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ABSTRACT

Non-coding RNAs are emerging as key players in
many fundamental biological processes, including
specification of higher-order chromatin structure.
We examined the implication of RNA transcribed
from mouse centromeric minor satellite repeats
in the formation and function of centromere-
associated complexes. Here we show that the
levels of minor satellite RNA vary during cell-cycle
progression, peaking in G2/M phase, concomitant
with accumulation of proteins of the chromosomal
passenger complex near the centromere. Consis-
tent with this, we describe that murine minor satel-
lite RNA are components of CENP-A-associated
centromeric fractions and associate with proteins
of the chromosomal passenger complex Aurora B
and Survivin at the onset of mitosis. Interactions of
endogenous Aurora B with CENP-A and Survivin are
sensitive to RNaseA. Likewise, the kinase activity
of Aurora B requires an RNA component. More
importantly, Aurora B kinase activity can be poten-
tiated by minor satellite RNA. In addition, decreased
Aurora B activity after RNA depletion can be specif-
ically rescued by restitution of these transcripts.
Together, our data provide new functional evidence
for minor satellite transcripts as key partners and
regulators of the mitotic kinase Aurora B.

INTRODUCTION

The centromeres of eukaryotic chromosomes are genomic
regions featuring a unique and specific chromatin archi-
tecture, necessary for proper chromosome segregation
during mitosis. The common trait of centromeres in

all species is the presence of nucleosomes containing a
specific variant of histone H3, the centromere protein A
(CENP-A) (1). Flanking pericentromeric regions are
devoid of CENP-A, but exhibit a high density of histone
H3 tri-methylated on its lysine 9 (H3K9Me3), consistent
with the heterochromatin nature of these domains (2).
In addition to CENP-A, numerous proteins identified as
essential for centromere assembly and function occupy
centromeric regions in a constitutive manner (3). In con-
trast, the Chromosomal Passenger Complex (CPC), com-
posed of Aurora B kinase and its regulatory subunits inner
centromere protein (INCENP), Survivin and Borealin,
shows dynamic changes in its subcellular localization in
a cell-cycle-dependent manner (4).

Sequences of centromeric DNA repeats are not con-
served among species, but transcripts originating from
them have been described in a broad range of organisms
(5-12). It remains unclear how these RNA participate in
the formation and/or stabilization of large-scale centro-
meric chromatin structures. However, in many chromatin
complexes, including pericentromeric heterochromatin,
RNA is an integral component (13,14).

The repeats of minor satellite DNA on mouse chromo-
somes are found at the primary constriction, adjacent to
repeats of major satellite that define pericentromeric
regions. We previously described new RNA transcribed
from minor satellite repeats and their accumulation on
chromocenters, which are clusters of several centromeres,
and proposed that they might participate in the formation
of specific centromeric complexes (15). We now report
that minor satellite transcripts are integral components
of the CENP-A chromatin fraction and associate with
endogenous CPC proteins Aurora B, Survivin and
INCENP, at the onset of mitosis. Moreover, these tran-
scripts potentiate Aurora B kinase activity on its mitotic
substrate, the histone H3. Together with the cell-cycle
regulated accumulation of minor satellite RNA during
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G2/M transition, our data provide new insights into the
functional implication of non-coding minor satellite
RNA in favouring Aurora B specific interaction with
CENP-A-associated chromatin domains and enzymatic
function at the onset of mitosis.

MATERIALS AND METHODS
Cell culture and synchronization

Murine Erythroleukemic (MEL) cells were grown in
RPMI-1640 medium (Gibco) supplemented with 10%
Fetal Calf Serum (FCS, Invitrogen). Exponentially grow-
ing MEL cells were stained with 5 pg/ml of Hoechst 33342
(Sigma) and sorted in different phases of the cell cycle by
Fluorescence Activated Cell Sorting (FACS) (Epics
ALTRA, Beckman Coulter) on the basis of their DNA
content. Exponentially growing MEL cells were arrested
in mitosis by 12 h treatment with 100 ng/ml of nocozadole
(Sigma).

Murine NIH/3T3 fibroblasts were grown in DMEM
(Gibco) supplemented with 10% FCS and were synchro-
nized in mitosis by mechanical shake off.

Cell-cycle stage was determined by flow cytometry
following cell fixation with 70% cold ethanol and propi-
dium iodide-staining PI (Sigma) 20 pg/ml, 0.1% Triton
X-100, 0.2 mg/ml RNaseA (Sigma).

MEL cells have a near-diploid karyotype whereas
NIH/3T3 cells contain hyper-tetraploid cells. Since tran-
scription of satellite sequences can be induced in stress
conditions (15-17), culture conditions were controlled
to ensure these cells have not undergone any stresses in
culture (lack of nutriments, heat shock, etc.).

