
ORIGINAL RESEARCH
published: 12 January 2021

doi: 10.3389/fmolb.2020.603644

Frontiers in Molecular Biosciences | www.frontiersin.org 1 January 2021 | Volume 7 | Article 603644

Edited by:

Andrea Mozzarelli,

University of Parma, Italy

Reviewed by:

Margarete Focke-Tejkl,

Medical University of Vienna, Austria

Annalisa Pastore,

King’s College London,

United Kingdom

*Correspondence:

Klaus R. Liedl

Klaus.Liedl@uibk.ac.at

Specialty section:

This article was submitted to

Structural Biology,

a section of the journal

Frontiers in Molecular Biosciences

Received: 10 September 2020

Accepted: 10 December 2020

Published: 12 January 2021

Citation:

Hofer F, Kamenik AS,

Fernández-Quintero ML, Kraml J and

Liedl KR (2021) pH-Induced Local

Unfolding of the Phl p 6 Pollen

Allergen From cpH-MD.

Front. Mol. Biosci. 7:603644.

doi: 10.3389/fmolb.2020.603644

pH-Induced Local Unfolding of the
Phl p 6 Pollen Allergen From cpH-MD
Florian Hofer, Anna S. Kamenik, Monica L. Fernández-Quintero, Johannes Kraml and

Klaus R. Liedl*

Center for Molecular Biosciences Innsbruck, Institute for General, Inorganic and Theoretical Chemistry, University of

Innsbruck, Innsbruck, Austria

Susceptibility to endosomal degradation is a decisive contribution to a protein’s

immunogenicity. It is assumed that the processing kinetics of structured proteins are

inherently linked to their probability of local unfolding. In this study, we quantify the impact

of endosomal acidification on the conformational stability of the major timothy grass

pollen allergen Phl p 6. We use state of the art sampling approaches in combination with

constant pH MD techniques to profile pH-dependent local unfolding events in atomistic

detail. Integrating our findings into the current view on type 1 allergic sensitization, we

characterize local protein dynamics in the context of proteolytic degradation at neutral

and acidic pH for the wild type protein and point mutants with varying proteolytic stability.

We analyze extensive simulation data using Markov state models and retrieve highly

reliable thermodynamic and kinetic information at varying pH levels. Thereby we capture

the impact of endolysosomal acidification on the structure and dynamics of the Phl

p 6 mutants. We find that upon protonation at lower pH values, the conformational

flexibilities in key areas of the wild type protein, i.e., T-cell epitopes and early proteolytic

cleavage sites, increase significantly. A decrease of the pH even leads to local unfolding

in otherwise stable secondary structure elements, which is a prerequisite for proteolytic

cleavage. This effect is even more pronounced in the destabilized mutant, while no

unfolding was observed for the stabilized mutant. In summary, we report detailed

structural models which rationalize the experimentally observed cleavage pattern during

endosomal acidification.

Keywords: pollen allergens, Phl p 6, local unfolding, constant pH MD, proteolytic degradation

INTRODUCTION

Immunoglobulin E (IgE)-mediated allergies are one of the most prominent health issues in western
countries, with more than 20% of the population being affected (Valenta, 2002; Thalhamer et al.,
2010; Valenta et al., 2010; Curin et al., 2018). Over 40% of the patients suffer from plant pollen
induced allergy, rendering it the most common allergy type in industrialized countries (Asam
et al., 2015). Despite the extensive research efforts which have been undertaken in this field, it is
still unclear why some proteins induce an allergic immune response in predisposed individuals.
Moreover, it was reported repeatedly that slightest distinctions in sequence and/or structure suffice
to shift the immune reaction from an allergic to a protective one (Scheurer et al., 2015; Verhoeckx
et al., 2019). Moreover, it is known that high similarity in sequence and/or structure to an allergen
protein does not necessitate a similar immune response (Mitropoulou et al., 2018; Eichhorn et al.,
2019; Seutter Von Loetzen et al., 2019; Tscheppe et al., 2020).
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One step, however, which critically influences the immune
response and appears to be shared by all protein antigens,
is their proteolytic digestion by endolysosomal proteases. The
susceptibility of the antigen to degradation, i.e., its proteolytic
stability, is linked to the subsequent immune response (Toda
et al., 2011; Apostolovic et al., 2016; Machado et al., 2016;
Scheiblhofer et al., 2017; Wolf et al., 2018).

