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GenomicSuperSignature facilitates interpretation of
RNA-seq experiments through robust, efficient
comparison to public databases

34

Sehyun Oh® ', Ludwig Geistlinger?, Marcel Ramos® !, Daniel Blankenberg , Marius van den Beek>,

Jaclyn N. Taroni®, Vincent J. Carey’, Casey S. Greene® 8, Levi Waldron® "° & Sean Davis® 82

Millions of transcriptomic profiles have been deposited in public archives, yet remain
underused for the interpretation of new experiments. We present a method for interpreting
new transcriptomic datasets through instant comparison to public datasets without high-
performance computing requirements. We apply Principal Component Analysis on 536 stu-
dies comprising 44,890 human RNA sequencing profiles and aggregate sufficiently similar
loading vectors to form Replicable Axes of Variation (RAV). RAVs are annotated with
metadata of originating studies and by gene set enrichment analysis. Functionality to
associate new datasets with RAVs, extract interpretable annotations, and provide intuitive
visualization are implemented as the GenomicSuperSignature R/Bioconductor package. We
demonstrate the efficient and coherent database search, robustness to batch effects and
heterogeneous training data, and transfer learning capacity of our method using TCGA and
rare diseases datasets. GenomicSuperSignature aids in analyzing new gene expression data in
the context of existing databases using minimal computing resources.
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ARTICLE

he computational infrastructure and skills currently

required to leverage the vast quantities of publicly available

transcriptomic data render such analyses infeasible for
most basic, translational, and clinical researchers. Those who
wish to do so must often turn to well-funded computational
collaborators with access to significant compute resources in
order to provide context and aid in interpreting new experiments.
Yet, as public data resources grow, there is a critical need to
reduce computational burdens to their application while
increasing the breadth of data resources being integrated and
analyzed.

Dimensionality reduction has been broadly adopted to trans-
form large transcriptomes onto a smaller number of latent vari-
ables representing co-expressed transcripts. Many dimensionality
reduction approaches, differing in the optimization and con-
straint criteria, are available! and there have been multiple
attempts to detect biological and technical signals through these
lower-dimensional, latent variable representations. Gene co-
expression can result from shared function or regulation?, asso-
ciation with tissue composition or cell type3, and technical batch
effects®. In the confluence of these factors, dimensionality
reduction can assist interpretability and reduce the burden of
multiple hypothesis testing, but can also lead to incomplete or
misleading interpretation. The valid interpretation would be
improved by comparison of latent variables in new datasets to
those also present in public transcriptome databases.

Classic methods of dimensionality reduction such as Principal
Component Analysis (PCA) and Non-negative Matrix Factor-
ization (NMF) remain widely used in their original form and as
bases for newer methods. For example, Single Cell Coordinated
Gene Activity in Pattern Sets (scCoGAPS) is an NMF method
optimized for large, sparse single-cell RNA sequencing datasets®.
scCoGAPS recovers features in a source dataset and then projects
a new dataset onto this learned latent space through projectR>®.
This approach requires users to train their own model and mostly
focuses on single-cell RNA sequencing datasets with similar
biology. Pathway-Level Information Extractor (PLIER) aims to
extract biologically meaningful and interpretable signatures from
high dimensional molecular data by identifying latent variables
that map to a single gene set or a group of highly related gene sets
with positive correlations”. MultiPLIER applies the PLIER
approach to transfer learned patterns from a large public dataset
to rare diseases®. Other tools focus on recovering consistent sig-
nals from multiple datasets across distinct platforms®10,
increasing interpretability!!, simple database search!2, or transfer
learning between datasets of a specific type!3!4. However, none of
these tools enable a routine exploratory analysis of new studies
through comparison to large public transcriptome databases
(Supplementary Note 1). Also, these tools do not provide a
reference catalog for transfer learning from large public databases,
or in the case of MultiPLIER, require substantial computing
resources and bioinformatics expertise.

Here, we introduce GenomicSuperSignature, a toolkit for
interpreting new RNA-seq datasets in the context of a large-scale
database of previously published and annotated results. As an
exploratory data analysis tool, GenomicSuperSignature matches
PCA axes in a new dataset to an annotated index of Replicable
Axes of Variation (RAV) that are represented in previously
published independent datasets. GenomicSuperSignature also can
be used as a tool for transfer learning!®, utilizing RAVs as well-
defined and replicable latent variables defined by multiple pre-
vious studies in place of de novo latent variables. The interpret-
ability of RAVs is enhanced through annotations by MEdical
Subject Headings (MeSH) and Gene Set Enrichment Analysis
(GSEA). Through the use of pre-built, pre-annotated, dimension-
reduced RAVs, GenomicSuperSignature leverages knowledge

from tens of thousands of samples and from PubMed and
MSigDB!6, to the dataset at hand within seconds on an ordinary
laptop. We demonstrate these functionalities in colorectal carci-
noma, breast invasive carcinoma, systemic lupus erythematosus,
and rare inflammatory disease. GenomicSuperSignature is
implemented as an R/Bioconductor package for straightforward
incorporation into popular RNA-seq analysis pipelines.