RNA extraction and semi-quantitative RT-PCR

For cell-cycle analysis, total RNA was isolated with Trizol
reagent (Invitrogen) according to the manufacturer’s
instructions. Genomic DNA was removed by digestion
with 2U of DNasel (Ambion). cDNA were synthesized
from an equivalent of 500000 cells (Figure 1A) or
100000 cells (Figure 1B and C), using random hexamers
and Superscript Il reverse transcriptase (Invitrogen),
and amplified by PCR. The amount of input cDNA was
normalized to the signal obtained using primers that
amplify the mouse B-actin transcripts. All PCR assays
were calibrated to 23 cycles to stay in a range of linear
amplification for minor satellite RNA. When using lower
number of cells (100 000 cells) an additional hybridization
step was performed rather than increasing the number
of cycles.

The primers used in PCR or RT-PCR analysis were:
Mouse minor satellite:

forward 5-GAACATATTAGATGAGTGAGTTAC-3
and

reverse 5-GTTCTACAAATCCCGTTTCCAAC-3
Mouse B-actin:

forward 5-AAGAGCTATGAGCTGCC-3" and
reverse 5-ACTCCTGCTTGCTGATCC-3

Primers used to amplify mouse major satellite and
ribosomal DNA are described in ref. (18).

For Southern blot hybridization, the minor satellite
fragment used as a probe corresponds to region 20-100
of the consensus sequence (19) shown in Supplementary
Figure S4.

Antibodies

The primary antibodies used in the present study were
directed against CENP-A (ab33565, Abcam), H3K9Me3
(Upstate), H3Ac (Upstate), HP1y (Euromedex), HDACI
(2E10; Upstate), Aurora B (ab2254, Abcam), Survivin
(ab469, Abcam), INCENP (ab36453, Abcam),
H3K9Me3-S10ph (ab5819, Abcam) and Sir2 (Upstate).

Nuclear extracts and immunoprecipitation

Cells were resuspended in hypotonic buffer [10 mM Tris
pH 7.6, 10mM KCI, 1.5mM MgCl,, complete protease
inhibitors (Roche) in presence of 2mM Ribonucleoside
Vanadyl Complex-RNase Inhibitor (VRC, New England
BioLabs]. After disruption of cytoplasmic membranes
with a dounce, nuclei were extracted in ice-cold lysis
buffer (10mM Tris—-HCI pH 7.5, 5SmM EDTA, 150 mM
NaCl, 30mM sodium pyrophosphate, 50mM NakF,
I mM NaVOy, 10% glycerol, 1% NP40, 1 mM DTT and
complete protease inhibitors) in presence of 1U/ul
RNaseOut (Invitrogen) and sonicated (three pulses of
20s, 5W, Ultrasonic processor, Bioblock Scientific).
Magnetic protein-G beads (Dynabeads) were pre-
incubated with lysis buffer containing 200 pg/ml bovine
serum albumin (Pierce) and 0.2mg/ml yeast tRNA
(Ambion). Nuclear extracts were incubated for 2h at
4°C with antibody bound to the beads, in lysis buffer
containing 15pug/ml yeast tRNA, 1U/ul RNaseOut.
Beads were washed twice with lysis buffer adjusted to
300mM NaCl and once with lysis buffer in presence
of VRC.

For RNA NChIP, precipitated RNA was extracted with
Trizol reagent, digested with DNasel, and the totality of
precipitated RNA was reverse transcribed. To assess pres-
ence of minor satellite RNA in the precipitate, 1 pl of the
resulting cDNA was used for PCR analysis and 30 cycles
of PCR were performed.

For co-IP analysis, recovered proteins were analysed by
western blot using the indicated antibodies. RNaseA treat-
ment was performed with 100 pg/ml RNaseA (Ambion)
on nuclear extracts or after IP.

RNA pull-down

A scheme of the procedure is shown in Supplementary
Figure S4. One hundred and twenty base pair repeat
unit of minor satellite cDNA was generated by PCR
amplification and cloned into EcoRI-BamHI sites of
pcDNA3 vector (Invitrogen). Minor satellite RNA was
in vitro transcribed in both orientations using T7 or SP6
RiboMax large-scale production system (Promega). Four
hundred picomoles of RNA probe was annealed with
500 pmol of biotinylated oligonucleotide in 50 mM KCI,
1 U/ul RNaseOUT (Invitrogen), for 1h at RT. Different
types of biotinylated oligonucleotides were tested for their
ability to precipitate minor satellite RNA (Supplementary
Figure S4): a 2-O-methyl RNA oligonucleotide



