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Purpose:Consistent training and testing datasets can lead to good performance for deep
learning (DL) models. However, a large high-quality training dataset for unusual clinical
scenarios is usually not easy to collect. The work aims to find optimal training data
collection strategies for DL-based dose prediction models.

Materials and Methods: A total of 325 clinically approved cervical IMRT plans were
utilized. We designed comparison experiments to investigate the impact of (1) beam
angles, (2) the number of beams, and (3) patient position for DL dose prediction models. In
addition, a novel geometry-based beam mask generation method was proposed to
provide beam setting information in the model training process. What is more, we
proposed a new training strategy named “full-database pre-trained strategy”.

Results: The model trained with a homogeneous dataset with the same beam settings
achieved the best performance [mean prediction errors of planning target volume (PTV),
bladder, and rectum: 0.29 ± 0.15%, 3.1 ± 2.55%, and 3.15 ± 1.69%] compared with that
trained with large mixed beam setting plans (mean errors of PTV, bladder, and rectum:
0.8 ± 0.14%, 5.03 ± 2.2%, and 4.45 ± 1.4%). A homogeneous dataset is more accessible
to train an accurate dose prediction model (mean errors of PTV, bladder and rectum: 2.2 ±
0.15%, 5 ± 2.1%, and 3.23 ± 1.53%) than a non-homogeneous one (mean errors of PTV,
bladder and rectum: 2.55 ± 0.12%, 6.33 ± 2.46%, and 4.76 ± 2.91%) without other
processing approaches. The added beam mask can constantly improve the model
performance, especially for datasets with different beam settings (mean errors of PTV,
bladder, and rectum improved from 0.8 ± 0.14%, 5.03 ± 2.2%, and 4.45 ± 1.4% to 0.29 ±
0.15%, 3.1 ± 2.55%, and 3.15 ± 1.69%).

Conclusions: A consistent dataset is recommended to form a patient-specific IMRT
dose prediction model. When a consistent dataset is not accessible to collect, a large
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dataset with different beam angles and a training model with beam information can also
get a relatively good model. The full-database pre-trained strategies can rapidly form an
accuracy model from a pre-trained model. The proposed beam mask can effectively
improve the model performance. Our study may be helpful for further dose prediction
studies in terms of training strategies or database establishment.
Keywords: deep learning, radiotherapy, cervical cancer, database classification, IMRT, dose prediction
1 INTRODUCTION

In recent decades, with the emergence and development of
advanced radiotherapy (RT) planning and delivery techniques
such as intensity-modulated radiation therapy (IMRT) and
volumetric-modulated arc therapy (VMAT), the quality of
radiotherapy plans has drastically improved with better target
volume dose coverage and normal tissue sparing (1, 2). However,
there are still many obstacles in current clinical planning
practice. The planning objectives or constraints generated
using population-based standard clinical protocols may lead to
sub-optimal or even infeasible plan quality for specific patients
(3, 4). In addition, the trial-and-error planning process (5, 6)
highly depends on the skills and experience of the planners. It is
time-consuming and labor-intensive, and results in significant
variations in plan quality (7, 8).

Many novel methods have been developed and introduced
into clinics for improving treatment plan efficiency, quality, and
consistency (9, 10). The knowledge-based planning (KBP) (7, 11,
12) generates the reference plans for a new patient using a dose-
volume histogram (DVH) model trained from historical
treatment plans (13, 14). However, the clinical application of
this method is limited because of the unsatisfying output as only
one-dimensional DVH, rather than the 3D dose distributions
(15) and the need for manual interventions, such as planning
target volume (PTV)-organ at risk (OAR) distance and PTV’s
length (16, 17). In recent years, with the rapid advances in
computational power, the deep learning (DL) technique has
drawn significant attention and become research hotspots in
many fields (11, 18). The DL-based dose prediction method,
which takes advantage of CNN’s automatic features extraction
ability, can build the relationship between anatomical
information and the dose distribution of a patient. Many
studies have shown the significant success of various DL
methods in predicting 3D dose distributions for different
treatment sites and delivery methods (3, 19, 20).

