.

The BCI session consisted of four runs: it started with one
non-feedback calibration run followed by three feedback runs
in which participants received feedback based on the systems
certainty of the classification of their brain signals. Each run
consisted of twenty left- and twenty right-hand trials, resulting in
40 trials per run. Each trial took 8 s as can be seen in Figure 3. All
trials started with a fixation cross shown for 3 s. Thereafter a red
arrow appeared indicating the direction in which the participant
had to imagine movement. This arrow was presented for 1.25 s.
In the calibration run, the fixation cross was shown again for
the rest of the trial duration, which was 3.75 s (Figure 3A).
The participant was instructed to hold motor imagery of the
corresponding movement during this second fixation. A blank
screen indicated the end of the trial. The interval between
trials was randomized between 0.5 and 2.5 s. The EEG signals
collected in the calibration run were used to extract parameters
for a subject-specific classifier in the first feedback run. The
trials in the three feedback runs followed the same structure
as the calibration run except that after the presentation of the
arrow, a feedback bar was shown indicating the direction and
certainty of the classifier’s prediction (Figure 3B). The classifier
was recalibrated after every run while the subjects took a break.
This means that the classifier parameters were recomputed based
on the latest run to reflect the subjects’ motor imagery learning
throughout the session.

The online classification was conducted by g.BSanalyze, which
is a Simulink-based high-speed online processing package (g.tec
Medical Engineering, Austria). The classifier relied on Common
Spatial Patterns (CSP) algorithm to extract spatial features
of event-related (de-)synchronization patterns during motor
imagery and to provide a weight of importance to each electrode.
These weight vectors were normalized and then served as input
to Linear Discriminant Analysis (LDA), which discriminated
between left- and right movement imagination during the
feedback runs. CSP and LDA are very popular approaches in

feature extraction and binary classification of the MI task. LDA
has been used in over one third of recent MI-BCI research and
CSP is used in 45% of studies (Wierzgała et al., 2018). Trials
including artifacts were removed automatically.

Experimental Procedure
The procedure of the experiment is visualized in Figure 4. After
application for participation, subjects were informed about the
content and procedure of the study by e-mail and were asked
to complete four of the questionnaires online: the demographics,
VVIQ, ATI, and FFPI.

On the day of the experiment, the participant was seated in
front of a desktop in a quiet room. Information on the procedure
of the experiment was given to the participant before they signed
the informed consent form. First, the DOT was taken using paper
and pen and thereafter the MRT and QCM were administered on
the desktop before the participant.

Next, the experimenter placed the EEG cap and applied
conductive gel. The impedance of all electrodes was kept below
50 kOhm. The experimenter explained that the participant
had to avoid unnecessary movements during the experiment
and showed live brain activity on the screen to indicate how
signals would be contaminated by such events. The experimenter
explained the BCI task by elaborating that the subject had to
imagine squeezing the left or right hand without tension in the
muscles. Squeezing a stressball in the size of a tangerine was
given as a reference movement for the subject to focus on. Before
starting the calibration run, the subject tried a few trials to ensure
they understood the task. During feedback trials, subjects were
requested to stay focused on imagining the movement and not
get distracted by the feedback because this would decrease their
performance. One non-feedback calibration and three feedback
runs were completed. The classifier was calibrated between every
run based on the data from the previous run. Once all runs
were completed, the EEG cap was removed and the subject was
debriefed and thanked for participating.

Data Analysis
The relationship between the variables and BCI performance was
evaluated via two analyses; a correlation analysis and a linear
regression analysis.

Brain-computer interface error rates were obtained by
g.BSanalyze software (g.tec Medical Engineering, Austria). The
error rates are defined as the complement of accuracy: Accuracy
+ Error rate = 1. First, the average BCI error rate for all time
points during the 8-s time window of all trials was computed for
each of the three feedback runs that the subjects completed. Thus,
the calibration run, where the subjects did not receive feedback,
was excluded from analysis. Then, in order to specifically obtain
the error rates during the MI task period, a segment from
second 4.5 to 8 was selected from the trials (see Figure 3B)
and the mean of BCI errors was computed over this period.
The segment duration was determined by making a consensus
between Marchesotti et al. (2016) and Lee et al. (2019). Given
that the BCI classifier was recalibrated in each run, the mean
of BCI error rates was computed for each run individually and
for all runs aggregated. This resulted in four dependent variables
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FIGURE 3 | The time course of trials in the BCI task (A) during the calibration run and (B) during the feedback runs. All trials started with a fixation cross and
thereafter a red arrow indicated the direction of the motor imagery task (i.e., left or right). The participant had to imagine a movement for the corresponding hand. In
the calibration run participants held motor imagery until the end of the trial. In the feedback runs, a feedback bar indicated the direction of the classifiers’ prediction.
A blank screen indicated the end of the trial.