complementary to regions 1-27 of minor satellite consen-
sus sequence and biotinylated in 5 (lane 1), a DNA oli-
gonucleotide complementary to regions 1-27 of consensus
sequence and biotinylated in 5" (lane 2), a DNA/locked
nucleic acids (LNA) mixmer oligonucleotide complemen-
tary to regions 4-27 of consensus sequence and biotiny-
lated in 3’ (lane 3), a DNA/LNA mixmer oligonucleotide
complementary to regions 89—115 of consensus sequence
and biotinylated in 3’ (lane 4) and a DNA/LNA mixmer
oligonucleotide complementary to regions 4-27 of consen-
sus sequence and biotinylated in 5’ (lane 5). As shown in
Supplementary Figure S4, the DNA/LNA mixmer oligo-
nucleotide complementary to regions 4-27 of consensus
sequence and biotinylated in 3’ (lane 3) retained more effi-
ciently minor satellite RNA and was further used in all
experiments. Streptavidin magnetic beads (Dynabeads)
were washed according to the manufacturer’s instructions
twice in 0.1 M NaOH, 0.05M NaCl and once in 0.1 M
NaCl and then incubated with the RNA /oligonucleotide
complex in binding/washing buffer (10 mM Tris—-HCI pH
7.5, 1mM EDTA, 1 M NaCl) for 30 min at RT. Pre-incu-
bated beads were washed twice in binding/washing buffer
and added to 4mg of nuclear extract in RNA binding
buffer (10% glycerol, 10mM HEPES pH 7, 150 mM
KCl, TmM EDTA, 0.5% TritonX-100) containing
15 pug/ml yeast tRNA, I mM DTT, 240 U RNaseOut for
2h at 4°C. RNA-bound proteins were washed twice with
RNA binding buffer adjusted to 300mM KCI and once
with RNA binding buffer before protein denaturation.
Precipitated proteins were then resolved on a gradient-
like SDS-PAGE (Prosieve, Cambrex), transferred on a
Hybond C-extra membrane (Amersham) and blotted
with the indicated antibodies.

Kinase assay

Immunoprecipitated Aurora B kinase was included into a
20 ul reaction containing 1 pg of canonical core histones
(Upstate), S0mM HEPES pH 7.5, 10mM MgCl,, | mM
DTT, 0.l mM NaVO,, 1mM NaF, 0.5ul of [y->*P]JATP
(PerkinElmer Life Sciences) and increasing amounts of
in vitro transcribed minor satellite RNA or B-tubulin
RNA. Protein samples were separated by 12% SDS-
PAGE and phosphate incorporation determined by phos-
phorimager (Typhoon 8600, Amersham Pharmacia
Biotech). For rescue experiment, RNaseA treatment was
performed after IP and kinase reactions were carried out
in presence of 1 U/ul RNaseOut and in vitro transcribed
minor satellite or B-tubulin RNA.

RESULTS
Levels of minor satellite transcripts vary with cell cycle

We previously reported that minor satellite transcripts
accumulate on chromocenters in a subset of cycling cells,
suggesting that levels of these RNA may vary during cell
cycle (15). We therefore analysed the levels of these RNA
in MEL cells sorted in G0/G1, S or G2/M phase
(Figure 1A). Semi-quantitative RT-PCR using primers
amplifying minor satellite transcripts was normalized
to the signal of a RT-PCR reaction amplifying mouse
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B-actin transcripts, whose levels do not change during
the cell cycle. RT-PCR analysis of minor satellite RNA
showed a long ladder of discrete bands differing by about
120bp consistent with transcription through multiple
tandem repeats of the 120-nt minor satellite unit, and
revealed that the levels of minor satellite transcripts were
barely detectable in G0/G1 phase, increased in S phase
and peaked in G2/M phase (Figure 1A).

MEL cells were then synchronized in G0/G1 phase
using FACS sorting and released in culture for 9h. Flow
cytometry analysis confirmed the synchronous progres-
sion of the sorted population through early and late S
phase, then G2 and mitosis, at 3, 6 and 9 h, respectively
after release in culture (Figure 1B). In agreement with the
results described above, RT-PCR analysis on total RNA
isolated at various time points after release in culture
showed that the levels of minor satellite RNA were
below detection levels in GO/G1 sorted cells, started to
increase 3h after release in culture, concomitantly with
entry of MEL cells into S phase, accumulated gradually
during the course of S phase and reached a maximum in
G2/M phase (Figure 1B). We then performed similar
experiments in a different murine cell line. NTH/3T3 cells
were synchronized in mitosis by mechanical shake-off and
cultured over a 2h time course that was sufficient for
the majority of the cells to complete mitosis and enter
the subsequent G1 phase of the cell cycle (Figure 1C).
Minor satellite transcripts strongly accumulated in mitotic
NIH/3T3 cells and became undetectable as early as 2h
after mitosis, when the cells re-entered the next GI
phase (Figure 1C).

Taken together, these results indicated that the pool of
minor satellite RNA varies significantly during cell cycle,
from barely detectable in G1 phase to a distinct peak
in G2/M.