At the current stage, most of the DL dose prediction models
require a large number of consistent and high-quality training
datasets and the applications are limited to the cases that have
the same characteristics, such as the same beam settings
(numbers and angles) and the patient positions (majority is at
supine position). However, a large high-quality training dataset
is usually not easy to collect for unusual clinical scenarios, such
as unique beam arrangements. The impact of the quality and
quantity of training database on the DL model performance has
been explored in other studies (21, 22), but only limited to the
impact of the homogeneity and size of the database, and no other
2

method about improving IMRT dose prediction accuracy, or
making a suggestion for how to make use of a sizable non-
homogeneous dataset. This work explores optimal training data
collection strategies for DL-based dose prediction models. To the
best of our knowledge, there have not been efforts reported in
this direction. In this work, we designed comparison experiments
to investigate the impact of (1) beam angles, (2) the number of
beams, and (3) patient position for DL dose prediction models.
In addition, a novel geometry-based beam mask generation
method was proposed to provide beam setting information in
the model training process, which makes the model more
accurate. What is more, we proposed a new training strategy
named “full-database pre-trained strategy”. Our new training
strategy might rapidly use a heterogeneous dataset to form a
patient-specific dose prediction model.
2 METHODS AND MATERIALS

2.1 Patient Data and Treatment Planning
A total of 325 clinically approved and delivered cervical cancer
IMRT plans were retrospectively selected for the DL model
training and testing. All plan contours of the PTV and OARs
have been checked by experienced radiation oncologists. The
prescription dose of PTV cases was 50.4 Gy in 28 fractions. The
treatment plan used different beam settings in beam numbers
(7 or 9 beams, all coplanar), beam angles, and patient treatment
positions (supine and prone) according to the patient’s anatomy
features. All the treatments were planned using the Eclipse
treatment planning system with the Anisotropic Analytical
Algorithm (AAA). All dose constraints of IMRT for cervical
cancer are based on Quantitative Analyses of Normal Tissue
Effects in the Clinic (QUANTEC) data.

2.2 Data Preparation
The purpose of the data preparation process is to ensure that the
DL model could correctly process the mapping and
transformation between anatomical information and the dose
distribution of a patient.

In IMRT treatment, the beam setting can significantly
influence patients’ dose distribution. So, in addition to the
image and contouring mask as model inputs, we also proposed
a novel generation method of beam mask to feed the extra beam
setting information (beam angles and beam numbers) to the DL
model training, which is in a logic of clinical scenarios to predict
dose distribution. The beam setting information was first
March 2022 | Volume 12 | Article 808580
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extracted from the RT plan file. We hypothesized that each beam
source is a point source, and all the beams were tangent to PTV
through the isocenter, which matches the clinical logic and can
present the beam information to the model. This work generated
a beam mask by assigning 1 to pixels within the beam path while
0 outside the beam. All the beam masks were then summed and
rescaled to the maximum of 50.4 Gy to match the prescription
dose for PTV and reduce the burden of DL model fitting (a form
of normalization of the model’s input and output data: making
beam mask’s value more similar to the training dose distribution,
reducing the parameter update steps of model training). Our new
beam mask production method was an analytical algorithm
based on the geometric method. Compared with the existing
dose engine-based and TPS-based beam mask generation
methods (19), our method requires fewer computing resources
and is much easier to realize. The details of making a beam mask
are shown in Figure 1.

We first extracted a 3D matrix of 512 × 512 × 100 ( ± 30) for
each plan from CT images. It was then normalized to have a
mean value of 0 and a variance of 1. A binary mask was generated
for each ROI, with 1 for voxels inside the contour and 0 for those
outside the contour. A 3D dose array was also extracted from the
RT dose file. For fast dose calculation purposes, all the clinical
plans were calculated using a 2.5-mm dose grid, which is
different from the resolution of the original CT images [1 ( ±
0.2) mm × 1 ( ± 0.2) mm × 5 mm]. Therefore, the images and
contouring masks were resampled to match the solution of the
dose matrix. The images, contouring masks, and the dose matrix
were then rigidly registered and used for DL model training.
Figure 2 shows the diagram of the DL model input and output.

Python codes did the data pre-processing for all preparation
processes. Python packages such as NumPy and pydicom were
used to conserve the raw data to the “npy” format.

2.3 Model Architecture and
Training Method
A 3D Dense U-Net CNN model was built. The model input data
were a multi-channel 3D matrix, including CT images, ROI
Frontiers in Oncology | www.frontiersin.org 3
contouring masks for bladder, body, left femoral head (Femoral-
Head-L), right femoral head (Femoral-Head-R), PTV, rectum,
spinal cord, and beam mask (if the beam is added as a feature).
The model output was the corresponding predicted 3D dose
matrix. It shows the model structure and training method’s
details inAppendix-1 (Model architecture and training method).