FIGURE 4 | The experimental procedure. Participants completed demographic, ATI, FFPI, and VVIQ questionnaires online before the experiment day. On the day of
the experiment, they first completed DOT and MRT tests followed by QCM questionnaire, and then continued to the MI-BCI runs.

per subject to be included in the analysis: one BCI error rate for
each run and one BCI error rate for all aggregated runs. The
obtained BCI error rates and MRT scores were then checked for
gender differences because it is known that these factors can be
influenced by gender differences (Peters and Battista, 2008). The
difference in motor imagery performance for left and right trials
was also investigated, as Zapała et al. (2020) reported variations
in performance not only for handedness but also for imagery
task laterality.

Correlation analyses were performed between the
independent variables and MI-BCI error rates. For normally
distributed data, a Pearson correlation (Pearson, 1895)
was conducted and for non-normally distributed variables,

Kendall coefficients (Kendall, 1938) were obtained. Confidence
intervals (CI) for the correlation coefficients were revealed
with bootstrapping, which is less sensitive to non-Gaussian
distributions. When the bias-corrected CI did not include zero,
the correlation was considered significant (Graimann et al.,
2002). The number of reproductions was set at 1000.

Stepwise linear regression created models to predict BCI
performance in every run. All possible models with one to
four predicting and/or moderating variables were estimated
for every BCI performance variable. For example, a model
with two variables was once calculated with variables as two
separate factors and once with the two factors interacting.
Normality of residuals was tested with a Shapiro-Wilk test
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(Shapiro and Wilk, 1965). Linearity assumptions were checked
visually. The assumption of homoscedasticity (constant variance)
was tested with the Breusch-Pagan test (Breusch and Pagan,
1979; Zaman, 2000). Multicollinearity was tested with Variance
Inflation Factor (VIF; Fox and Monette, 1992). VIF was
considered critical when higher than five (Akinwande et al.,
2015). For each run, the best model that met all these assumptions
was selected. The models were checked for outliers using Cook’s
distance (Cook, 1977), which has a high sensitivity to outliers
(Kannan and Manoj, 2015).

Data analysis was done in R Core Team (2019). All checks for
normality of the distributions were done with Shapiro-Wilk test
(Shapiro and Wilk, 1965). For all analyses, the significance level
was maintained at 0.05.

RESULTS

After conducting the experiment, two subjects were removed
from the data, as they did not meet the criteria for the
experiment. Thus, the remaining data included 55 subjects
(MAge = 20.71, SDAge = 3.52, 36 females, 19 males). The
demographic questionnaire had 3 missing responses. These were
replaced with the median of the category. The ATI questionnaire
had one missing value, which was replaced by the middle value
of the scale. The FFPI had twelve missing values, seven of
which belonged to the same subject. These were replaced by
the subject’s mean score across the completed items within the
factor pole, as long as the total number of missing items per
factor pole for a person was less than 50% (Hendriks et al.,
1999), which was not the case for any subject in this study. QCM
had no missing values. The mean and standard deviation for
each variable (median and interquartile range for non-normal
distributions) are summarized in Table 1. BCI error rates in each
run and all runs are plotted in Figure 5.

Brain-computer interface inefficiency within the current
sample was evaluated; 10 users did not reach an average accuracy
exceeding 70%. Thus the inefficiency rate within this study
was 18.18%, which is commonly seen (Allison and Neuper,
2010). The average BCI Error Rate within the efficient users
was 23.1% (SD = 5.88) and for the group of inefficient users it
was 33.4% (SD = 1.50). Two users exceeded 90% accuracy. The
result of gender comparison showed no significant difference in
this sample [t(47.27) = −1.42, p = 0.16] for BCI Error Rates
(MFemales = 23.87, MMales = 26.78] and Mental Rotation Scores
[t(37.22) = 0.21, p = 0.83, MFemales = 67.64, MMales = 66.84]. The
difference in BCI Error Rates between left (M = 25.97) and right
trials (M = 24.49) was not significantly different over all runs
[t(357.96) = 1.43, p = 0.15].

Outlier Removal
Outliers were tested for both the independent as well as the
dependent variables (Leys et al., 2019). Multivariate outliers
were identified with Mahalanobis’ distance using chi-square
distribution. Mahalanobis’ distance is the distance of a data point
from the centroid of the other datapoints, which is calculated
as the intersection of all variable means. The distances are

TABLE 1 | Summary statistics of included variables.