CENP-A chromatin fraction contains minor satellite RNA

Our initial characterization of minor satellite transcripts
subcellular location by RNA-FISH revealed that these
RNA localize to chromocenters, suggesting that they
belong to specific ribonucleoprotein complexes located at
centromeric or pericentromeric regions (15). To further
characterize centromeric RNA-containing complexes we
isolated subnuclear fractions enriched in chromocenters
by discontinuous sucrose gradient (Supplementary
Figure S1), as described in the Supplementary Data.
Chromocenters were separated from dispersed fragments
of low density chromatin in a fraction characterized by
enrichment in DNA sequences and proteins specifically
found at centromeric regions, i.e. CENP-A (Supplemen-
tary Figure S1B) and centromeric minor satellite DNA
sequences (Supplementary Figure S1C and D). In addi-
tion, the CPC proteins Aurora B and Survivin were pre-
dominantly recovered in the chromocenter fraction.
In contrast, histone deacetylase HDAC1 was recovered
in both low density and chromocenter fractions, consistent
with its subnuclear localization in MEL cells (20), whereas
the repressor Sir2 was recovered only in low density
chromatin fractions, also consistent with its previously
reported subnuclear location (21) (Supplementary
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Figure 1. Minor satellite transcripts accumulate in G2/M phase of the cell cycle. (A) FACS plot showing the gates used to sort MEL cells at different
stages (GO/G1, S, G2/M) of the cell cycle (left panel). Levels of minor satellite RNA (minsat) from each fraction were evaluated by RT-PCR, in
reactions containing (+) or not (—) RT (right panel), and normalized to the signal of a RT-PCR reaction amplifying B-actin transcripts, which levels
do not change during cell cycle. (B) Cell-cycle distribution of Pl-labelled MEL cells after FACS-sorting in G0O/G1 phase and release in culture for 9h
(left panel). Total RNA at time 0, 3, 6 and 9h was analysed by RT-PCR followed by hybridization with a minor satellite probe (right panel).
Control RT-PCR reaction amplifying B-actin transcripts are shown below. (C) FACS analysis of Pl-labelled NIH/3T3 cells after mitotic shake off
and release into culture (left panel). Total RNA at time 0 and 2h was analysed by RT-PCR followed by hybridization with a minor satellite probe
(right panel). Control RT-PCR reactions amplifying B-actin transcripts are shown below.

Figure S1B). In those conditions, RT-PCR analysis on
total RNA isolated after nuclear fractionation showed
that minor satellite RNA were specifically enriched in
the chromocenter fraction (Supplementary Figure S1E).
To further characterize minor satellite RNA-containing
ribonucleo-complexes located at centromeric regions,
we performed Native Chromatin Immunoprecipitation
(NChIP) using antibodies directed against CENP-A. As
controls, we used antibodies directed against H3K9Me3, a
heterochromatin mark found at pericentromeric regions,
or against acetylated H3 (H3Ac), an activating mark

mainly associated with euchromatic regions. DNA or
RNA were then isolated from the precipitated material
and analysed by PCR or RT-PCR. The immuno-
precipitated material was first tested for the presence of
centromeric minor and pericentromeric major satellite
DNA sequences. To assess the NChIP background, we
used primers specific for ribosomal DNA. Under these
conditions, CENP-A indeed exclusively co-precipitated
with minor satellite DNA, whereas both murine minor
and major satellite DNA sequences associated with
H3K9Me3 chromatin  fractions  (Supplementary
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Figure 2. Minor satellite RNA associate with CENP-A-containing
chromatin. (A) RNA NChIP from nuclear extracts of asynchronously
growing (AS) or nocodazole-arrested (NOC) MEL cells using antibo-
dies against CENP-A, H3K9Me3 or H3Ac. Following DNasel diges-
tion, minor satellite RNA (minsat) and rDNA transcripts (rDNA) were
analysed by RT-PCR, from the immunoprecipitated (IP) or superna-
tant fractions (SUP), in reactions containing (+) or not (—) RT.
Control reactions in the absence of immunoprecipitating antibody
(beads) were used as a negative control. (B) RNA pull-down experi-
ments using in vitro transcribed minor satellite RNA (minsatF), fol-
lowed by western blot (WB) analysis with the indicated antibodies.
As a control, a similar experiment was performed with in vitro tran-
scribed minor satellite RNA from the reverse strand (minsatR), there-
fore not complementary to the biotinylated DNA/LNA oligonucleotide
used, or in the absence of RNA.