2.4 Experiment Design
Four experiments were designed to explore the influence of
dataset characteristics in IMRT dose prediction mode training.
The first series of experiments explored the total usage of a
sizable non-homogeneous dataset. The second, third, and fourth
experiments explore the influence of unification of beam angles,
beam numbers, and patient position, which are essential factors
that can influence dose distribution in IMRT plans.

2.4.1 Full-Database Experiments With
Pre-Trained Strategy
A total of 9 cases were randomly selected as testing cases, which
were all treated with seven beams of 0°, 50°, 100°, 150°, 210°,
260°, and 310° at the supine position. As shown in Figure 3, we
designed three different experiments. In Experiment 1-1, Model
0 was trained by taking the full usage of 258 training cases from
total cases number 325, including different beam numbers or
angles and different patient positions. In Experiment 1-2, Model
01 was trained using 46 patients with the same beam setting as
the saved testing cases. In Experiment 1-3, Model 02 was first
trained by reserving the model weight fromModel 0 and training
the selected 46 patients. The prediction errors of the three models
were calculated and compared. Then, we used the best model
training strategy in the following experiments.

2.4.2 Influence of Unified Beam Angles
To investigate the influence of uniform beam angles in the training
dataset and the extra model input of beam mask on the
performance of the dose prediction model, we conducted four
comparative experiments. The same testing cases as in the
previous section were used in these experiments. In Experiment
FIGURE 1 | The generation process of beam mask.
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2-1, we selected the 46 cases with the same beam configuration in
the testing cases. In addition, the beammask was added as an extra
input channel in the training process. In Experiment 2-2, the same
training cases as in Experiment 2-1 but without the beam masks.
In Experiment 2-3, we selected 213 cases with seven beams as
training data and used beam masks in the training process.
Experiment 2-3 aimed to study whether a significant number of
cases in the training dataset with different beam angles can
improve the model performance. In Experiment 2-4, the
training cases were the same as Experiment 2-3, but Experiment
2-4 had the added beam masks in the training process.

2.4.3 Influence of Unified Beam Numbers
To investigate the influence of uniform beam numbers in the
training dataset and the extra model input of beam mask on the
performance of the dose prediction model, we conducted four
comparative experiments.
Frontiers in Oncology | www.frontiersin.org 4
We selected 12 testing cases treated with nine beams.
Experiments 3-1 and 3-2 were to compare beam performance
using either the training data of the same beam number (i.e., nine
beams) or a more extensive training dataset with the mixed
numbers of beams (i.e., 9 and 7 beams). Because of the limitation
of 9-beam cases (21 cases), training and testing cases had
different beam angle distributions. The beam masks were used
for both experiments. In Experiment 3-3, the model was trained
with only 7-beam cases to investigate model performance in the
testing cases with different beams. In Experiment 3-4, the
training cases were the same as Experiment 3-2 but without
beam masks as input.

2.4.4 Influence of Unified Positioning
Most of the cervical patients in our department were scanned
with the supine position, but there are still some cases with the
prone position. We designed four comparison experiments using
FIGURE 3 | Experiments to prove a full-database pre-trained strategy.
FIGURE 2 | Data preparation diagram.
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different training datasets to investigate the strategy for optimal
selection of DL model training data, particularly for the clinical
scenario with fewer cases such as prone position.

We selected 13 test cases scanned in the prone position. In
Experiment 4-1, we selected a total of 258 training cases with
both prone position and supine position, while in Experiment 4-
2, only the 45 prone cases were used for model training. The
beam masks were added as model input for both experiments to
provide beam information to help the model predict the accurate
doses. For comparison, in Experiment 4-3, we removed the beam
masks from Experiment 4-2. In Experiment 4-4, the model was
trained with only the supine position cases. Due to the dataset’s
size of prone cases being small (45 cases), training and testing
cases have different beam angle distributions.

2.5 Model Performance Evaluation Method
The percentage of errors (dDi) was calculated to evaluate all
experiments. The formula of the percentage of errors was:

dDi =
DiGround−truth − Dipredicted
�
�

�
�

prescription dose
� 100%

We calculated dDi (a total of 14 DVH indices) of D95, D90,
D50, Dmax, and Dmean of PTV; V30, Dmax, and Dmean of bladder,
rectum; and Dmax of spinal cord and femoral heads.