Mean SD W p

BCI Error Rate Run 1 25.471 7.577 0.974 0.273

BCI Error Rate Run 2 24.517 7.922 0.972 0.218

BCI Error Rate Run 3 Mdn = 27.237 IQR = 8.389 0.957 0.045

BCI Error Rate All Runs Mdn = 25.833 IQR = 7.159 0.940 0.008

MRT Correct 0.674 0.131 0.978 0.340

DOT 59.527 7.724 0.981 0.528

ATI 3.955 0.601 0.984 0.671

VVIQ Mdn = 57 IQR = 14 0.943 0.011

Interest (not included in
analysis)

4.727 0.896 0.975 0.313

Mastery Confidence
(CA corrected; not
included in analysis)

4.700 0.859 0.959 0.061

Incompetence Fear 3.261 1.158 0.960 0.065

Challenge (CA
corrected)

Mdn = 6 IQR = 0.75 0.913 0.001

Age Mdn = 19 IQR = 3 0.677 0.000

Sports Mdn = 3 IQR = 2 0.923 0.002

Music Mdn = 0 IQR = 1 0.534 0.000

Games Mdn = 2 IQR = 5.5 0.651 0.000

Extraversion Mdn = 0.374 IQR = 1.637 0.953 0.031

Mildness 2.218 1.044 0.976 0.332

Orderliness 0.494 1.055 0.988 0.860

Emot. stability 0.232 1.309 0.980 0.501

Autonomy 0.952 1.057 0.973 0.241

FIGURE 5 | Box plots of mean BCI error rates in every feedback run and all
aggregated runs.

interpreted using a significance level of 0.001. One case was found
to be a multivariate outlier (p = 0.0007) within the dependent
variables. The case was particularly high on the BCI Error Rate
for the first run obtaining the highest error rate. Therefore, the
subject was removed from the linear models for Run 1.

Correlation Analyses
To account for MI learning effect across runs, four types of BCI
Error Rate were calculated; one per each feedback run, and one
aggregate measure of all three feedback runs. Thus, the fifteen
independent variables had to be correlated with four dependent
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variables of BCI Error Rate. Bonferroni correction for multiple
testing revealed that the significance level should be at 0.003.

Personality factor Orderliness (M = 0.49, SD = 1.06) correlated
with the average BCI Error Rate in Run 1 (r = 0.36, p = 0.008)
before correcting for multiple comparisons (Figure 6A).
Bootstrapping revealed the 95% bias-corrected Confidence
Interval to be [0.121, 0.520], verifying the result. Run 2 (r = 0.14,
p = 0.29), Run 3 (τ = 0.02, p = 0.81), and the aggregate of all
runs (τ = 0.17, p = 0.07) did not show the same effect. This
indicated that high ordered personalities performed worse in the
first run compared to low ordered personalities. Because it can be
expected that performance improves over time, a one-sided t-test
was done comparing performance in Run 1 to performance in
Run 3 for both high and low ordered personalities. The sample
was divided at the median and the accuracies were compared
for both groups. This revealed that high but not low ordered
personalities improved significantly over runs [t(51.40) = 1.82,
p = 0.04].

Vividness of Visual Imagery (VVIQ; Mdn = 57, IQR = 14)
correlated with BCI Error Rate in Run 1 (τ = −0.29, p = 0.002)
(Figure 6B) but not in Run 2 (τ = 0.02, p = 0.82), Run 3
(τ = −0.09, p = 0.33), or the aggregated runs (τ = −0.16,
p = 0.09). Bootstrapping for the first run revealed the 95%
Confidence Interval (bias-corrected) to be [−0.417, −0.140],
which verified the result.

Personality factor Autonomy (M = 0.95, SD = 1.06) was found
to correlate with BCI Error Rate in Run 2 (r = 0.27, p = 0.04)
before correcting for multiple comparisons (Figure 6C), but not
in Run 1 (τ = 0.08, p = 0.37), Run 3 (τ = 0.02, p = 0.86), or the
aggregate of all runs (τ = 0.08, p = 0.37). Bootstrapping on the
second run revealed the bias-corrected 95% Confidence Interval
to be [0.030, 0.480], confirming the finding. All other variables
did not show significant correlation with BCI Error Rates.

Linear Models
To investigate the predictors of MI-BCI performance even
further, linear models were fit including maximum of four out
of fifteen numerical and one binary predictors. Stepwise linear
regression evaluated the possible combinations of variables and
interaction terms for models with one to four predictors. None of
the models exceeded 40% explained variance. For every run, the
best model was selected based on the adjusted variance (R2

adj).
Performance in Run 1 was evaluated on 54 participants after

rejecting one outlier. The BCI Error Rate was best predicted
by Gender + Emotional Stability + Orderliness + VVIQ
(R2

adj = 0.347, p < 0.001). The model revealed that being male
increased BCI Error Rate [b = 5.643, t(49) = 3.080, p = 0.003],
and a higher Emotional Stability score decreased the error rate
[b = −1.488, t(49) = −2.304, p = 0.026]. A lower score on
Orderliness [b = 2.476, t(49) = 2.914, p = 0.005] decreased
BCI Error Rate as did a higher Vividness of Visual Imagery
[b =−0.338, t(49) =−3.829, p < 0.001].

In Run 2, the BCI Error Rate was best predicted by Autonomy
(R2

adj = 0.056, p = 0.006). A more autonomous personality led to
increased BCI Error Rate [b = 0.036, t(53) = 2.057, p = 0.045].