Results

The current RAVmodel is trained on 536 studies containing
44,890 human RNA sequencing profiles. This RAVmodel is
associated with 18,798 (4,430 unique) MeSH terms and 70,687
(1,784 unique) MSigDB curated (C2) gene sets. This integration
of data resources (Fig. 1b) is accompanied by tools in the Gen-
omicSuperSignature R/Bioconductor package for the interpreta-
tion of new datasets (Fig. la, Supplementary Fig. 1c). We
demonstrate this application of public data in three examples.
First, using TCGA datasets, we show that new data can be rapidly
associated with related studies, gene sets, and MeSH terms. Sec-
ond, we show that the RAVmodel trained from diverse RNA-seq
experiments identified colon cancer transcriptome subtypes more
closely associated with clinicopathological variables than the
subtypes previously identified by a meta-analysis of a focused
colorectal carcinoma (CRC) microarray compendium. Lastly, we
show that neutrophil counts of two independent datasets can be
interpreted and inferred through a single RAV, providing a
quantitative measure of neutrophil count from transcriptome
data. These examples, along with sensitivity analyses and simu-
lations, demonstrate that the RAVmodel and associated Geno-
micSuperSignature software (see Supplementary Note 2 for
implementation details) constitute robust, general-purpose
methods for the interpretation of transcriptome data.

Sensitivity analysis and simulation. Model training methods
were optimized for robustness, simplicity, computational cost,
and validity (see Methods). Briefly, the RAVmodel was trained on
the RNA-seq Sample Compendia of refine.biol”. We analyzed
TPM count data using PCA following log-transformation, then
identified clusters of similar principal components (PCs) from
independent datasets using hierarchical clustering on Spearman
distance and ward.D agglomeration. This approach was com-
pared to alternatives based on (1) ability to group synthetic true-
positive PCs, (2) separation of synthetic true-negative PCs added
to training data, (3) magnitude of changes in the results com-
pared to the simplest method, and (4) maintenance of RAVs
identified from a focused training dataset when adding unrelated
datasets. Alternative approaches considered but not selected for
training the final model included NMF, Independent Component
Analysis (ICA), PLIER7 and MultiPLIER®, Variance-Stabilizing
Transformation (VST)!8, combining training datasets into a
single dataset instead of analyzing them independently, increasing
the number of PCs included per dataset, and alternative clustering
algorithms including graph-based clustering. These assessments
are described in the “Build RAVmodels” section of the Methods.

The RAVmodel. A RAVmodel is composed of an index of RAVs
(RAVindex), model metadata, and annotation modules linked
through RAVs (Supplementary Fig. 1b). As detailed in Methods,
each of 536 studies were subjected to PCA and the resulting
10,720 PCs were then clustered to produce RAVs, a vector con-
taining the average of similar loadings collected from distinct
studies. The current RAVindex has 4764 RAVs and 1378 are
‘single-element’ clusters (ie., a cluster with only one PC). By
definition a single-element cluster is not a ‘repetitive’ signal,
leaving only 3386 RAVs, though we will continue to refer to all
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Fig. 1 Overview of GenomicSuperSignature. a Schematic illustration of RAVmodel construction and GenomicSuperSignature application. Building the

RAVmodel (gray) was performed over several days on 24 cores with 128 Gb

memory. Users can apply RAVmodel on their data (red) using the

GenomicSuperSignature R/Bioconductor package (blue), which operates on a time scale of seconds for exploratory data analysis (orange) on a typical
laptop computer. b Information assembled as RAVmodel, a single R object. RAVmodel connects different public databases and prior information through
RAVindex (Supplementary Fig. 1b), creating the interconnected resources illustrated here. Through GenomicSuperSignature R/Bioconductor package and
the accompanying RAVmodel, users can instantly access and explore the diverse public databases from multiple entry points such as gene expression
profiles, publications, study metadata, keywords in MeSH terms and gene sets.

clustered PCs, including single-element clusters as RAVs. Thus,
we compressed the information from 44,890 samples into 3386
RAVs, which is less than 1/10 of the initial number of samples.
Also, 417 out of 536 training datasets have 40,746 genes and the
other 119 training datasets have 41,255 genes, while the
RAVindex uses only 13,934 common genes among the top 90%
varying genes of all samples. Thus, our method achieves an effi-
cient data compression, maintaining significant information in
~3% of the initial volume of the training data.

The distribution of the number of PCs in RAVs shows that
most RAVs consist of a small number of clustered PCs
(Supplementary Fig. 4). When we exclude single-element clusters,
about 65% of RAV's (2212 out of 3386) are composed of two PCs.
The mean cluster size is 2.759 PCs per RAV with the largest
cluster containing 24 PCs. Interestingly, the proportion of
variance explained by PCs varies systematically with the number
of PCs in the RAVs. The majority of PCs in one- and two-
element RAVs, on average, explain a relatively low proportion of
variance with an increasing proportion of PCs explaining more
variance as RAV cluster size increases (Supplementary Data 3).
This suggests that RAVs from small clusters tend to represent
weak and less common signals. We chose to propagate the ‘single-
element’ RAVs into our final models for two reasons: (1) If any
new data is validated by those ‘single-element’ RAVs, they
become ‘repetitive’ signals and thus, could lead to new hypotheses
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and (2) by keeping all RAVs, we include all potential PCs in the
RAVmodel and support different use cases. Since metadata
associated with all RAVs are readily accessible, end users can filter
downstream results based on cluster sizes or other RAV
properties.