We selected the best model in each series of experiments by
synthetically considering the dose-prediction errors. We
measured the model by the 14 DVH indices: If the model gets
the maximum optimal dose indices (% of best prediction is the
number of optimal DVH indices/the total number of DVH
indices), the model is the best in the group of experiments.
3 RESULTS

3.1 Full-Database Pre-Trained
Strategy Experiments
Under these three experiments (Experiments 1-1 vs. 1-2 vs. 1-3),
on the one hand, the errors of the PTV D95 decreased from
1.39 ± 0.95% for Experiment 1-1 to 0.96 ± 0.60% for Experiment
1-2, to 0.76 ± 0.79% for Experiment 1-3. On the other hand, for
the considered OARs, the errors of the mean doses were reduced
from 2.63 ± 1.63% and 3.80 ± 2.33% in Experiment 1-2 to 2.33 ±
1.67% and 3.18 ± 2.07% in Experiment 1-1, and then to 2.18 ±
1.67% and 3.10 ± 2.24% in Experiment 1-3. The summary of
prediction errors of each experiment is shown in Figure 4.

3.2 Experiments of Beam Settings
Figure 4 shows the average predicted percentage dose errors of the
mean and maximum doses in PTV and OARs. The model trained
with a small database but with the same beam setting and beam
information (Experiment 2-1 with 46 cases) outperformed the
model trained with an extensive database with different beam
settings (Experiments 2-3 and 2-4 with 213 cases) and a small
database with the same beam setting but no beam information
(Experiment 2-2 with 46 cases). With the added beam mask
information, Experiment 2-1 yielded the best performance with
Frontiers in Oncology | www.frontiersin.org 5
the lowest mean dose errors across all the organs (2.18 ± 1.67%),
followed by Experiments 2-2, 2-3, and 2-4 with mean dose errors of
3.21 ± 1.85%, 2.70 ± 1.43%, and 3.85 ± 2.13%, respectively.
Similarly, Experiment 2-1 also had the lowest average errors of
predictedmax dose (3.11 ± 2.24%), while Experiments 2-2, 2-3, and
2-4 were 4.90 ± 2.16%, 3.73 ± 2.10%, and 5.70 ± 2.50%, respectively.

3.3 Experiments on the Number of Beams
For the model trained with a small database with the same beam
number (i.e., nine beams) and beam information (Experiment 3-
1), when adding different beam numbers, i.e., the model trained
with an extensive database with mixed beam number (i.e., 9 or 7
beams) (Experiment 3-2). The predicted errors of the bladder
V30 in Experiment 3-2 were 0.9%, 1.7%, and 1.4%, which were
lower than the predicted values in Experiments 3-1, 3-3, and 3-4,
respectively (Appendix-3-Table 3). For the rest of the plotted
DVH metrics (PTV D95, PTV D90, PTV D50, PTV Dmax, PTV
Dmean, Rectum Dmax, Rectum Dmean, Bladder Dmax, Bladder
Dmean, Rectum V30, and Left femoral head Dmax), Experiment
3-2 had the slightest prediction error. In particular, Experiment
3-1 outperformed other experiment groups for the PTV D50,
which reduced to 0.21%.

3.4 Experiments on Treatment Positions
For a model trained in a database with mixed treatment positions
(i.e., prone or supine position) and beam information (Experiment
4-1), when we removed the supine position data, only in the model
trained in the prone position database with beam information
(Experiment 4-2) were the predicted errors decreased in most of
the organs, especially the bladder and rectum; the Dmean decreased
by 0.8% and 0.5%, respectively. When the beam mask was
removed from Experiment 4-2, the model trained only with the
prone position database (Experiment 4-3), the prediction errors
were significantly improved.
FIGURE 4 | The absolute percentage errors for ROIs.
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3.5 The Best Model in Each Series
of Experiments
We evaluated our model’s performance using the “Model
performance evaluation method” in Section 2.5 and the “% of
best prediction”. It shows that the best model in a series of
experiments is in Experiment 1-3, Experiment 2-1, Experiment
3-2, or Experiment 4-2, separately (shown in Appendix-2-
Table 1). Each model’s prediction errors are shown in
Appendix-3-Tables 1–4.