For Run 3, it was not possible to construct a significant
predicting model. The analysis of variance comparing
the explained variance (sum of squares of regression) to
the unexplained variance (sum of squares of errors) was
not significant.

Finally, the model best predicting BCI error rate in all
aggregated runs was composed of Gender + Autonomy +
Emotional Stability + VVIQ (R2

adj = 0.018, p = 0.011). Being
a male increased BCI Error Rate [b = 3.857, t(50) = 2.085,
p = 0.042] and a higher autonomous personality predicted a
higher BCI Error Rate [b = 1.936, t(50) = 2.203, p = 0.032].

FIGURE 6 | Correlations between BCI Error Rates and individual factors. (A) BCI Error Rates in Run 1 were in significant positive correlation with Orderliness and (B)
in significant negative correlation with VVIQ scores. (C) BCI Error Rates in Run 2 were significantly positively correlated with Autonomy before correction for multiple
comparison.
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Emotional Stability was not a significant predictor [b = −1.304,
t(50) =−1.996, p = 0.051]. Vividness of Visual Imagery negatively
predicted BCI Error Rate [b =−0.306, t(50) =−3.061, p = 0.004].

DISCUSSION

This study aimed to establish the factors that impact MI-
BCI performance in novice users. Participants conducted three
consecutive MI runs and their personality traits and cognitive
abilities were measured. Correlation analyses showed that
Vividness of Visual Imagery was negatively correlated with MI-
BCI Error Rate in the first run of the experiment, while in
the same run personality factor Orderliness correlated positively
with MI-BCI Error Rate. The personality factor Autonomy
correlated positively with BCI Error Rate in the second run of
the experiment. From a predictive standpoint, linear models were
found that could predict the BCI Error Rate in the first, second
and the aggregate of all runs based on factors such as Gender,
Vividness of Visual Imagery, personality traits and Emotional
Stability. In the following, we further discuss our results for each
cognitive and psychological factor.

Vividness of Visual Imagery
The obtained scores in the Vividness of Visual Imagery
Questionnaire (VVIQ) were shown to be correlated negatively
with the mean BCI Error Rate in the first run. This result
indicated that a more vivid imagery related to a lower Error Rate,
i.e., a better MI-BCI performance. The negative coefficient in
the linear model for aggregated runs indicates that, while the
correlation was not significant in the second and third runs,
visual imagery is an essential factor in MI-BCI performance.
It was already established by Vuckovic and Osuagwu (2013),
and Marchesotti et al. (2016) that kinesthetic imagery scores
relate to BCI performance. The results for visual imagery were
questionable in the past since Vuckovic and Osuagwu (2013)
reported a positive relationship, but Hammer et al. (2012);
Marchesotti et al. (2016) did not find a significant relationship.
The result of this study underscores the importance of visual
imagery as a proxy for kinesthetic imagination.

Personality Factors
The study of Jeunet et al. (2015) is the only study that reports
significant effects of personality factors on MI-BCI performance.
While earlier studies by Hammer et al. (2012, 2014) did
not find a relationship between personality variables and BCI
performance, a recent study by Zapała et al. (2019) showed
that endurance and perseverance, which are temperament
traits, were correlated with MI-BCI performance. This provided
further support that MI-BCI control is impacted by the user’s
personality traits.

The current study assessed personality traits with the Five
Factor Personality Inventory (FFPI) (Hofstee and Hendriks,
1998), while Jeunet et al. (2015) used the 16 Personality Factors
(16PF; Cattell and Cattell, 1995). To compare our results with
the results of Jeunet et al. (2015), the relations between various
personality inventories were explored. Jeunet et al. (2015) found

that Abstractedness correlated positively with BCI performance.
Abstractedness contributes negatively to 16PF global factors
Tough-Mindedness and Self-Control (Cattell and Cattell, 1995).
Self-Control positively relates to Conscientiousness (Herrmann
and Pfister, 2013) in the Revised NEO Personality Inventory
(NEO-PI-R; Costa and McCrae, 1992), which was positively
correlated with FFPI factor Orderliness (Hendriks et al.,
1999). Thus, the relationship between Abstractedness and
Orderliness was concluded to be negative, and the hypothesis was
deduced that Orderliness should negatively correlate with BCI
performance and thereby positively with BCI Error Rate.

Our results supported the above hypothesis: Orderliness was
found to correlate positively with BCI Error Rate in the first run,
meaning that a higher score on orderliness scale was associated
with a lower accuracy on MI-BCI during the first run. One
of the characteristics of conscientious personalities is the lack
of fantasy, which may be indicative of a decreased ability to
visualize mentally (McCrae et al., 1986). Conscientiousness is
also negatively related to creativity (Jirásek and Sudzina, 2020).
Creativity is linked to the ability of mental imagery (May
et al., 2020), and possibly a lack of creativity in conscientious
personalities might also consequence their inferior MI-BCI
performance. The data was explored further to reveal why
this trait only affected performance in the first run. We
found a learning effect in subjects with high Orderliness; their
performance improved in the runs that followed while low
ordered personalities kept constant. This may be explained by
the fact that higher ordered individuals are more achievement-
oriented learners (Chamorro-Premuzic et al., 2007) and thereby
may have improved their performance more easily when
feedback was provided.