After uptake (in case of plant pollen mostly via inhalation)
the antigen enters an antigen-presenting cell. In the endosome
compartment, proteases digest the antigen into peptide
fragments over the course of the endosome maturation. These
fragments are then loaded onto class II major histocompatibility
complex receptors (MHCII) and are subsequently presented on
the cell surface to naïve T-cells (Freier et al., 2015; Machado et al.,
2016; Scheiblhofer et al., 2017).

The maturation of the endosome is accompanied by a sharp
decrease in pH from approximately 7–4. This decrease in pH
can destabilize the protein fold of the antigen and facilitates
digestion. It has been previously described that the more stable
the fold of the antigen, the lower the pH needs to be so that the
antigen unfolds and is processed (Egger et al., 2011; Compeer
et al., 2012; Freier et al., 2015; Scheiblhofer et al., 2017). It
was suggested that the immune response varies depending on
the stability of the antigen. Very unstable proteins are digested
already in the early endosome, whereas very stable antigens
cannot be processed until a very low pH is reached. The T-cell
polarization leading to allergic sensitization, however, can only be
achieved if the degradation occurs at a certain maturation state
of the endosome, which is associated with moderate pH levels
(Scheiblhofer et al., 2017).

This hypothesis was fostered in a comprehensive study by
Machado et al. (2016). In this study various point mutations
were introduced to the major birch pollen allergen Bet v 1.
These mutations were found to alter the thermal and proteolytic
stability of the proteins and thereby directly influenced the
resulting immune response. Similar effects were also observed
for different isoforms of the Bet v 1 allergen, which are
characterized by quasi-identical structures as well as very
high sequence identities but very different immune responses
(Grutsch et al., 2017). Kamenik et al. extended these findings with
atomistic models of the unfolding process (Kamenik et al., 2020).
From extensive MD simulation data, they could demonstrate
how the subtle changes in the allergen’s sequence shift the
equilibrium populations toward or away from the unfolded
conformational state. They further found that the observed
differences in ensemble populations rationalize the distinct
proteolytic susceptibility of each Bet v 1 variant.

Even more recently, Weiss and coworkers showed consistent
results for themajor timothy grass pollen allergen Phl p 6 (Winter
et al., 2020). Phl p 6 is one of the most important grass pollen
allergens, with more than 75% of patients allergic to grass pollen,
being allergic to Phl p 6 (Vrtala et al., 1999, 2007). Various
point mutations were identified, which lead to differences in
thermal and proteolytic stabilities of Phl p 6 (Winter et al.,
2020). The proteolytic digestion of thermally stabilized proteins
was much slower compared to the wild type and vice versa,
while the degradation patterns and resulting peptides remained

constant. Furthermore, the stability differences were also found
to propagate into the resulting immune response. The increase
in stability was further linked to a rigidification of the fold
dynamics (and vice versa) with the use of molecular dynamics
(MD) simulations (Winter et al., 2020). While already observed
encouraging trends with the applied MD-based approach, we
neglected the impact of endolysosomal acidification in this
previous study. However, as the pH decreases, the protonation
state preferences within the protein shift, which can induce
massive changes in the electrostatic interaction network within
the protein (White and Anfinsen, 1959; Tanford, 1961; Perutz,
1978; Garcia-Moreno, 2009; Di Russo et al., 2012). Hence, it is
reasonable to assume that acidification substantially impacts the
allergen’s conformational ensemble and thus fold stability.