Appendix-3-Figures 1 and 4 show the results of the testing
patients in each group of experiments with the three-
dimensional dose distribution predicted by each group of
experiments and the corresponding DVHs.
4 DISCUSSION

This study aimed to analyze the impact of classifying training
databases on the performance of DL models for dose prediction
in the framework of radiotherapy for cervical cancer. For this
purpose, we set 3 groups of experiments to study the influence of
a uniform training database with beam angles, beam numbers,
and patient positions on the accuracy of a prediction model. We
also proposed a new beam information mask generation method,
which can quickly and accurately learn beam angle information
and convert the beam settings into beam masks to achieve the
best model performance. What is more, we created a new “full-
database pre-trained strategy”, which makes full use of a wide
range of databases more effectively to build and obtain more
accurate prediction models.

Some conclusions can be drawn across four groups
of experiments, and the conclusions may be helpful in the
IMRT dose prediction model training process and database
establishment. First, a homogeneous dataset is more accessible
to train an accurate dose prediction model than a non-
homogeneous one without other processing approaches. This
conclusion can be drawn from Experiment 2-2 vs. Experiment 2-
4. These two experiments are both without additional processing.
We found that the model trained with the 46-size homogeneous
dataset (all cases have the same beam settings) performed better
than the other model trained with the 213-size non-
homogeneous dataset (the cases have different beam settings).
Two model performance details can be seen from Figure 4,
Appendix-3-Figure 1, and Appendix-3-Table 2.

Since the non-homogeneous dataset with different beam
settings may cause a suboptimal model, we added a beam
mask to provide beam setting information in training
processing and tried to make a prediction model that
establishes the relationship between beam settings and dose
distribution. Moreover, the second conclusion can be that
beam information can make the non-homogeneous models
perform well. The conclusion may be drawn from Experiment
2-3 vs. Experiment 2-4 and Experiment 3-2 vs. Experiment 3-4.
Visual comparisons are shown in Appendix-3-Figure 1. When
the beam mask was added, the predicted dose accuracy was
improved in global and PTV areas. Furthermore, when the beam
Frontiers in Oncology | www.frontiersin.org 6
mask was added, a non-homogeneous dataset’s performance was
close to a homogeneous one (Experiment 2-1 vs. Experiment 2-3,
Experiment 3-1 vs. Experiment 3-2). The beam mask made the
homogeneous dataset perform better (Experiment 2-1 vs.
Experiment 2-2). The conclusion that beam masks can make
the mixed beam setting models perform well was following
clinical logic. The beam setting can significantly influence
patients’ dose distribution in the planning design process. So,
using the beam mask to present beam information to the model,
following the planning design logic, can make dose prediction
more accurate.

Besides adding beam mask, another method to make usage of
the non-homogeneous dataset is the “full-database pre-trained
strategy”. In the second conclusion, we know that beam mask
can make the non-homogeneous dataset’s performance close to
the homogeneous one, so a pair of experiments were made (1-1
vs. 1-2); we found that an extensive non-homogeneous dataset’s
model (Model 0) performance beat a small homogeneous
dataset’s (Model 01) in almost all evaluation indicators when
the beam information was added in the training processing.
However, another question arises: the large dataset (256 cases)
training process is time-consuming, costing several days (on an
RTX 3090 GPU). So, another experiment 1-3 was made: using a
46-size homogeneous dataset to continue training Model 0 (256-
size non-homogeneous dataset’s model) to get Model 02. We
found that Model 02’s performance was better than that of
Model 0, and the time cost of 46 cases refining Model 0 was
within an hour. The third conclusion can be that when the beam
information is involved in IMRT dose prediction model training,
using a small homogeneous dataset to refine a sizable non-
homogeneous dataset’s model can get a good performance
model, and the time cost can be much reduced compared with
training a model from the beginning by a large dataset that
combines the homogeneous and non-homogeneous dataset (an
hour vs. several days).

Another important finding in our research is that the dataset
size dramatically influences the accuracy of IMRT dose
prediction model. When the beam mask involved the
experiments, different performances among the homogeneous
and non-homogeneous datasets could be seen in some
experiments (2-1 vs. 2-3), but not in other experiments (3-1 vs.
3-2, 4-1 vs. 4-2). When analyzing the above phenomenon and
dataset features, we focused on the sizes of the homogeneous
dataset across the above experiments. Experiment 2-1 has a 46-
size homogeneous dataset (the same beam settings), but a total
number of 9 beam cases and prone cases, which were with the
non-unified beam angles, only have 21 and 45. The level of
homogeneity was lower than Experiment 2-1, and the dataset
size was relatively small, so the advantage of the homogeneity
dataset in Experiments 3-1 and 4-2 was not evident as 2-1. From
the above discussion, an excess conclusion can be drawn that the
beam angle unification is more effective than beam numbers and
patient positions.