Abstractedness also contributed negatively to Tough-
Mindedness in the study of Cattell and Cattell (1995).
Tough-Mindedness is negatively correlated with the NEO-
PI-R factor Openness to Experience (Herrmann and Pfister,
2013). Openness correlated negatively with FFPI Orderliness and
sometimes correlated positively with Autonomy according to
Hendriks et al. (1999). This indicated again that Abstractedness
should correlate negatively with Orderliness. Openness and
Autonomy correlated positively, and thus Abstractedness and
Autonomy are expected to correlate positively. From this,
the hypothesis for the current study was deduced that there
could exist a positive relationship between Autonomy and BCI
performance. This hypothesis was also partially supported by the
results of the current study, where it was found that Autonomy
correlated positively with BCI Error Rate in the second run.
Autonomy was also a significant positive predictor in models
predicting BCI Error Rate. These results indicate that a person
with a higher score on autonomy is likely to perform worse at
motor imagery BCI.

The difference in these results may be due to the unstable
correlation between NEO-PI-R Openness and Autonomy, which
was reported by Hendriks et al. (1999). Autonomy is known to
increase motivation and learning efficiency in general (Lotte et al.,
2013), which leads to the expectation of a positive relationship
between autonomy and MI-BCI performance. Jeunet et al. (2015)
argued that incorporating more autonomy in the task may
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increase performance for highly autonomous BCI users, and this
might reduce the negative effect of autonomy found in this study.
In future studies, this should be quantified and further explored.

Jeunet et al. (2015) found that Tension correlated negatively
with BCI performance. Tension is a sub-factor of 16PF
global factor Anxiety that correlates positively with NEO-PI-
R factor Neuroticism (Herrmann and Pfister, 2013), which
in turn correlates negatively with FFPI factor Emotional
Stability (Hendriks et al., 1999). Thus, it was concluded that
Tension is negatively correlated with Emotional Stability, and
thereby a positive correlation between Emotional Stability and
BCI performance was hypothesized. This is in line with the
found negative predictor coefficient for Emotional Stability
impacting the BCI Error Rate in the first run and also in
predicting error rate on the aggregated runs. Emotionally stable
personalities are calm, well-balanced, and can deal with stress,
while emotionally unstable personalities are emotional, sensitive,
and easily overwhelmed (Hofstee and Hendriks, 1998). An
explanation may be that emotionally unstable personalities were
overwhelmed by the experiment and therefore performed poorly.

Another factor found by Jeunet et al. (2015) to impact BCI
performance is self-reliance, which negatively contributes to
16PF Extraversion (Cattell and Cattell, 1995). As expected, 16PF
Extraversion correlated positively with NEO-PI-R Extraversion
(Herrmann and Pfister, 2013), which positively correlated with
FFPI Extraversion (Hendriks et al., 1999). Thus, it was concluded
that self-reliance is negatively correlated with Extraversion, and
therefore the hypothesis was that Extraversion would correlate
negatively with BCI performance. However, we did not find any
result that would support this hypothesis. This inconsistency
in the findings of the current study compared to that of
Jeunet et al. (2015) can be explained based on the different
experimental design the was employed in the two studies. While
this study conducted only one BCI session, Jeunet et al. (2015)
repeated the same experiment in six different sessions, which
may have affected the participants’ arousal levels. Introverted
personalities, who prefer quietness and a lower mental workload
might have been fine with such repetition of the same task
while extroverted personalities, who are energized by bustling
environments, got bored by it (Hofstee and Hendriks, 1998).

Spatial Abilities
Jeunet et al. (2015) found significant results for visuospatial
memory, which was measured by the Corsi Block test. The
current study incorporated the Design Organization Test (DOT),
which also quantifies visuospatial memory. The Corsi Block test
was replaced because its underlying constructs are insufficiently
understood (Berch et al., 1998; Cornoldi and Vecchi, 2004).
Pacheco et al. (2017) used Block Design Test as an alternative and
showed its relationship with MI-BCI performance. However, the
Block Design Test consumes a lot of time, contrary to the DOT
which takes only a few minutes. In this experiment, we opted for
DOT as multiple cognitive measures had to be collected on the
same day. Nonetheless, we did not find any significant correlation
between DOT scores and the BCI performance, although our
earlier results showed that high aptitude BCI-users performed
better on the Design Organization Test (Leeuwis and Alimardani,

2020). A more reliable test should establish the contribution of
visuospatial factors in future research.