Figure S2), in agreement with previous reports (2,18). In
addition, association between these repetitive sequences
and H3Ac was significantly lower consistent with the
hypoacetylated status of these regions (22). In contrast,
control ribosomal DNA (rDNA) was only detected in
the H3Ac fraction (Supplementary Figure S2). To further
assess the association of minor satellite transcripts with
murine centromeric fractions, NChIP was performed
from asynchronous and nocodazole-arrested MEL cells,
using the same antibodies, in the presence of RNase inhib-
itor, and followed by a DNasel treatment of the collected
material. Following nocodazole treatment 86% of MEL
cells accumulated in G2/M phase (Supplementary
Figure S3, left and middle panel), a stage at which
minor satellite RNA strongly accumulated in the cells
(Supplementary Figure S3, right panel). RT-PCR analysis
of precipitated RNA revealed that minor satellite RNA
were specifically associated with the CENP-A immune
complex in both asynchronous and nocodazole-arrested
MEL cells (Figure 2A). In contrast, minor satellite RNA
were not associated with H3K9Me3 or H3Ac chromatin
fractions (Figure 2A), even in G2/M arrested cells, a stage
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at which minor satellite RNA strongly accumulated in the
cells (Supplementary Figure S3, right panel). As a negative
control, abundant control rDNA transcripts were not
precipitated with any of the antibodies used, whereas
RT-PCR performed on supernatants from NChIP reac-
tions showed correct amplification of minor satellite
RNA and rDNA transcripts in all samples, indicating
that RNA was not degraded (Figure 2A).

These results provide evidence that minor satellite
transcripts preferentially associate with the CENP-A
chromatin fraction ex vivo.

To confirm association of minor satellite RNA with
CENP-A chromatin, RNA pull-down assays were per-
formed, using minor satellite RNA transcribed in vitro
from a 120-nt repeat unit (minsatF), bound to a comple-
mentary biotinylated oligonucleotide, and incubated with
MEL cells nuclear extracts. We first tested several types of
oligonucleotides for their efficiency to pull down minor
satellite transcripts in vitro, and chose a 3’ biotinylated
compound DNA/LNA oligonucleotide (Supplementary
Figure S4). After pull-down using streptavidin-coated
magnetic beads, and verification that the oligonucleotide
efficiently retained minor satellite RNA (Figure 2B,
bottom line), the associated proteins were analysed by
western blot. Immunoblot analysis of minor satellite
RNA-associated histone H3 species revealed that these
RNA preferentially precipitated CENP-A, but not
H3K9Me3 nor H3Ac (Figure 2B). CENP-A was not pre-
cipitated in various control experiments in which centro-
meric RNA was omitted (Figure 2B, far right column) or
reactions treated with RNaseA prior or after precipitation
(not shown). As an additional control for the specificity
of the DNA/LNA oligonucleotide, we used in vitro tran-
scribed RNA from the reverse strand (minsatR), therefore
not complementary to the oligonucleotide used, which
did not precipitate CENP-A (Figure 2B). Together, our
experiments showed that CENP-A was detected in the
precipitated material only when minor satellite RNA
were efficiently precipitated.

Minor satellite RNA associate with proteins of the CPC
in G2/M phase

The association of minor satellite transcripts with CENP-
A-associated chromatin together with their steady-state
levels peaking in G2/M phase suggests that they could
play a role in the assembly of centromeric complexes
during G2/M transition. The CPC exhibits a highly
dynamic localization throughout the cell cycle. During
G2 phase and metaphase, the complex localizes to centro-
meres, transfers to the central spindle at the onset of ana-
phase, and finally flanks the midbody during telophase
and cytokinesis (4). To determine whether proteins of
the CPC associate with minor satellite transcripts, we per-
formed RNA pull-down assays using in vitro transcribed
120-nt minor satellite RNA, and analysed the presence of
the kinase Aurora B, its obligate co-activator Survivin and
the inner centromere protein INCENP, in the precipitated
material. RNA pull-down assays revealed that Aurora B,
Survivin and, to a lesser extent, INCENP, were efficiently
precipitated when the oligonucleotide was complementary
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Figure 3. Association of minor satellite RNA with proteins of the chro-
mosomal passenger complex. (A) In vitro transcribed minor satellite
RNA (minsatF) was used in RNA pull-down experiments, followed
by western blot (WB) analysis with the indicated antibodies. As con-
trols, similar experiments were performed in presence of RNaseA, in
absence of minor satellite RNA, or using an RNA not complementary
to the biotinylated oligonucleotide used (minsatR). (B) RNA NChIP
from nuclear extracts of asynchronously growing (AS) and nocodazole-
arrested (NOC) MEL cells using antibodies against Aurora B, Survivin
and H3K9Me3-S10ph. As a negative control, a similar experiment was
performed in the absence of immunoprecipitating antibody (beads).
Following DNasel treatment, immunoprecipitated (IP) RNA and
RNA from supernatant fractions (SUP) were analysed by RT-PCR,
in reactions containing (+) or not (—) RT, for the presence of minor
satellite RNA (minsat) and rDNA transcripts (rDNA).

to the minor satellite RNA (Figure 3A, minsatF). No
signal was observed when the reaction was carried out in
presence of RNaseA or when the RNA was omitted from
the reaction (Figure 3A, two left panels). As described
above, an additional control consisted in using in vitro
transcribed RNA not complementary to the oligonucleo-
tide used in the pull-down assay (minsatR). Interestingly,
although heterochromatin protein HP1y and the histone
deacetylase HDACI1 associated with chromocenters in
MEL cells (20), they were not retained on minor satellite
transcripts (Figure 3A).