Some shortcomings were listed below, which can be
renovated in future related work. Our analysis shows that the
homogeneous dataset may be advantageous compared to the
March 2022 | Volume 12 | Article 808580
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non-homogeneous one when the homogeneity and dataset size
level are enough. We have not collected enough nine beam cases
and prone cases with the same beam settings to show the
advantage of the homogeneity in beam numbers and patient
positions. Future research may use a larger dataset to explore
more characteristics of homogeneous and non-homogeneous
datasets. Our conclusion showed that a homogeneous dataset
could improve model accuracy, but the largest dataset with the
same beam settings has only 46 cases. The model with the largest
homogenous dataset got the best prediction errors (Experiment
2-1), which proved that the homogenous dataset might benefit
the model’s accuracy again. The lack of homogeneous datasets
led to our prediction errors not being as good as the current
study. Nevertheless, the conclusions in our research, such as a
homogeneous dataset, suggested that providing beam settings in
the training process might make future research a better dose
prediction model. Advance computer technology may improve
the experiment performance. Our study focused on the dataset
with a relatively conventional U-net-like model. The novel
structure such as attention-gate and the multi-stage network
could be involved in the model architecture, making prediction
more accurate. The “full-database pre-trained strategy” in our
study used the homogeneous dataset for continuing to train a
pre-trained model, which focused more on concepts than
methods. Meta-learning technology aimed to use small data to
refine a pre-trained model and improve performance. Meta-
learning might make the “full-database pre-trained strategy”
perform better. Further efforts can expand the investigations
onto different tumor types with different treatment techniques.
5 CONCLUSION

This study designed different experiments to explore the
influence of different clinical scenarios in IMRT dose
prediction model training, such as various beam angles, the
number of beams, and different patient positions. A
homogeneous dataset is more accessible to train an accurate
dose prediction model than a non-homogeneous one without
other processing approaches. The beam angles of the dataset
cases can significantly influence IMRT dose prediction accuracy.
In the IMRT model training process, the beam information is
suggested to be included. In the IMRT dose prediction dataset
collection process, a compatible size dataset with the same beam
angles is recommended. If the homogeneous data are hard to
collect, training a model using a non-homogeneous dataset
Frontiers in Oncology | www.frontiersin.org 7
combined with beam information can also get a relatively
accurate model.

Besides, in our study, a novel training strategy and beam
information array generation method were proposed. The “full-
database pre-trained strategies” used a small size dataset to re-
train the model trained by a large dataset to form a specific
model, which can get an accurate model and reduce the time-
consuming training for the model. The proposed geometric-
based beam mask generation method can effectively provide
beam setting information and improve the model performance.

Our study may be helpful for further dose prediction studies
in terms of training strategies or database establishment.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
AUTHOR CONTRIBUTIONS

YP: Experiment design, data collection and article writing. YL:
Experiment design, code implementation and article writing. ZC:
Technical support. GZ: The article modification. CM: Data
collection. SX: Experiment design and article modification. YY:
Data collection and article modification. All authors contributed
to the article and approved the submitted version.
FUNDING

The work was supported by the Medical Big Data AI R&D
Project (2019MBD-043), the National Natural Science
Foundation of China (Grant No. 82072094), the Natural
Science Foundation of Shandong Province (Grant No.
ZR2019LZL017), and the Taishan Scholars Project of
Shandong Province (Grant No. ts201712098).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.808580/
full#supplementary-material
REFERENCES
1. Zelefsky MJ, Fuks Z, Happersett L, Lee HJ, Ling CC, Burman CM, et al.