We assess the number of enriched gene sets for each RAV from
‘RAVmodel_C2’ annotated with MSigDB C2 gene sets and
‘RAVmodel_PLIERpriors’ annotated with three gene sets pro-
vided through PLIER package (see Methods). About 40% of
RAVs in RAVmodel_C2 and 50% of RAVs in RAVmodel_-
PLIERpriors do not have any enriched pathway and the majority
of them are one- or two- element clusters (Supplementary Fig. 5),
suggesting that the smaller clusters are less likely to represent
biological features. Because there are RAVs annotated with only
one input annotation, MSigDB C2 or PLIERpriors, we include all
the RAVs to make our model cover diverse annotation databases.
We further evaluate the scope of biological features represented
by RAVmodel through two model validation measures, pathway
coverage and pathway separation, used to evaluate MultiPLIER
model®. Pathway coverage is defined as the proportion of
pathways annotating RAVs out of all the gene set terms provided.
Pathway coverage of RAVmodel_C2 is 0.32. The recount2_Mul-
tiPLIER has the pathway coverage of 0.42 while the RAVmo-

del_PLIERpriors which uses the same gene set as
recount2_MultiPLIER has 0.64 pathway coverage. Pathway
3
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separation is defined as the ability of the model to keep non-
overlapping signatures that can differentiate biologically similar
pathways. Three biological subjects were tested on RAVmodel_-
PLIERpriors - type I versus type II interferon, neutrophil versus
monocyte, and Gl versus G2 cell cycle phases. RAVmodel_-
PLIERpriors can successfully separate them either with the top
one or the top five enriched pathways.

Redundancy within the cluster is defined as the cluster
containing more than one PC from the same study. The majority
of RAVs (78%, 2628 out of 3386 non-single-element RAVs)
consist of PCs from unique studies. 622 non-single-element
RAVs are composed of only one study and 80% of them have no
or only one MSigDB C2 pathway enriched.

To guide the interpretation, GenomicSuperSignature gives a
message when the output includes any of the following RAVs: (1)
single-element RAVs, (2) RAVs with no or too-many enriched
pathways, where ‘too-many’ is defined as 5% of input gene sets
(276 and 31 for MSigDB C2 and PLIERpriors, respectively), (3)
non-single-element RAVs constructed from a single study. These
criteria together include 2557 RAVs.

Connecting new data with the existing databases. To demon-
strate the ability to match datasets under new analysis to relevant
published datasets, we applied RAVmodel to five TCGA datasets
(Fig. 2a). Based on the correlation to principal components of
these datasets, we identified RAVs specific to breast invasive
carcinoma (RAV221 and RAV868) and to colon and rectal ade-
nocarcinoma (RAV832). When RAVmodel was applied to the

Breast Invasive Carcinoma (TCGA-BRCA) dataset, RAV221 was
assigned with the highest validation score (Fig. 2b, Supplementary
Table 1) and the associated MeSH terms were mostly breast-
related terms, such as ‘breast’ and ‘breast neoplasms’ (Fig. 2c,
drawWordcloud function). We extracted three breast-cancer
studies contributing to RAV221 (Fig. 2d, findStudiesInCluster
function). GSEA annotations on RAVs were queried and the top
10 enriched pathways were all breast-cancer associated (Fig. 2e,
subsetEnrichedPathways function). We also checked RAV832 on
its association with Colon Adenocarcinoma (TCGA-COAD) and
Rectum Adenocarcinoma (TCGA-READ) datasets. RAV832 was
assigned with the second-highest validation score for both COAD
and READ datasets (Supplementary Fig. 6a, 7b, respectively) and
contained MeSH terms such as ‘colorectal cancers’, ‘colon’, and
‘adenocarcinoma’ (Supplementary Fig. 6¢c). We also recognized
that three out of five training data in RAV832 directly represented
colon-associated illnesses (Supplementary Fig. 6d) and the top
enriched gene set was an upregulated pathway in colorectal
adenoma (Supplementary Fig. 6e). In summary, we confirmed
that RAVmodel serves as a specific and robust index, coherently
connecting expression profile, gene sets, related studies and their
associated metadata (Fig. 1b), ultimately enhancing the inter-
pretation of new datasets in the context of existing databases.

RAYVs to characterize colorectal cancer. To compare the utility of
GenomicSuperSignature relative to the focused use of data from a
single disease, we compared RAVs to two previous studies that
employed CRC gene expression databases to identify CRC molecular
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Fig. 2 Connecting new datasets to existing databases. a GenomicSuperSignature provides a rich resource for understanding new or user-supplied
datasets in the context of existing datasets summarized in the RAVmodel. a Validation of multiple TCGA RNA-seq datasets. Each dataset was subjected to
PCA and Pearson correlation coefficients between top PCs and all possible RAVs were calculated. RAVs with Pearson coefficients above 0.7 in at least one
dataset were displayed here. RAV221 and RAV868 indicate association with breast cancer while RAV832 is associated with colon and rectal cancer.
(COAD: Colon Adenocarcinoma, BRCA: Breast Invasive Carcinoma, LUAD: Lung Adenocarcinoma, READ: Rectum Adenocarcinoma, UCEC: Uterine Corpus
Endometrial Carcinoma) b Validation of TCGA-BRCA. From panel (a), we showed RAV221 is associated with breast cancer and confirmed RAV221 is one
of the top validated RAVs for TCGA-BRCA. Top 5 validated RAVs (score, bottom panel) and their average silhouette width (avg.sw, top panel) are shown.
¢ A word cloud of MeSH terms associated with RAV221. We collected MeSH terms assigned to the publications belonging to RAV221 and weighted them
based on their prevalence and the contribution to any given RAV. This word cloud shows that RAV221 is heavily composed of principal components from
studies of breast neoplasms. d Three studies contributing to RAV221. e Top 10 enriched pathways in RAV221.
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Fig. 3 Sample scores for disease subtyping and metadata characterization. Sample scores from RAV834 and RAV833 were assigned to 3567 tumor
samples from 18 colorectal carcinoma (CRC) studies. a All the sample from 18 datasets were assigned to either (i) one of the 4 previously proposed
Consensus Molecular Subtypes (CMS) subtypes by CRC Subtyping Consortium (labeled with non-gray colors) or (ii) not assigned to a CMS subtype
(gray), which comprised of 90 groups (5 subtype groups for 18 datasets). Each of these 90 groups is represented by the mean (point) and standard
deviation (error bar) of sample scores. CMS subtypes separate when plotted against RAV834,/833 coordinates. We further evaluated the capacity of RAVs
to demonstrate clinicopathological characteristics of colon cancer. b Clinical phenotypes were regressed on discrete CMS subtypes and RAV834,/833-
assigned sample scores as covariates. Likelihood-ratio tests (LRTs) were used to compare the full model to a simplified model containing only CMS
subtype (CMS, left box) or RAV834,/833-assigned sample scores (RAV, right box) as predictors. RAV834/833-only model shows -log10p-value near O,
implying that CMS is not providing additional information. ¢ The same regression and LRTs as in panel (b) were done using PCSS1/2 and RAV834,/833-
assigned sample scores as covariates. RAV834,/833 outperforms PCSS1/2 on explaining colon cancer phenotypes except tumor location. Boxplot statistics