To validate these results ex vivo, we immunoprecipi-
tated Aurora B and Survivin from asynchronous MEL
cells extracts. RT-PCR analysis of the co-precipitated
RNA resulted in specific amplification of minor satellite
RNA from both Aurora B and Survivin immunoprecipi-
tated material, whereas they were not detected in control
reaction performed in absence of immuno-precipitating
antibody (Figure 3B). In addition, no association was
observed between these proteins and the abundant

rDNA transcripts (Figure 3B). Similar experiments were
conducted with nocodazole-arrested MEL cells. NChIP
data revealed that minor satellite RNA were significantly
associated with Aurora B and Survivin in nocodazole-
arrested cells whereas rDNA transcripts were not precipi-
tated (Figure 3B). Phosphorylation of H3 on its serine
10 by Aurora B kinase initiates at centromeric regions
in late G2 interphase cells, and further spreads throughout
the condensing chromatin. We found that minor satellite
RNA co-precipitated with the H3K9Me3-S10ph in
nocodazole-arrested cells (Figure 3B). In all experiments,
RT-PCR from supernatant fractions showed correct
amplification of both minor satellite RNA and rDNA
transcripts, indicating that RNA was not degraded.

These data are consistent with a model in which minor
satellite RNA could provide a scaffold to recruit and/or
stabilize passenger proteins at centromeric regions in
G2/M phase.

The assembly of Aurora B/Survivin complex and Aurora
B kinase activity require an RNA component

The observation that the CPC and minor satellite RNA
have the potential to form a protein—RNA complex,
prompted us to test the functional relevance of this
association. Assembly of the CPC is a prerequisite for
its correct localization, kinase activity of Aurora B and
substrate specificity during G2/M transition (23). We
first examined the ability of Aurora B to form a complex
in vivo with Survivin, in presence or absence of RNA. We
tested the sensitivity of the interactions to RNaseA treat-
ment, before immunoprecipitation of Aurora B complexes
and omission of RNase inhibitors during the process, or
after immunoprecipitation of Aurora B complexes. Under
these conditions, the amount of recovered Aurora B was
not affected by RNaseA treatment (Figure 4A). In con-
trast, analysis of co-immunoprecipitated material showed
that the interaction of Aurora B with Survivin was signif-
icantly diminished after RNA depletion compared to con-
trol experiments where RNA was protected from
degradation (Figure 4A). In addition, we tested whether
association of Aurora B with CENP-A-associated chro-
matin was dependent on an RNA molecule. Interestingly,
our results showed that RNaseA treatment completely
abolished the interaction between Aurora B and CENP-
A (Figure 4A).

We then asked whether the enzymatic activity of
Aurora B kinase was also sensitive to RNA depletion.
Aurora B was immunoprecipitated from MEL cells
extracts and examined for its ability to phosphorylate his-
tone H3 in vitro, a physiological substrate of this kinase,
in presence or absence of RNaseA treatment. The results
showed that endogenous Aurora B complex displayed
high specific kinase activity when assayed against purified
histones and that its activity significantly decreased after
RNaseA treatment (Figure 4B).

Thus, our data revealed that, in the context of the native
immunoprecipitated Aurora B complex, RNA/protein
interactions are crucial for interactions of Aurora B with
its protein partners CENP-A and Survivin. In addition,
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Figure 4. Interactions of Aurora B with Survivin and CENP-A and its
kinase activity are sensitive to RNA depletion. (A) Co-IP experiment
using an anti-Aurora B antibody. RNaseA treatment was performed
before or after IP of Aurora B. Input lysates (INPUT) and precipitated
proteins in the absence of immunoprecipitating antibody (first line) are
shown as positive and negative controls, respectively. Co-precipitated
Survivin and CENP-A were visualized by western blotting (WB).
Asterisk indicates IgG heavy chain which is detected by the secondary
antibody. (B) In vitro kinase activity of immunoprecipitated Aurora B
from MEL nuclear extracts, treated (+) or not (—) with RNaseA, using
core histones as exogenous substrate. Specific histone H3 phosphate
incorporation (*’P-H3) was revealed by autoradiography, Aurora B
protein levels were determined by western blotting and histones visua-
lized by Ponceau red staining.

Aurora B kinase activity appeared to be sensitive to
RNaseA treatment.