Consequently, in order to profile the influence of lower pH
values on the fold stability, it is imperative to perform simulations
at lower pH value, i.e., using a protonation state ensemble
corresponding to lower pH values. As with classical force fields
bonds can neither be broken nor formed, direct sampling of
protonation/deprotonation events is not possible. Instead, fixed
protonation states are employed, which must be chosen at setup
and cannot be changed during the simulation (Chen et al.,
2014). Various prediction tools are available to do this, however
when moving away from pH 7.0 this becomes challenging very
quickly, as sidechain pKa values of amino acids can be strongly
shifted depending on the surrounding electrostatic environment
within the protein (Harris and Turner, 2002; Alexov et al.,
2011; Platzer et al., 2014; Hofer et al., 2019). Capturing these
effects can be difficult based on a single, static structure alone
(Alexov et al., 2011). But even if all pKa values of the system
would be known, an approach with fixed protonation states
quickly becomes unfeasible, as the number of titratable residues
rises quickly when going to lower pH values and all possible
protonation combinations would need to be sampled separately
(Chen et al., 2014). Furthermore, the use of fixed protonation
states prohibits the sampling of how the titratable residues react
to conformational changes and vice versa. The simulations in
the aforementioned previous works were indeed performed using
fixed protonation states, representing pH 7 and 5 using the
respective most probable configuration (Machado et al., 2016;
Kamenik et al., 2020; Winter et al., 2020). However, as capturing
the effect of the pH on the fold dynamics was not the main focus
of these studies, a more detailed treatment of the protonation
states was not warranted.

Recently, we employed the so-called constant pH MD (cpH-
MD) approach together with NMR titration experiments to
profile the protonation states and pKa values of the Phl p 6
wild type (Hofer et al., 2019). These techniques make it possible
to sample the conformational as well as the protonation state
space at the same time (Chen et al., 2014). Consequently,
a structural ensemble along with a proper protonation state
distribution is sampled. A more detailed description of these
techniques is given in the “Method” section. By furthermore
combining the cpH-MD approach with accelerated MD [aMD,
(Hamelberg et al., 2004; Williams et al., 2010)] we significantly
sped up conformational–and in turn also protonation state–
sampling and achieved convergence in all titrated pH values
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within 1 µs of simulation time. We showed that the combined
cpH-aMD approach is stable for long sampling times, while
still maintaining a good correlation with experimental reference
(Hofer et al., 2019).

Based on these findings, we here use this approach to
efficiently sample the conformational space at different pH
values of the Phl p 6 wild type as well as two selected point
mutations from the dataset presented by Weiss and coworkers
mentioned above (Winter et al., 2020). Compared to the wild
type (melting point 59.5◦C), the S46Y mutant is thermally
stabilized (melting point 73.5◦C), while the L89G mutant is
thermally destabilized (melting point 54.5◦C) (Winter_2020).
The stabilizing/destabilizing effects of the mutations were also
visible in the degradome assay, i.e., the stabilized S46Y mutant
remained intact at acidic conditions much longer than the wild
type or the L89G mutant. In detail, the wild type and the L89G
mutant were only stable at pH 7.0 and showed significant and
fast degradation at pH 5.2 and 4.5, the S46Y mutant was only
degraded at pH 4.5. Moreover, the cleavage areas reported in
the assays as well as the early cleavage peptides were mostly
similar for all systems. As both point mutations did not alter the
early cleavage positions or their direct surroundings, Weiss and
coworkers surmised, that the point mutations indeed influenced
the stability of the protein fold or parts of it in general. This was
supported by the molecular flexibilities captured with the use of
classical MD simulations, which depicted an overall structural
rigidification for the S46Ymutant, as well as an overall increase in
molecular flexibility for the L89G mutant. The simulations were
performed with a protonation ensemble corresponding to pH 7.