Similarly, the strong results of Jeunet et al. (2015, 2016a)
regarding the correlation between Mental Rotation Test (MRT)
and BCI performance raised the expectation of an effect of
MRT scores in the current study. However, we did not find a
relationship between BCI performance and MRT scores. Previous
studies (Jeunet et al., 2015, 2016a; Pacheco et al., 2017) used the
MRT as implemented by Vandenberg and Kuse (1978) which
shows multiple objects simultaneously, whereas the current
research used the implementation by Shepard and Metzler
(1971), which is a pairwise object presentation. This choice was
made because the results with implementation of Vandenberg
and Kuse (1978) tend to be affected by gender differences (Peters
and Battista, 2008). In addition, the BCI classifier in Jeunet
et al. (2015) classified mental rotation as one of the mental tasks
conducted by the subjects, which may have driven the direction of
their results. Therefore, the relationship between spatial abilities
and MI-BCI performance should be further validated in future
experiments. It would be interesting to look also at reaction times
of the test, as Darvishi et al. (2018) showed that scores on the
reaction time test are related to BCI performance.

Fundamental Characteristics
Gender was expected to influence performance: being a woman,
in general, coincides with better performance (Randolph, 2012).
Cantillo-Negrete et al. (2014) also proposed a gender-specific
BCI system. Their study showed that women perform better and
that both men and women users benefit from a BCI classifier
that is trained with the data of their gender group rather than
a subject-independent BCI system. Our results confirmed that
indeed being a woman was a predictor of lower BCI Error Rates
in the first run and aggregate of all runs. This is equal with the
distribution of gender effects in Roc et al. (2019) where males
performed worse in the first runs compared to later ones while
females tended to perform more steadily: starting with a higher
accuracy compared to men but not increasing their performance
any further. The distribution of genders was not equal in the
current study, which may have given a skewed result, although
this was corrected by using Welch’s t-test. In addition, differences
in gender performances might have been prevailing because all
experimenters in the current experiment were females. While Roc
et al. (2019) suggested that female experimenters might positively
influence subjects’ performance, Pillette et al. (2021), using the
same data, reported that the evolution of MI-BCI performance
is dependent on the interaction between experimenters’ and
subjects’ gender as well as subjects’ tension level and that it cannot
be firmly said that female experimenters benefit all subjects. This
is while Wood and Kober (2018) found that female participants
trained by female experimenters performed significantly worse
than those trained by male experimenters. These inconsistent
findings hint that there is a complex relationship between BCI
performance and gender of both subjects and experimenters,
which deserves further investigation in the future research.

Age was expected to impact BCI performance based on the
study by Randolph et al. (2010). However, no significant results
were found. The distribution of age in the current study was not
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normal and there was little variance. The sample mainly consisted
of young people (Mdn = 19) where a few older subjects pushed
the variance. Other studies, such as Rimbert et al. (2019), also
found no significant effect of age. Therefore, its relation with BCI
performance remains unconfirmed.

Sport participation did not show any effect on BCI
performance in the current study, however it has been shown
that physical ability and mental imagery quality are closely related
(Martin et al., 1999), and that regular physical practice can
improve motor imagery (Rimbert et al., 2019). This indicates that
the relationship between playing sports and BCI performance
must further be elaborated in future studies.

Game playing was expected to have a positive influence
on BCI performance because Randolph (2012) found an effect
of playing games per week. Vourvopoulos et al. (2015) also
found that gaming experience can enhance BCI performance and
strengthens the underlying brain activity. Additionally, Hammer
et al. (2012, 2014) found an effect of two-hand coordination
test, which measures speed and coordination accuracy in hand
movements with a joystick and is especially important when
playing games. The current study did not find any significant
results for video gaming in relation to BCI performance. This
might be due to the very skewed distribution: there were eight
outliers corresponding to participants who played more than 10 h
per week (compared to the median of 2 h per week). There
was a robust relationship between gender and playing games,
which may have induced the skewness of the distribution because
genders were not equally distributed across the sample.

Music practice was expected to have a positive influence on
BCI performance as music modulates the mu rhythm (Randolph,
2012), which drives the classification of motor imagery. However,
Rimbert et al. (2019) found no significant effect, nor did this
study. This may be explained by the number of music players in
the current study: the median hours per week was zero.

Users that are comfortable using technology were shown to
perform better on BCI by Burde and Blankertz (2006), however
the current study found no such relationship. The Affinity for
Technology Interaction Scale (ATI) did have a correlation with
music, games, and gender; thus, this collinearity may explain
why it did not appear in any of the models. Nevertheless, no
relationship was found between ATI and BCI Error Rates. It
should be noted that Burde and Blankertz (2006) used a different
questionnaire that focused more on the feeling of control when
using technology, contrasting the employed ATI in this study
which measures interest in technology. This distinction may
explain the different results.