Kinase activity of Aurora B is enhanced in presence of
minor satellite RNA

Based on the findings that Aurora B associates with minor
satellite transcripts and that its kinase activity is sensitive
to RNaseA treatment, we performed experiments in which
the kinase assay was realized in the presence of increasing
amounts of in vitro transcribed minor satellite RNA.
Interestingly, Aurora B kinase activity showed a two-
fold increase in presence of minor satellite RNA, in con-
ditions where the estimated amounts of RNA and kinase
were equivalent (10 pmol), whereas addition of higher
amounts (20-50 pmol) of minor satellite RNA impaired
the activity of the endogenous kinase (Figure 5A, right
panel). These effects were specific to minor satellite
RNA since an unrelated control RNA showed no such
effects under the same conditions (Figure 5A, left panel).
Importantly, the decreased Aurora B kinase activity after
RNaseA treatment was substantially rescued by addition
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Figure 5. Minor satellite RNA potentiate endogenous Aurora B kinase
activity. (A) Kinase activity of immunoprecipitated Aurora B in pres-
ence of increasing amounts (10, 20, 50 pmol) of in vitro transcribed
minor satellite RNA (minsat). Control reactions were performed in
presence of increasing amounts (10, 20, 50 pmol) of in vitro transcribed
B-tubulin RNA (B-tub) or in absence of histones (No hist). (B) Kinase
activity of endogenous Aurora B after RNaseA treatment and rescue
assay with addition of in vitro transcribed minor satellite RNA (50,
75pmol), in presence of RNase inhibitors. As a negative control, the
same amount of in vitro transcribed B-tubulin RNA (50, 75 pmol) was
used in the rescue assay. Specific histone H3 phosphate incorporation
(**P-H3) was quantified by phosphorimager, Aurora B protein levels
were determined by western blotting and histones visualized by
Ponceau red staining.

of large amounts of RNase inhibitors combined to addi-
tion of increasing amounts of in vitro transcribed minor
satellite RNA (Figure 5B). By contrast, in the same con-
ditions, addition of increasing amount of control RNA
did not have any effect on Aurora B kinase activity
(Figure 5B).

Together, these data show that decreased Aurora B
kinase activity after RNA depletion can be specifically
rescued by restitution of minor satellite transcripts in the
reaction, and suggest that minor satellite transcripts may
regulate Aurora B enzymatic activity.

DISCUSSION

We report a functional role for RNA transcribed from
minor satellite repeats as part of ribonucleoprotein com-
plexes of murine centromeric chromatin, key factors in
mediating interactions between protein components of
the CPC and in potentiating the activity of the mitotic
kinase Aurora B.

We have previously characterized RNA transcribed
from minor satellite repeats found at murine centromeres,
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and showed by RNA-FISH (15) or using biochemically
purified chromocenters (this study) that they associate
with chromocenters. Native ChIP experiments aimed to
selectively precipitate centromeric chromatin fractions,
based on their unique content in the histone H3 variant
CENP-A, revealed that murine minor satellite RNA
specifically precipitated with CENP-A-associated chroma-
tin fractions. Interestingly, another case of centromere-
encoded RNA co-precipitated with CENP-A exists in
maize (10). Other examples of non-coding RNA specifi-
cally associated with defined chromatin domains from
which they are transcribed have been reported. For exam-
ple, Xist RNA is transcribed from and associates with the
inactive X-chromosome (24). Worth mentioning, Xist also
associates with a histone variant, macroH2A, deposited
at facultative heterochromatin formed on the inactive
X-chromosome (25). A more recent example described
telomeric-repeat-containing RNA enriched at telomeric
heterochromatin and involved in the maintenance of telo-
mere integrity (26,27). Thus, transcripts emanating from
specific chromosomal domains in conjunction with defi-
nite epigenetic marks may contribute to the specification
of their higher-order chromatin organization. However,
whether transcription across these regions, or transcripts
themselves, define distinct chromatin domains with differ-
ential histone modifications or variants remains to be
clarified.

Although several experimental evidence support that
transcription across centromeric repeats, and/or remodel-
ling of nucleosomes, contributes to centromere formation
and deposition of the histone variant CENP-A (7,10,28),
other data uncovered the implication of non-coding RNA
in stabilizing the binding of structural non-histone pro-
teins to chromatin (29). For example, binding of HP1 to
heterochromatin is sensitive to digestion with RNaseA
(13) and requires the contribution of the hinge domain,
known to bind RNA in vitro (14). Therefore, minor satel-
lite transcripts themselves, and not transcription per se,
may be involved in formation of ribonucleoprotein
complexes located at centromeres and in centromere spe-
cification. CENP-A may serve as a docking platform for
centromeric RNA-dependent loading of centromeric com-
plexes. Consistent with this, we found that minor satellite
RNA associate with proteins of the CPC and that inter-
actions between endogenous passenger proteins Aurora B
and Survivin within CENP-A chromatin require an RNA
component.