In contrast to the workflow used by Kamenik et al., we
here use the cpH-aMD approach as described above instead of
Metadynamics (Laio and Gervasio, 2008). On the one hand, this
removes the need to define a specific collective variable (CV)
along which the simulation is accelerated, which in turn does
not limit our findings to one specific unfolding pathway. On
the other hand, we incorporate the impact of the acidic pH
on the dynamics of the systems and are furthermore able to
sample the interplay of conformational and protonation changes.
Taken together, the focus of the present study is to characterize
fold stability and potential local unfolding during endolysosomal
acidification without any a priori assumption on the most likely
unfolding or cleavage site.

METHODS

Structure Preparation
Starting structures for the Phl p 6 wild type as well as for
the point mutants S46Y and L89G were prepared from the
wild type X-ray structure (PDB Code 1NLX, chain A; 104
of 111 residues resolved) with the program MOE [molecular
operating environment (CCG, 2017)]. Point mutations were also
introduced with MOE, followed by a short local minimization.
The molecular structure is visualized in Figure 1. The protein is
composed of four helices, which are connected via short loops.
In Figure 1A the wild type structure is shown with color-coded
helices for later reference. Furthermore, all the residues which
were titrated are visualized in Figure 1A. The locations and

possible interaction sites of the S46Y and L89G mutants are
shown in Figures 1B,C, respectively. The titrated residues were
also visualized in the close-ups of the locations of the point
mutations (see Supplementary Figure 9).

With the LEaP program of AmberTools 19 (Case et al.,
2019) missing hydrogens were added and topology and starting
coordinates were created. The AMBER ff99SB force field
(Lindorff-Larsen et al., 2010) with the modifications needed for
the cpH-MD approach were used (Mongan et al., 2004; Swails
and Roitberg, 2012; Swails et al., 2014). As suggested by Swails
et al., the GB radii of the titratable oxygens of Aspartate and
Glutamate were changed to 1.3 Å (Swails et al., 2014). All
systems were placed in a truncated octahedral TIP3P water box
(Jorgensen et al., 1983), with a 10 Å padding. Before production
simulation, all systems were equilibrated with an elaborate
protocol (Wallnoefer et al., 2010).

Simulation Setup and Theory
Constant pH MD Simulations
Generally, there are two different approaches to constant pH
MD, differing in the treatment of the protonation states, i.e.,
the titratable protons. On the one hand continuous protonation
states can be used, which are sampled along a continuous titration
coordinate λ (Lee et al., 2004; Huang et al., 2018). When using
discrete protonation states on the other hand, the simulation
is interrupted at periodic intervals and protonation changes are
attempted based on a Monte Carlo Metropolis criterion (Baptista
et al., 2002; Mongan et al., 2004; Stern, 2007; Swails and Roitberg,
2012). In this study, we used the latter concept, specifically the
most recent implementation for explicit solvent in the AMBER
package by Roitberg and coworkers (Swails et al., 2014). In
the following a short outline of the approach is given, for a
more detailed description of the methods and their respective
limitations the reader is pointed to the respective publications
(Baptista et al., 2002; Lee et al., 2004; Mongan et al., 2004; Stern,
2007; Swails and Roitberg, 2012; Swails et al., 2014; Radak et al.,
2017; Huang et al., 2018).

In brief, at each titratable group, the titratable protons
are defined explicitly. A state list is defined for each residue,
detailing which proton is active or inactive in which state.
The simulation itself runs with fixed protonation states but
is interrupted periodically and protonation state changes are
attempted based on a Metropolis criterion. If at least one state
change is accepted, the protein is frozen and the solvent around
it is relaxed for a predefined number of steps. Hereafter, the
simulation continues with the new protonation states until the
next change is attempted (Mongan et al., 2004; Swails et al., 2014).