are summarized in Supplementary Data 5 and raw data are included in Supplementary Data 6.

subtypes. The CRC Subtyping Consortium used 18 CRC datasets
from multiple platforms comprising 4151 patients to define four
discrete Consensus Molecular Subtypes (CMS) observed across
numerous patient cohorts!>20. Ma et al. subsequently proposed a
continuous scoring system called PC Cluster Subtype Scores (PCSS)
based on an analysis of 8 CRC microarray datasets comprising
1,867 samples and found it was more closely correlated to micro-
satellite instability (MSI)2122, grade, stage, and tumor location!%20,
Importantly, these previous efforts both employed curated databases
of only CRC transcriptomes, whereas the training set of the current
RAVmodel consists of less than 2% CRC studies (Supplementary
Data 2). We identified the RAVs most highly associated with CMS
subtypes (RAV834/833) and PCSSs (RAV1575/834) (Supplementary
Note 3) and confirmed that these RAV pairs showed comparable or
higher performance on colon cancer subtyping than CRC subtyping
efforts defined by bespoke methods in focused datasets (Fig. 3a,
Supplementary Fig. 7a).

Using training and validation data of the original CRC studies,
we compared associations between different subtype models and
RAVs with the same clinicopathological variables. Notably, these
data were not part of RAV training and are microarray datasets
whereas the RAVs were trained exclusively from RNA-seq data.
We used the likelihood-ratio test (LRT) to compare the different
subtype models for association with clinicopathological
variables!®. A p-value near 1 (—logp-value near 0) means that
no additional information is provided by a full model composed
of two subtype definitions compared to a model with only one.
CMS-associated RAVs performed better than discrete CMS on all

four phenotypes and also outperformed PCSSs except for tumor
location (Fig. 3b, c). Interestingly, PCSS-associated RAVs were
still better than CMS but slightly worse than PCSSs, while CMS-
associated RAVs were better than both CMS and PCSSs,
indicating that RAVs contain more comprehensive information
than PCSSs (Supplementary Fig. 7b, c). This superior perfor-
mance became more significant using only the 10 original
validation datasets, excluding 8 datasets used to train the PCSS
model (Supplementary Fig. 8). In conclusion, RAVs trained from
heterogeneous datasets, not specific to CRC, captured biologically
relevant signatures for CRC as well or superior to focused efforts
using CRC-specific databases, suggesting that RAVs are of general
use and can be applied to describe other diseases as well.

Identifying common biological attributes across different
datasets. For practical and technical reasons, biological datasets
often contain missing information or signals buried in noise.
GenomicSuperSignature can fill out those gaps by uncovering
weak or indirectly measured biological attributes of a new dataset
by leveraging the existing databases. To evaluate this transfer
learning aspect of the GenomicSuperSignature, we compared the
neutrophil count estimation by RAVs across two different
datasets® - systemic lupus erythematosus whole blood (SLE-
WB)?3 and nasal brushing (NARES)?* datasets. We searched for
the SLE pathology-relevant RAV in three different ways using the
SLE-WB dataset?3. First, we identified RAV1551 based on the
highest validation score with the positive average silhouette width.
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Fig. 4 Estimate biological features of a new dataset using the signatures learned from public databases. RAVs encompass biological signals applicable
across different platforms and independent datasets. We demonstrate this transfer learning capacity of RAVs by identifying the neutrophil-associated RAV
from systemic lupus erythematosus whole blood (SLE-WB) data and using the same RAV to analyze nasal brushing (NARES) dataset. a Neutrophil counts
of 853 samples from the SLE-WB dataset were plotted against RAV1551-assigned sample scores. b Neutrophil count estimates by MCPcounter were
plotted against sample scores assigned by RAV1551. ¢ Neutrophil count of 76 NARES samples were estimated by MCPcounter and plotted against
RAV1551-assigned sample scores. The shaded area is the 95% confidence interval for predictions from a linear model.