A particular feature of centromeric chromatin domains
is that many of their associated proteins display dynamic
changes in distribution patterns during cell cycle (30). In
particular, the chromosomal passenger proteins such as
Aurora B and Survivin, and to a lesser extent INCENP,
accumulate near centromeres in early G2 (31-33). In cor-
relation with this dynamic organization of centromeric
domains, our analysis of minor satellite RNA levels
revealed that the pool of centromeric RNA greatly
varies during cell-cycle progression. Indeed, minor satellite
transcripts accumulated gradually during the course of
S phase, reached a maximum at G2/M phase and
became undetectable early after mitosis, when cells
re-enter the next G1 phase. Likewise, a cell-cycle

regulation has also been reported for pericentromeric het-
erochromatin transcription both in mouse (34) and in fis-
sion yeast (35), resulting in accumulation of major
transcripts in late G1/S phase. In contrast, we detected
low levels of minor satellite RNA in G1 and S phase.
Together with the observations that they associate with
CENP-A-associated chromatin domains, and reach high
levels in G2/M phase, this favours the hypothesis that
minor satellite transcripts are key players in the assembly
of protein complexes at the centromere, before mitosis,
rather than in CENP-A deposition that was suggested to
occur in G1 phase (36).

Indeed, we found that minor satellite transcripts levels
greatly increased during G2/M phase, concomitant with
assembly of Aurora B and Survivin to centromeres (32).
At this phase, our NChIP experiments demonstrated that
centromeric transcripts associate with proteins of the
CPC, Aurora B and Survivin, as well as with their mitotic
substrate histone H3 phosphorylated on its serine 10 (37).
In agreement with the recent observations that human
centromeric o-satellite transcripts are components of
protein complexes located at centromeres of metaphase
chromosomes (38), our data suggest that non-coding
minor satellite RNA are implicated in the formation of
specific centromeric complexes during G2/M transition.
In addition, we provided the first experimental evidence
that an RNA component favours interactions between
Aurora B and its partner Survivin, as well as with
CENP-A, supporting a structural role for centromeric
RNA in stabilizing centromeric-associated complexes.
We propose that interaction with minor satellite tran-
scripts may represent an additional mechanism for both
Aurora B proper association within CENP-A chromatin
domains and enzymatic function. Minor satellite RNA
could play an indirect role by providing a permissive chro-
matin environment for the productive interaction of
Aurora B and Survivin with centromeric domains.
Alternatively, minor satellite RNA could favour the inter-
action between Aurora B and Survivin required for the
function of this complex (39,40).

We previously reported that sustained expression of
minor satellite transcripts resulted in dramatic changes
in localization of Aurora B, which failed to target centro-
meric regions of mitotic chromosome (15). In addition,
deregulated accumulation of minor satellite transcripts
led to impaired centromeric function and abnormal chro-
mosome segregation (15). Consistent with this, our present
data suggest a critical role for centromeric transcripts
in centromere identity and function. Their implication in
formation of centromere-associated complexes at specific
phases of the cell cycle together with centromere failure
when centromere satellite transcripts accumulate in
stressed cells (15—17) argues that levels of these transcripts
must be tightly regulated.

More importantly, our data put forward a functional
relationship between Aurora B kinase activity and minor
satellite RNA. We demonstrated that Aurora B kinase
activity is sensitive to RNA depletion, probably due to
disruption of the Aurora B/Survivin complex, required
for Aurora B activity (39,40). Of importance, Aurora B
kinase activity can be potentiated by addition of minor



satellite transcripts, in conditions where the estimated
amounts of RNA and kinase are equivalent. In addition,
its decreased activity after RNA depletion can be specifi-
cally rescued by restitution of minor satellite RNA in the
kinase assay. Recently, RNA molecules have emerged as
active participants in regulating, catalysing and control-
ling biological processes, a role first ascribed to proteins.
Several examples described RNA molecules bound to pro-
teins and regulating their activity, subcellular location and
interactions with protein partners (41). Thus, it is conceiv-
able that specific functions and enzymatic activity of
Aurora B are controlled not only by its proteins partners
but also by interactions with non-coding minor satellite
transcripts.

Until now, posttranslational modifications and protein
components have been postulated to be the targeting
actors of the CPC (42,43). We now added the evidence
that both interaction of Aurora B with CENP-A-asso-
ciated chromatin and kinase activity might be controlled
by non-coding RNA transcribed from the domain where
this enzyme is recruited and active at a specific stage of
the cell cycle.

Altogether, our data added centromeric transcripts to
the ever-growing list of functional non-coding RNA (44)
and provide new insights into the implication of
minor satellite RNA in the establishment of a functional
centromere, by regulating Aurora B association with
CENP-A-associated domains and enzymatic function.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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