Clinical Experience With Intensity Modulated Radiation Therapy (IMRT) in
Prostate Cancer. Radiother Oncol (2000) 55(3):241–9. doi: 10.1016/s0167-
8140(99)00100-0

2. Crooks SM, Wu X, Takita C, Watzich M, Xing L. Aperture Modulated Arc
Therapy. Phys Med Biol (2003) 48(10):1333. doi: 10.1088/0031-9155/48/10/307

3. Chen X, Men K, Li Y, Yi J, Dai J. A Feasibility Study on an Automated Method
to Generate Patient-Specific Dose Distributions for Radiotherapy Using Deep
Learning. Med Phys (2019) 46(1):56–64. doi: 10.1002/mp.13262
4. Fredriksson A. Automated Improvement of Radiation Therapy Treatment
Plans by Optimization Under Reference Dose Constraints. Phys Med Biol
(2012) 57(23):7799. doi: 10.1088/0031-9155/57/23/7799

5. Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y. Incorporating
Dosimetric Features Into the Prediction of 3D VMAT Dose Distributions
Using Deep Convolutional Neural Network. Phys Med Biol (2019) 64
(12):125017. doi: 10.1088/1361-6560/ab2146

6. Ahn SH, Kim E, Kim C, Cheon W, Kim M, Lee SB, et al. Deep Learning
Method for Prediction of Patient-Specific Dose Distribution in Breast
Cancer. Radiat Oncol (2021) 16(1):1–13. doi: 10.21203/rs.3.rs-
147694/v1
March 2022 | Volume 12 | Article 808580

https://www.frontiersin.org/articles/10.3389/fonc.2022.808580/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.808580/full#supplementary-material
https://doi.org/10.1016/s0167-8140(99)00100-0
https://doi.org/10.1016/s0167-8140(99)00100-0
https://doi.org/10.1088/0031-9155/48/10/307
https://doi.org/10.1002/mp.13262
https://doi.org/10.1088/0031-9155/57/23/7799
https://doi.org/10.1088/1361-6560/ab2146
https://doi.org/10.21203/rs.3.rs-147694/v1
https://doi.org/10.21203/rs.3.rs-147694/v1
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. Shandong Cancer Hospital, BUAA, CHCAMS
7. Yoganathan S, Zhang R. An Atlas-Based Method to Predict Three-Dimensional
Dose Distributions for Cancer Patients Who Receive Radiotherapy. Phys Med Biol
(2019) 64(8):085016. doi: 10.1088/1361-6560/ab10a0

8. Jiang D, Yan H, Chang N, Li T, Mao R, Du C, et al. Convolutional Neural
Network-Based Dosimetry Evaluation of Esophageal Radiation Treatment
Planning. Med Phys (2020) 47(10):4735–42. doi: 10.1002/mp.14434

9. Bakx N, Bluemink H, Hagelaar E, van der Sangen M, Theuws J, Hurkmans C.
Development and Evaluation of Radiotherapy Deep Learning Dose Prediction
Models for Breast Cancer. Phys Imaging Radiat Oncol (2021) 17:65–70. doi:
10.1016/j.phro.2021.01.006

10. Scaggion A, Fusella M, Roggio A, Bacco S, Pivato N, Rossato MA, et al.
Reducing Inter-and Intra-Planner Variability in Radiotherapy Plan Output
With a Commercial Knowledge-Based Planning Solution. Phys Med (2018)
53:86–93. doi: 10.1016/j.ejmp.2018.08.016

11. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A
Survey on Deep Learning in Medical Image Analysis. Med Image Anal (2017)
42:60–88. doi: 10.1016/j.media.2017.07.005

12. Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL. Predicting
Dose-Volume Histograms for Organs-at-Risk in IMRT Planning. Med Phys
(2012) 39(12):7446–61. doi: 10.1118/1.4761864

13. Tol JP, Dahele M, Peltola J, Nord J, Slotman BJ, Verbakel WF. Automatic
Interactive Optimization for Volumetric Modulated Arc Therapy Planning.
Radiat Oncol (2015) 10(1):1–12. doi: 10.1186/s13014-015-0388-6

14. Nguyen D, Jia X, Sher D, Lin M-H, Iqbal Z, Liu H, et al. 3D Radiotherapy Dose
Prediction on Head and Neck Cancer Patients With a Hierarchically Densely
Connected U-Net Deep Learning Architecture. Phys Med Biol (2019) 64
(6):065020. doi: 10.1088/1361-6560/ab039b

15. Zhou J, Peng Z, Song Y, Chang Y, Pei X, Sheng L, et al. A Method of Using
Deep Learning to Predict Three-Dimensional Dose Distributions for
Intensity-Modulated Radiotherapy of Rectal Cancer. J Appl Clin Med Phys
(2020) 21(5):26–37. doi: 10.1002/acm2.12849