Second, we searched for the keyword, neutrophil, in the top three
enriched pathways of all RAVs. Thirteen RAVs, including RAV1551,
had two keyword-containing enriched pathways. Lastly, we used the
neutrophil count of the SLE-WB dataset to find the metadata-
associated RAV. For the continuous variables like neutrophil count,
we compared the R? between the target variable and all RAVs, where
RAV1551 showed the maximum RZ, 0.395 (Fig, 4a). A neutrophil is
a terminally differentiated cell type and potentially under-detected in
the active gene expression profile, so we used the neutrophil estimate
from MCPcounter?> and further evaluated the correlation between
the RAV1551 score and neutrophil estimate®. A stronger correlation
between the RAV1551 score and the neutrophil estimate was
observed (Fig. 4b). We concluded that RAV1551 is the SLE
pathology-relevant RAV, specifically associated with the neutrophil
counts, and tested whether this information can be expanded
beyond the SLE dataset. For that, we applied RAV1551 on the
NARES dataset, which is a gene expression profile of nasal brushings
obtained from granulomatosis in polyangiitis (GPA) patients, a
condition that causes inflammation of blood vessels affecting ears,
noses, throats, lungs, and kidneys?%. RAV1551 was not a top vali-
dated signal, ranked 14th with the validation score 0.41 with PC1 of
NARES dataset, implying that neutrophil phenotype is not a major
feature of this dataset. However, R? between the neutrophil estimate
of NARES dataset and RAV1551 score was 0.84 (Fig. 4c). This
suggests that RAV can serve as a new measure to compare different
datasets and provide an interpretation of potentially subtle biological
signals (see Supplementary Notes 4 and 5 for additional examples).

Discussion

A key innovation of GenomicSuperSignature is the creation of
RAVindex consisting of principal components repeatedly
observed in independent analysis of multiple published datasets
(Fig. 1a). Compared to approaches that merge training data, this
strategy is highly scalable, can identify latent variables specific to
small training datasets, and ignores technical artifacts that are not
observed across multiple datasets. The RAVindex is annotated
with publication citations, MeSH terms, and gene sets, all of
which are stored as the ‘RAVmodel’. Assembly of this informa-
tion through the RAVmodel creates an information resource that
can be rapidly applied to new datasets on a standard laptop
(Fig. 1b). GenomicSuperSignature augments standard tran-
scriptomic exploratory data analysis by providing modes of

interpretation and hypothesis testing that were previously
impractical to apply.

GenomicSuperSignature contains information learned from a
large body of existing studies that can be “transferred” to newly
collected data. For example, the RAVindex contains cancer type-
specific RAVs (Fig. 2a), including RAVs that are more closely related
to clinicopathological variables of CRC than the transcriptome
subtypes previously identified through intensive analysis of CRC-
specific databases bespoke subtyping efforts (Fig. 3, Supplementary
Fig. 7). Such transfer learning is broadly applicable but particularly
beneficial to the study of rare diseases and to small datasets where
weak and under-represented, but biologically meaningful, signals
can be identified®. To demonstrate this, we identified a RAV that
was highly correlated to neutrophil content using SLE-WB dataset
not in the model training data and used this RAV to estimate the
neutrophil content in NARES dataset that lacks neutrophil count
information (Fig. 4). In addition to data inference, GenomicSu-
perSignature can be useful for analyzing disease progress, comparing
phenotypes across independent datasets, and identifying weak bio-
logical signals. The current RAVindex contains 4764 RAVs and
3386 out of them are observed in two or more independent datasets,
which can be expected to have many other such applications
through transfer learning.

GenomicSuperSignature is expected to be robust to batch
effects because it characterizes clusters of highly similar latent
variables from two or more independent studies, enabling it to
ignore any signatures that are unique to a single study. We
demonstrated the robustness of GenomicSuperSignature through
sensitivity analysis and benchmarking against prior disease-
specific analyses®1°. While trained exclusively on RNA-seq
datasets, the performance of GenomicSuperSignature was not
diminished when applied to microarray datasets. Furthermore,
we observed transfer learning functionality compatible with the
results from recount2-MultiPLIERS, even though RAVmodel was
built via a different matrix decomposition method, was trained at
the sample level instead of dataset level, and used training data-
sets with only ~10% overlap of samples (Supplementary Table 3).
We conclude that GenomicSuperSignature is robust to different
technological platforms and to the heterogeneity of training
datasets, and enables interpretation of divergent datasets without
subject-specific models.

GenomicSuperSignature offers significantly improved usability
over the existing tools by adopting user-friendly application
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schemas. First, the pre-built models greatly reduce computational
requirements for users: whereas training the current model took
several days on 24 cores with 128 Gb memory, its application can
be performed in seconds on a conventional laptop computer. Its
implementations as an R/Bioconductor package2® and a Galaxy
tool?” allow ready incorporation into widely used RNA-seq
analysis pipelines and enables a large research community to
reuse public data for more accurate analyses of new data.

The approach taken for GenomicSuperSignature is flexible and
can be extended to other large publicly available databases. We
plan to develop RAVmodels trained on microarray, single-cell
RNA sequencing, and spatial transcriptomic data, and extend the
approach to model organisms and metagenomic data from
microbiome studies. Cross-species RAVmodels can help extend
the discoveries from model organisms to humans?®. These
planned efforts will generate an expanded information resource
with broader applicability and enhanced utility. For example, the
GSEA annotation part of the model is independent of the
RAVindex building process, so we can easily build multiple ver-
sions of RAVmodel with different gene sets or even any combi-
nation of gene sets. Also, we can expand RAVmodel with
additional information on the training data because RAVs
maintain the information on their source data. While the col-
lection of RAVmodels grows as described, the GenomicSu-
perSignature package will be maintained as a stand-alone toolbox
equally applicable to different RAVmodels. GenomicSu-
perSignature and its associated data resources will provide bio-
medical researchers with a new set of data exploration tools
exploiting knowledge gained from hundreds and eventually
thousands of existing public datasets.