Temporal Factors
The users’ motivation during the experiment was expected to
impact MI-BCI performance based on the study of Nijboer
et al. (2008), who found that mastery confidence increased BCI
performance and that higher fear of incompetence was associated
with decreased performance. However, the current study could
not confirm these results, nor did Hammer et al. (2012). The
current study removed five questions from the original QCM
questionnaire because they were only applicable if the participant
had already conducted a BCI task before. The manipulations

of the questionnaire might have reduced the validity of this
questionnaire, thereby making it a poor measure for novice BCI-
users. Future studies investigating the effects of motivation may
not only passively measure one’s motivation, but also actively
induce it. Examples of enhancing motivation include better
embodiment by using robotic or virtual bodies (Alimardani et al.,
2018; Škola et al., 2019), multi-user BCI games (Bonnet et al.,
2013; Daeglau et al., 2020), or feedback that incorporates a
positive bias (Alimardani et al., 2014).

Limitations
When comparing results of the studies discussed, variation
in the study design must be taken into account. We mainly
compared our results to the findings of Jeunet et al. (2015) who
employed similar variables as this study did. However, there were
differences in the two studies including the number of sessions;
Jeunet et al. (2015) conducted six sessions on six different days,
while the current study only included one session. In addition,
Jeunet et al. (2015) employed a three-class mental imagery BCI,
which demanded mental rotation and mental arithmetic to be
performed. This may have yielded different results compared to
the two-class motor imagery BCI employed in this study because
mental rotation and mental arithmetic work on different brain
activity than does motor imagery task. In previous research, more
than 50% of the studies have been employed on the two-class left
versus right motor imagery (Wierzgała et al., 2018).

The participants in the current study were employed via
university participant pool and convenience sampling, which
resulted in a skewed distribution of gender and age in the
sample. This may suggest that the sample is not generalizable
to other populations such as motor-impaired or elderly users,
who are traditionally the target audience of MI-BCI development.
However, it has been shown that the physiological changes
resulting from BCI training may improve performance in both
healthy individuals and patients (Perdikis et al., 2018; Edelman
et al., 2019) and in several studies BCI learning did not
significantly differ between stroke patients and healthy users
(Kober et al., 2015; de Castro-Cros et al., 2020). Additionally,
recent studies indicate that the target audience of MI-BCI has
extensively expanded to non-medical users, for example gamers
(Kerous et al., 2018). Therefore, this research applies to a wide
range of potential future users and thereby has broad impact for
the adoption of MI-BCI in society.

Furthermore, many of the questionnaires were not
administered on the day of the experiment but were sent
beforehand. This was done in order to reduce the required
time for the experiment and hence reduce exhaustion of the
participants during the BCI session. The variety in devices and
environments in which participants filled out the questionnaires
may have affected their answers; a lack of control by the
experimenter, social control by friends or family, being in a rush
or other external factors may have influenced the answers given
on the FFPI, ATI, and VVIQ questionnaires.

In addition, the explanation given to the subjects about
the motor imagery task did not explicitly state whether the
subject should imagine kinesthetic or visual movement, which is
known to make a difference; kinesthetic imagery produces greater
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activation of the primary motor cortex and supplementary areas
because it is more intuitive compared to the visual imagery of
movement (Burggraaf et al., 2016). Furthermore, the current
study included only 120 feedback-trials, which might have
reduced the validity. Typically, studies have 160 to 320 trials
to produce reliable results (Müller-Putz et al., 2008). When
performance was evaluated per run, this number was reduced
to forty trials.

Another limitation in the current study that is also found
in Jeunet et al. (2015) is the number of statistical tests.
Correction of multiple comparisons wiped out almost all
results of Jeunet et al. (2015). Similarly, in the current
study, Bonferroni correction immediately disarmed almost
all correlations. Bonferroni reduces false positives but also
produces false negatives by its conservativeness. As a check on
robustness of the results, the bootstrapping confidence interval
for the correlation coefficients was provided. In addition to
correlation analyses, this study employed a stepwise linear
regression and evaluated over 100,000 linear models. The
construction of four different stepwise linear regression models
selecting combinations out of fifteen possible predictors, gives
an abundance of possibilities. Consequently, the results reported
above are likely to contain false positives. One advantage
of including this many variables is the reduced chances of
exogeneity: few factors could influence BCI performance that
were not assessed by the current study.

Future Research
It is unclear whether BCI inefficiency reflects a failure on behalf
of the subject or BCI system and whether this distinction is
meaningful (Allison and Neuper, 2010). Therefore, the authors
of the current study empathize that all results should be
interpreted under the methodological guidelines used in this
particular experiment. The recalibration of the left- versus
right-hand motor imagery classifier between every run is an
important aspect of this.