16. Wei L, Su R, Wang B, Li X, Zou Q, Gao X. Integration of Deep Feature
Representations and Handcrafted Features to Improve the Prediction of N6-
Methyladenosine Sites. Neural Comput (2019) 324:3–9. doi: 10.1016/
j.neucom.2018.04.082

17. Kajikawa T, Kadoya N, Ito K, Takayama Y, Chiba T, Tomori S, et al.
Automated Prediction of Dosimetric Eligibility of Patients With Prostate
Cancer Undergoing Intensity-Modulated Radiation Therapy Using a
Convolutional Neural Network. Radiol Phys Technol (2018) 11(3):320–7.
doi: 10.1007/s12194-018-0472-3
Frontiers in Oncology | www.frontiersin.org 8
18. Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, et al. A Feasibility Study for
Predicting Optimal Radiation Therapy Dose Distributions of Prostate Cancer
Patients From Patient Anatomy Using Deep Learning. Sci Rep (2019) 9(1):1–
10. doi: 10.1038/s41598-018-37741-x

19. Barragán-Montero AM, Nguyen D, Lu W, Lin M-H, Norouzi-Kandalan R,
Geets X, et al. Three-Dimensional Dose Prediction for Lung IMRT
Patients With Deep Neural Networks: Robust Learning From
Heterogeneous Beam Configurations. Med Phys (2019) 46(3):3679–91.
doi: 10.1002/mp.13597

20. Liu Y, Chen Z, Wang J, Wang X, Qu B, Ma L, et al. Dose Prediction Using a
Three-Dimensional Convolutional Neural Network for Nasopharyngeal
Carcinoma With Tomotherapy. Front Oncol (2021) 11:752007.
doi: 10.3389/fonc.2021.752007

21. Barragán-Montero AM, Thomas M, Defraene G, Michiels S, Haustermans K,
Lee JA, et al. Deep Learning Dose Prediction for IMRT of Esophageal Cancer:
The Effect of Data Quality and Quantity on Model Performance. Phys Med
(2021) 83:52–63. doi: 10.1016/j.ejmp.2021.02.026

22. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, et al.
Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An
Introduction to the Scientific Issues. Int J Radiat Oncol Biol Phys (2010) 76(3
Suppl):S3–9. doi: 10.1016/j.ijrobp.2009.09.040

Conflict of Interest: Manteia Technologies Co., Ltd employed author ZC.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Peng, Liu, Chen, Zhang, Ma, Xu and Yin. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2022 | Volume 12 | Article 808580

https://doi.org/10.1088/1361-6560/ab10a0
https://doi.org/10.1002/mp.14434
https://doi.org/10.1016/j.phro.2021.01.006
https://doi.org/10.1016/j.ejmp.2018.08.016
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1118/1.4761864
https://doi.org/10.1186/s13014-015-0388-6
https://doi.org/10.1088/1361-6560/ab039b
https://doi.org/10.1002/acm2.12849
https://doi.org/10.1016/j.neucom.2018.04.082
https://doi.org/10.1016/j.neucom.2018.04.082
https://doi.org/10.1007/s12194-018-0472-3
https://doi.org/10.1038/s41598-018-37741-x
https://doi.org/10.1002/mp.13597
https://doi.org/10.3389/fonc.2021.752007
https://doi.org/10.1016/j.ejmp.2021.02.026
https://doi.org/10.1016/j.ijrobp.2009.09.040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Accuracy Improvement Method Based on Characteristic Database Classification for IMRT Dose Prediction in Cervical Cancer: Scientifically Training Data Selection
	1 Introduction
	2 Methods and Materials
	2.1 Patient Data and Treatment Planning
	2.2 Data Preparation
	2.3 Model Architecture and Training Method
	2.4 Experiment Design
	2.4.1 Full-Database Experiments With Pre-Trained Strategy
	2.4.2 Influence of Unified Beam Angles
	2.4.3 Influence of Unified Beam Numbers
	2.4.4 Influence of Unified Positioning

	2.5 Model Performance Evaluation Method

	3 Results
	3.1 Full-Database Pre-Trained Strategy Experiments
	3.2 Experiments of Beam Settings
	3.3 Experiments on the Number of Beams
	3.4 Experiments on Treatment Positions
	3.5 The Best Model in Each Series of Experiments

	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