Methods

Source data. We used human RNA sequencing datasets from RNA-seq Sample
Compendia in refine.bio!’, which hosts uniformly processed gene expression data
from EBI’s ArrayExpress, NCBI's GEO, and SRA. Data were downloaded on April
10th, 2020, and the datasets for model training were selected based on the following
criteria: (1) Exclude studies with more than 1,000 samples because they are more
likely to be single-cell RNA sequencing datasets. (2) Exclude studies assigned with a
MeSH term, “Single-Cell Analysis”. (3) Exclude studies with fewer than 50 suc-
cessfully downloaded and imported samples (Supplementary Data 1, Supplemen-
tary Fig. 2). Criteria 1 and 2 are not meant to entirely eliminate single-cell data but
do serve to reduce the chance of including large, sparse datasets for which we plan
to develop more specialized approaches. After filtering, the complete compendium
includes 536 studies (defined as a single SRA study; Supplementary Data 2)
comprising 44,890 samples.

Processing training datasets. Training data included each sample’s quant.sf file from
Salmon outputs?®, not aggregated or normalized. We imported quant.sf files using
tximport, scaling transcripts-per-million (TPM) using the average transcript length
across samples and the library size (“lengthScaledTPM”)%, followed by the log2
transformation. Ensembl transcript names were converted into gene symbols using
the AnnotationDbi package®!. Row normalization was done on all samples toge-
ther, not at the individual study level, because correcting variability at the study
level could remove the signals we want to capture32. For model building, we used
13,934 common genes among 536 studies’ top 90% varying genes, where the
variation cutoff was based on their study-level standard deviation (Supplementary
Fig. 1a).

Build RAVmodels. We performed PCA on pre-processed gene expression matrices
independently for each study using the stats:prcomp R function for each gene,
centered but not scaled. Loading vectors of the top 20 PCs from 536 studies (total
10,720 PCs) were clustered via hierarchical clustering. For hierarchical clustering,
we calculated the distances between loadings using Spearman’s correlation coeffi-
cient and clustered them with the ward.D agglomeration method. The number of
clusters was set to the minimum that can separate up to 50 negative controls
(Supplementary Fig. 3). PCs in each cluster were averaged and the resulting ‘genes
x averaged loadings’ matrix, RAVindex, was combined with associated metadata,
GSEA, and MeSH annotations into a unified data structure that we term a PCA-
GenomicSignatures (Supplementary Fig. 1b). The following sections detail exten-
sive sensitivity analyses and optimizations to choose appropriate modeling
approaches and parameters.

Datasets for method choice and optimization: During the optimization process for
RAVmodel building, we used the small, well-characterized datasets: 8 colon cancer
datasets from curatedCRCData3?, 10 ovarian cancer datasets from
curatedOvarianData>4, and recount2 datasets>® used for the recount2-MultiPLIER
model®. Training datasets for the recount2-MultiPLIER model and the current
version of RAVmodel are partially overlapping: the recount2-MultiPLIER model
used 37,027 runs from 30,301 unique samples from 1466 studies and Geno-
micSuperSignature was constructed from 44,890 runs from 34,616 unique samples
from 536 studies. Among them, only 6839 runs from 5260 unique samples from
87 studies were used by both models. In addition to the different combinations of
these datasets, we created synthetic datasets that served as positive and negative
controls.

Dimensionality reduction methods: We assessed multiple dimensionality reduction
methods for RAVindex building. Non-negative Matrix Factorization (NMF) was
excluded because there is no clear criterion to select representative components, such
as variance explained by each principal component in PCA. Non-orthogonal rela-
tionship between components captured by NMF is potentially a more relevant
representation of biological data, but by combining replicative principal components,
we overcome the orthogonality constraint imposed by PCA. We also ruled out
independent component analysis (ICA) because it separates independent signals to
reduce the effect of noise or artifacts3®, which is different from our goal to extract
biological signals, and, like NMEF, it also does not rank its components. We, therefore,
selected two dimensionality reduction methods, PCA and PLIER’, and investigated the
types of signatures when they were applied at the dataset level or sample level. This
comparison was done across four different conditions: perPCA (PCA on each dataset
and cluster top PCs), megaPCA (PCA on all samples), perPLIER (PLIER on each
dataset and cluster latent variables (LVs, equivalent to principal components from
PCA)), and megaPLIER (PLIER on all samples, identical to MultiPLIER). One of the
downsides of the megaPLIER approach was that the direct link between LVs and the
training data was not available. Also, the annotation database was inseparable from the
model building, making it harder to scale. The perPLIER approach blended LVs in
each cluster and lost distinct signatures. Like megaPLIER, megaPCA did not maintain
the links between signature and its source data. Additionally, megaPCA picked up only
a handful of strong signatures in top PCs, which we can still capture through the
perPCA approach without losing weaker signatures. Overall, we choose the perPCA
approach for our model building because it is more scalable, keeps the link between
signature and its source data, and captures both pan-dataset and per-dataset signatures.

Data transformation: We applied log2 transformation and row normalization
across all samples, not at the dataset level, to maintain the differences in scale
between the datasets. Variance-Stabilizing Transformation (VST) was excluded
because it requires significantly more computing resources - over 200 times longer
user CPU times, without any meaningful improvement on capturing biological
signatures over log2 transformation because we removed low variable genes from
our training datasets®”.