Accelerated MD Simulations
Accelerated MD simulations are an enhanced sampling
technique, which modify the underlying potential energy surface
by adding a so-called boost potential to the system, should the
system’s energy be under a certain threshold (Hamelberg et al.,
2004). There exist various implementations, in this paper we
employed the so-termed double boost mode as implemented in
AMBER 18 (Case et al., 2019). Here, not only the total energy
is boosted, but the dihedral energy receives an additional boost
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FIGURE 1 | Structural visualization of the Phl p 6 allergen. Wild type crystal structure (PDB 1NLX, chain A) with color-coded helices 1–4 and all titrated residues is in

section (A). Location of the S46Y and L89G mutation are shown in sections (B) and (C), respectively.

energy. Again, we point the reader to the original works for a
more in-depth discussion of the method (Hamelberg et al., 2004).
The exact boosting parameters and how they were obtained is
described in the supporting information.

Combining aMD with the cpH-MD framework, allows for
faster conformational sampling, which in turn also speeds up the
protonation state sampling, as this also depends on the sampled
conformations. Moreover, the sampling of the response of the
system to a lower pH value is accelerated and can be captured
within reasonable sampling times (Williams et al., 2010; Hofer
et al., 2019).

Seeding of Classical Simulations
As mentioned above, the bias potential introduced in the aMD
approach modifies the underlying potential energy surface. To
obtain accurate thermodynamic and kinetic data the original
free energy profile must be reconstructed, by reweighting the
obtained trajectories (Sinko et al., 2013; Miao et al., 2014; Stelzl
et al., 2018). While this is generally possible and straightforward,
most of the proposed reweighting techniques inherently lead
to very noisy energy profiles. We circumvent this problem by
seeding classical MD simulations from the captured ensembles.
We performed a hierarchical clustering of each ensemble using
the backbone heavy atom cartesian coordinates as input and
a cutoff of 2.0 Å. We obtained a varying number of clusters
for each system and each pH value and started a 200 ns long
classical cpH-MD simulation from each cluster representative.
We then combined the resulting trajectories for each pH and each
system respectively with the use of Markov State Models (MSMs)
(Prinz et al., 2011). This approach removes any bias stemming
from a different number of starting clusters in the seeding
process and allows us to capture accurate thermodynamic and
kinetic properties of the sampled dynamic processes (Bowman

et al., 2013; Kohlhoff et al., 2014). Similar approaches have been
reported previously (Noé et al., 2009; Nedialkova et al., 2014;
Biswas et al., 2018; Sun et al., 2018; Zimmerman et al., 2018;
Fernández-Quintero et al., 2019a,b, 2020; Kahler et al., 2020;
Kamenik et al., 2020).

Simulation Parameters
All simulations were performed with the GPU implementation of
the pmemdmodule of AMBER 18 (Case et al., 2019). A Langevin
thermostat with a collision frequency of 5 ps−1 was used to
keep a constant temperature of 310K (Adelman and Doll, 1976).
Constant pressure of 1 bar was maintained with a Berendsen
barostat with a pressure relaxation time of 2 ps (Berendsen et al.,
1984). Long range electrostatics were treated with the Particle-
mesh Ewald approach and a non-bonded cutoff of 8 Å was used
(Darden et al., 1993). To allow for a time step of 2 fs, all bonds
involving hydrogen were restrained with the SHAKE algorithm
(Ryckaert et al., 1977). Frames were collected every 2 ps.

Constant pH aMD simulations were run at pHs 4.0–7.0 with
a 1.0 spacing. Protonation state changes were attempted every
200 steps, succeeded by 200 steps of solvent relaxation, should
at least one attempt be successful. A salt concentration of 0.1M
was used (Swails et al., 2014). Acceleration was achieved with the
dual boost option as available in AMBER 18 (Case et al., 2019).
Acceleration parameters were derived as suggested by Pierce et al.
(2012). Each simulation was run for 1 µs.

Seeded cpH simulations were started from the cluster
representatives as described above, with the same parameters
as the cpH-aMD simulations, except for the acceleration. Each
simulation was run for 200 ns.