So far, studies have been learning on little data: most studies
tested under twenty participants that perform a maximum of
six sessions. To make more robust predictions, it is needed
to perform a large-scale study in which subjects are trained
for a more extended period. This would enable researchers to
discriminate individual traits from states and observe when
performance improves; how many runs it takes and what factors
are important. In order to gain better results, the authors
advise further research with an updated BCI paradigm to make
it a reliable extension of the current state of the art. There
are multiple improvements in the field that suggest motor
imagery learning among novice BCI users; for example, it
has been shown that realistic feedback from humanlike bodies
and the feeling of embodiment improves the modulation of
brain activity needed for motor imagery (Alimardani et al.,
2018; Penaloza et al., 2018; Choi et al., 2020). Furthermore,
visual guidance in virtual reality (Liang et al., 2016; Coogan
and He, 2018), gamification (de Castro-Cros et al., 2020), and
multimodal visual-haptic feedback (Wang et al., 2019) can
improve learning of MI-BCI. Improving the training conditions
might reveal a more robust difference between (in-)efficient

learners and thereby provide more valid evidence for the
impacting variables on MI-BCI.

In the same vein, Thompson (2019) proposed user-centered
approaches instead of the one-fits-all approach. Here, users
themselves define usability and thereby researchers are enabled
to focus more on the issues that are experienced by the users
(Thompson, 2019). For example, Cantillo-Negrete et al. (2014)
proposed a MI-BCI system specifically designed for male or
female users. It is essential to focus research on the user, since
advanced technology alone will not be sufficient for a user to
operate the system when (s)he is unable to generate the MI-
specific brain patterns (Alimardani et al., 2014, 2016).

The current study focused only on online classification
accuracy. There are several arguments that favor this approach as
it is evaluated in similar research (Jeunet et al., 2015). Wierzgała
et al. (2018) reported that the minority of studies were conducted
online, i.e., during real-time control (only 4.9%), while in our
opinion, real-time performance, which is the main source of
feedback can greatly influence the user performance in the
following trials. In this process, personality factors or skill level of
the user can moderate the subjects’ interpretation of the feedback;
some might benefit from positive feedback, while others may
not (Barbero and Grosse-Wentrup, 2010; Alimardani et al., 2014;
Penaloza et al., 2018). By evaluating the online performance, this
confounding effect is accounted for. However, offline analyses
of this dataset would be encouraged to further evaluate the
psychological and cognitive factors that might impact offline
performance. This would include extracting mu-suppression
from the C3 and C4 electrodes (Penaloza et al., 2018) and
evaluating the sensorimotor rhythms that underlie the classifiers’
accuracy scores.

Future research should look into other EEG measures that
account for BCI aptitude and performance. For instance, recent
studies have proposed that connectivity measures can uncover
the underlying brain activity in (in-)efficient users (Lee et al.,
2020) and that coherence measures can improve accuracy for
inefficient users as compared to CSP-dependent classifiers (Zhang
et al., 2019). In addition, Nierhaus et al. (2019) showed that
functional connectivity in the brain networks increased already
after 1 h of BCI training. Thus, future research might focus
on extending the role of functional connectivity in generating
the brain activity needed for MI-BCI control. This could
provide a new predictor of BCI performance and increase
insights in the networks needed for successful modulation of the
sensorimotor rhythms.

Furthermore, the BCI classifier in this study relied on a
classic machine learning approach, however, some studies have
shown that BCI classification may benefit from more advanced
approaches such as deep learning as compared to the traditional
CSP+LDA method (Ko et al., 2020). Especially, low aptitude
users seem to benefit from deep learning classifiers more (Stieger
et al., 2020), thereby making it a promising tool for solving
MI-BCI inefficiency. Further investigation of this topic might
improve MI-BCI control for inefficient users.

Finally, another field of research lies in merging and analyzing
the growing body of data on the topic. For example, Ko et al.
(2020) merged dataset of Cho et al. (2017) and Lee et al. (2019),
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datasets that are also used by Lee et al. (2020) and Velasquez-
Martinez et al. (2020). Merging public datasets with similar
BCI paradigms could be a cost-effective way of examining the
relationships between and within studies even further. In the
same vein, future research can employ a new group of novice BCI
users for further testing of the model proposed in this research,
thereby validating the findings and extending our work to find
more robust user characteristics of BCI inefficiency.

Contribution to the Field
To summarize, the question remains if motor imagery BCI
performance can be predicted. This study contributed to the
literature by confirming effects of visual imagery and orderliness
on MI-BCI performance. In addition, a new result was found
for personality trait autonomy and its negative correlation with
BCI performance. It was established that females tend to perform
better and that better emotional stability is a predictor of
improved BCI performance. The number of participants and
the controlled experiment environment make this a reliable
study. The unique combination of measured variables, and
the use of the regular right-versus left-hand imagination
instead of mental imagery tasks distinguishes this study from
previous research.

CONCLUSION

This study attempted to answer the question whether MI-BCI in
novice users can be predicted by their psychological and cognitive
measures. Significant correlations were found between BCI
performance and personality factors Orderliness and Autonomy
as well as Vividness of Visual Imagery. Additionally, multiple
linear models were fit to the data in which a combination of

Gender, Emotional Stability, Vividness of Visual Imagery and
personality factors Orderliness and Autonomy were found as
significant predictors of BCI performance. The relationships
found in this study can be contributing factors in future studies
that will assess BCI trainings for multiple sessions and an
increased number of participants.
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