Subset genes: We searched for the minimum set of genes carrying the replicable
biological signals, because more genes require more computing resources to pro-
cess and some genes were measured only in certain training datasets. Also, low- or
non-expressing genes can be indistinguishable from the background noise and
including them could make interpretation harder. First, we examined the models
built from two sets of common genes subset at the different entities—among
training datasets versus between training datasets and annotation databases. The
model using the common genes from both training datasets and annotation
databases didn’t improve the accuracy of GSEA compared to the the other and
made the model building process less scalable because RAVindexes need to be
rebuilt for RAVmodels with different annotation databases even for the same
training datasets. Next, instead of using a fixed cutoff for low-expressing’ genes, we
selected genes based on their expression variance within the dataset because we
suspect that genes with a stable expression level within a dataset convey less
information to capture. So for the RAVmodel building, we used the common genes
among the top 90% varying genes from each training dataset.

The number of PCs to collect: We decided on the number of PCs to collect based
on the following four reasons. First, a threshold of 20 PCs is adequate for stability
of the RAV model, particularly for larger clusters of 3+ PCs. Most of the lower PCs
(PC11-20) are in single-element (22%) or two-element (53%) clusters. We expect
further relaxing the cutoff would contribute even less to clusters of 2+ size, which
we validate using two RAVmodels consisting of (1) top 10 PCs (RAVmodel_10) or
(2) top 20 PCs (RAVmodel_20) from each dataset. We chose the most similar pairs
of RAVs between 2382 RAVs (RAVmodel_10) and 4764 RAVs (RAVmodel_20)

using the Pearson coefficient. 79% of RAVs in RAVmodel_10 have a similar or

identical RAVs in RAVmodel_20 with the Pearson coefficient > 0.7 and the average
Pearson coefficient for the RAVs with more than 2 elements is 0.86, suggesting that
the model is robust to cutoffs of > =10 PCs, and that the added computational cost
of a cutoff larger than 20 would provide little or no benefit. Second, we chose the
top 20 PCs because they represent a majority of the gene expression variance in

each study—the median percentage of total variability represented 63%. Third, we
applied the elbow method to find the number of ‘significant’ PCs to collect, using the
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num.pc function implemented in the PLIER package with the following modifications”.
The PLIER:num.pc function applies z-score normalization, but because our method
does normalization with all samples combined, we removed this internal normalization
from PLIER:num.pc and provided the pre-normalized input data instead. The number
of significant PCs from this modified PLIER::num.pc function ranged from 5 to 45,
while the “elbow” of the scree plots was not always clear on manual inspection. We
chose the median value, 20, as a pre-set cutoff for the different training datasets. Using a
varying number of PCs would add complexity to the process that seemed unjustified
given that the variance explained by each PC does not vary much by study size, ranging
from 50 to 100 for our 536 training datasets. For example, after the 8th PC, less than 5%
of the variance was explained by a single PC for all 536 training datasets—the max-
imum variance explained by PC7 and PC8 are 5.1% and 4.6%, respectively. Finally, one
of the main works we benchmarked against was Ma et al., where the authors selected
the top 20 PCs for their model building to extract colon cancer-specific signatures.

Synthetic datasets as a negative control: We used the negative-control dataset to
explore different clustering methods and the optimum number of clusters for
hierarchical clustering. First, we constructed 50 synthetic datasets by randomly
selecting 50 samples from 44,890 samples. We scrambled genes in each of

50 synthetic datasets and added random values between —0.1 and 0.1. The mean
and standard deviation of 44,890 samples were used for row normalization of the
synthetic datasets. We confirmed that these synthetics datasets can serve as a
negative control based on the distance matrix: the minimum and maximum dis-
tance of PCls from the synthetic datasets ranged approximately between 1st and
3rd quarters of the distance distribution of PCs from the actual training datasets,
which we want to separate during the clustering process (Supplementary Fig. 3a).

Clustering methods: To group the replicative PCs, we tried centroid-based clus-
tering such as k-means and graph-based clustering, and connectivity-based clus-
tering like hierarchical clustering. We applied them on the top 20 PCs from 8 colon
cancer datasets and for evaluation, compared the cluster membership with the
previously identified signatures (PCSSs) using the Jaccard index. We also applied
the different clustering methods on the top 5 PCs from 10 positive and 10 negative
controls, which were synthetic datasets created through bootstrap and random
sample selection, respectively. We evaluated each clustering method based on how
often the top PCs from positive controls were clustered together and the top PCs
from negative controls were assigned to different clusters.

For the centroid-based clustering methods (k-means and k-medoids), we
searched the optimum number of clusters using multiple measures including the
elbow method, mean silhouette width, and within-cluster sum of squares. However,
the number of clusters required to separate unrelated PCs was too high to keep the
related PCs together, which could not be improved with different distance metrics.
We suspect that PCs from biological data do not possess a spherical or ellipsoidal
symmetry required for centroid-based clustering to work.

We evaluated graph-based clustering and hierarchical clustering with the
different combinations of distance metrics and agglomeration methods (for
hierarchical clustering) on the same datasets used for the centroid-based clustering
tests. From this evaluation, the clustering schema was narrowed down into two
versions: graph-based edge-betweenness clustering using edge weight by Spearman
correlation, and hierarchical clustering using Spearman distance and ward.D
agglomeration. When we applied graph-based clustering approaches to larger
datasets, however, there were scalability issues: it formed a very large cluster,
containing more than 5% of all PCs, that failed to group even the positive control
PCs due to the extreme distribution of the cluster sizes. So we decided to use
hierarchical clustering based on Spearman distance with ward.D agglomeration.