Analysis
Trajectories were processed and analyzed using cpptraj and pytraj
from the AmberTools 19 package (Case et al., 2019) and in-house
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python scripts. PCA, TICA, andMSM analysis was done with the
PyEMMA package version 2.5.7 (Scherer et al., 2015). Structural
visualizations were done with PyMol (Schrodinger, 2019).

While most of the Phl p 6 structure is helical, the C-terminal
part (residues 101 onwards) is an unstructured and consequently
very flexible loop. As the strong dynamics of this loop would
dominate all analyses, we excluded this part from all analyses,
unless otherwise noted. Furthermore, all alignment operations
were based on residues 1–98 to focus on the dynamics of the core
of the protein.

Structural variances were primarily analyzed and visualized
with the use of principal component analysis (PCA) based on
the heavy atom backbone cartesian coordinates, supplemented
by RMSD, DRMSD, secondary structure, and native contacts
analyses. A combined PCA space was constructed by combining
the trajectories of all simulated systems at all pH values.
Projecting the individual trajectories into the combined space
allowed for a direct characterization of the impact of the pH on
the dynamics of the system.

Time-lagged independent component analysis (TICA) was
used to identify the slowest movements in the systems and thus
obtain a kinetic discretization of the sampled spaces (Molgedey

and Schuster, 1994; Chodera and Noé, 2014; Schwantes et al.,
2016). For the TICA analyses, the same inputs were used as for
the PCAs, with a lagtime of 100 ns for each system. Based on
the TICA spaces, Bayesian Markov State Models (MSMs) were
constructed to characterize the thermodynamics and kinetics
of the captured local unfolding and refolding events (Bowman
et al., 2013; Shukla et al., 2015). For all constructed models
a lagtime of 100 ns was used. The constructed models were
further coarse grained with the use of Perron cluster cluster
analysis (PCCA+) (Röblitz and Weber, 2013). The number of
used clusters depended on the system and the analyzed pH
value. Reliability of themodels was validated by implied timescale
analyses and Chapman–Kolmogorov tests.

RESULTS

We use a combination of double boost aMD and constant pH
simulations to profile local unfolding events of the Phl p 6 WT
and two point-mutants at pH values ranging from 4.0 to 7.0.

To compare the structural variations found in the simulations,
we projected each simulation into a PCA space, constructed
from the combined trajectories of all systems at all pH values

FIGURE 2 | Captured conformational space of the WT, S46Y, and L89G mutant. Combined PCA space was constructed from all simulations. Individual simulations

are projected onto the first two principal components and color-coded according to the reweighted free energy.
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(Figure 2 WT). The three systems show strong differences in
the captured dynamics. While the WT is stable at pH 7.0,
with a single, deep minimum in the PCA corresponding to
the folded state, the simulations get more and more flexible
as the pH value decreases. The WT simulation of pH 4.0
shows the broadest surface across all systems, with two distinct
minima in free energy. One of the minima corresponds to the
folded structure, very similar to the simulation at pH 7.0. The
second distinct minimum represents a sub-ensemble of unfolded
structures, which are comparably high populated at this pH value.
Secondary structure andDRMSD analyses paint a similar picture,
i.e., the simulation at pH 7.0 is stable in all metrics, showing
only little fluctuations and unfolding, while at lower pH values
the flexibility and structural variances increase significantly (see
Supplementary Figures 1, 2).

In contrast to the WT, the stabilized S46Y mutant, exhibits
limited flexibility in all simulations. Even at lower pH values,
the overall structure remains stable and shows no indications
of unfolding, as represented by the single deep minimum in
the PCA space (Figure 2, S46Y). Only at pH 5.0, the captured
space is broader, however the sampled states are comparably high
in free energy. The 2D-RMSD plot of this simulation shows a
notable, yet short-lived conformational change at about 300 ns
of simulation time. However, the structure quickly refolds and
remains stable for the rest of the simulation.