Choose the optimum number of clusters for hierarchical clustering: We collected
the top 20 PCs from 536 training datasets and PCls from varying numbers of
negative-control, synthetic datasets (10, 20, 30, 40, and 50) and performed hier-
archical clustering with the different numbers of clusters. Nine different cluster
numbers were applied to each datasets: those nine cluster numbers were
round({#0fPCs}/d), where d is 7, 6, 5, 4, 3, 2.75, 2.5, 2.25, and 2. All negative
controls were separated when d = 2.25, regardless of the number of negative
controls (Supplementary Fig. 3b, c). So for the current versions of RAVmodel, we
selected 4764 clusters (= round((20 x 536)/2.25)).

Model validity: To test whether heterogeneous datasets can maintain the signatures
from the focused dataset, we first built RAVindex from the focused training
datasets and gradually “contaminated” the training datasets with the unrelated
datasets. A rate of overlapping enriched pathways over correlated pathways was
monitored, from which we confirmed that our RAVindex building process reliably
maintains the dataset-specific signatures from the heterogeneous training datasets.

Annotate RAVs with gene sets. Gene Set Enrichment Analysis (GSEA) is a common
approach used to supply biological interpretation to lists or sets of genes®$-40 that
has also been used to interpret biological signals in principal components?!. We
subjected each RAV to GSEA to aid in interpreting the biological signals associated
with it. Genes were ordered by loading value from each RAV and supplied as a
geneList input for clusterProfiler:GSEA*2. We filtered enriched pathways with
Benjamini-Hochberg (BH) adjusted p-value < 0.05 and among them, collected the

pathways with the minimum g-values. The subset of GSEA results—NES,
Description, pvalue, and qvalues - were included in the RAVmodel. RAVmodels
used in this study are (1) RAVmodel_C2, which was annotated with Molecular
Signatures Database (MSigDB) curated gene sets (C2, version 7.1)3843, excluding
any MSigDB C2 gene set with fewer than 10 genes or more than 500 genes, and (2)
RAVmodel_PLIERpriors annotated with the three prior gene sets (blood-
CellMarkersIRISDMAP, cannonicalPathways, and svmMarkers) provided through
the PLIER package’ (Supplementary Table 2).

Annotate RAVs with MeSH terms. MeSH terms** were assigned to each study using
the NCBI Medical Text Indexer (MTI) tool%>. The relevance of MeSH terms in each
RAV was assessed through the bag-of-words model: all the MeSH terms associated
with the training datasets were considered as the ‘universe’ and each term in the cluster
was reverse-weighted by the frequency of the given term in the universe. MeSH terms
were also weighted by the variance explained by the principal component that they
came from. The significance of MeSH terms associated with each cluster was evaluated
based on their exclusivity. However, the simple sum of associated MeSH terms can be
inappropriate in some cases. For example, noise can be a predominant signal in small
clusters and common MeSH terms, such as ‘human’ or ‘RNA sequencing’ for the
current version of RAVmodel, can be overrepresented and silence the other terms. To
handle these extreme situations, we incorporated additional filtering and normalization
terms. If the cluster contains less than 8 PCs, we considered any MeSH terms
appearing half down of ‘cluster size x 0.5 as noise and removed them. If the cluster has
more or equal to 8 PCs in it, any MeSH terms appearing less than or equal to 4 times
were eliminated. These cutoff values for ‘noise’ can be customized by users to fit their
needs. We also provide the option to exclude potentially non-informative terms due to
the lack of specificity (e.g. ‘Human’ and ‘RNA sequencing’ for the current model) as
the ‘dropList’” in the GenomicSuperSignature package, which is customizable as well.
The remaining MeSH terms were scored as the sum of the variance explained by PCs
divided by the frequency of that term in the universe. This final score can be displayed
as a table or a word cloud, using meshTable or drawWordcloud functions, respectively.

Input datasets for validation. The GenomicSuperSignature can be applied to gene
expression profiles generated from both microarray and RNA sequencing with the
minimum pre-processing. The major requirement for inputs is that the gene
expression profile should approximate a normal distribution.

For validation, we used five TCGA RNA sequencing datasets (COAD, BRCA,
LUAD, READ, and UCEC) acquired from GSEABenchmarkeR*’. Any genes with
count-per-million (CPM) less than 2 were excluded, and the count matrix was
log2-transformed and centered but not scaled before PCA. Eighteen colon cancer
microarray datasets from curated CRCData were also used for validation?®. Missing
and infinite values were removed from these microarray data and the remaining
expression values were centered at each gene level. To evaluate the transfer learning
capacity, we used the pre-processed versions of NARES? and SLE-WB datasets?>.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data analyzed in this study are available in Zenodo with the identifier [https://doi.
org/10.5281/zenodo.6496611]47. Training datasets used for the current RAVmodel are

available at refine.bio RNA-seq sample compendia (https://www.refine.bio/compendia?
c=rna-seq-sample). Study accession numbers for the model training datasets are listed
under the ‘studyName’ column of Supplementary Data 1. The source data for a given

training dataset can be accessed and freely downloaded from the following link: https://
www.refine.bio/experiments/{studyNames}.

Code availability

The workflow to build the RAVmodel is available from https://github.com/shbrief/model
building which is archived in Zenodo with the identifier [https://doi.org/10.5281/zenodo.
649655218, All analyses presented here are reproducible using code accessible from https:/
github.com/shbrief/GenomicSuperSignaturePaper/ and archived in Zenodo with the
identifier [https://doi.org/10.5281/zen0odo.6496612]47. GenomicSuperSignature package for
this work is available at [https://doi.org/10.18129/B9 bioc.GenomicSuperSignature] .
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