The destabilized L89G mutant, exhibits a similar behavior as
the WT in the simulations (Figure 2, L89G). Again, the sampled
space clearly gets broader at lower pH values, however even at
pH 4.0 the unfolding does not appear to be as strong as in the
WT simulations, as no deep second minimum appears in the
PCA space. Nevertheless, clear unfolding tendencies are visible
at pH 4.0, with a rather shallow free energy profile (apart from
the dominant minimum) and comparably low barriers.

In order to obtain accurate thermodynamic and kinetic
information of the unfolding processes captured in our
simulations, we clustered the trajectories of pH 4.0 and 7.0 and
used the cluster representatives as starting structures for classical
cpH-MD simulations (see “Method” section). The number of
obtained seeds for the various systems is shown in Table 1. The
varying number of obtained clusters is consistent with the PCA
and flexibility analyses described above, showing little diversity in
the S46Y ensemble on both pH values and an overall higher and
more pH dependent diversity for the WT and the L89G mutant.
For each system and pH, the resulting trajectories were projected
into the original PCA space constructed from the combined cpH-
aMD trajectories and further analyzed withMarkov StateModels.
The use of MSMs removes the bias originating from the different
number of starting structures and allows for a reliable estimation
of the thermodynamics and timescales of the captured unfolding
processes. A summary of all state probabilities and all estimated
transition timescales is available in the supporting information
(Supplementary Tables 1–7).

Figure 3 shows the results of the MSM analysis of the WT
at pH 4.0 (Figure 3A) and pH 7.0 (Figure 3B). To visualize the
captured dynamics, we projected the sampled space into the
original PCA space of the combined cpH-aMD trajectories, and
color-coded it according to the MSM-reweighted free energy.

TABLE 1 | Number of obtained clusters from the 1 µs long cpH-aMD trajectories,

for all systems, at all simulated pH values.

System pH 4.0 pH 4.5 pH 5.0 pH 7.0

WT 348 114 219 54

S46Y 37 31 67 33

L89G 172 161 55 92

We also mapped the representative structures of the macrostates
into the same space. Furthermore, the macrostate separation in
the TICA space is shown. The seeding process allowed for a
broad sampling of the transition regions between the two main
minima at pH 4.0 as shown in Figure 3A. Macrostates 1 and
2 can be attributed to the upper minimum [located around
(−3,7) in the PCA space), while macrostate 3 corresponds to
the lower minimum [around (0,0)]. Macrostate 3 reveals the
highest stationary probability of 46%, macrostates 1 and 2 are
less probable, with a stationary probability of 17 and 37%,
respectively. The estimated transition timescales are in line with
these observations, as the back-and-forth transitions between
states 2 and 3 are comparably fast (∼60 µs), while transitions
to state 1 are comparably slow (∼1ms). Structurally, the three
macrostates are characterized by a varying degree of unfolding.
While the structural ensemble of state 3 is primarily folded,
states 1 and 2 clearly contain partially unfolded structures with
varying severity.

The simulations at pH 7.0 show a shallow minimum in the
combined PCA space, very similar to the cpH-aMD simulations
(see Figure 2). The MSM analysis yields 5 macrostates, three of
which are estimated to contain over 90% of the analyzed frames
(states 3, 4, and 5) and two, significantly less populated states.
Transitions between the highly populated states are estimated
to be quite fast (almost all below 50 µs), whereas transitions
to states 1 and 2 are estimated to be in the range of 500−600
µs. Transitions away from the unfavorable states on the other
hand are estimated to be much faster, in the range of around
100 µs and below. Structurally, the most populated state 3 shows
an overall stable fold in the ensemble representatives, albeit a
disturbance of the second helix is clearly visible. In fact, a similar
disturbance is visible in all states with varying intensity. For the
rest of the protein, only minimal unfolding is visible, with the
least populated macrostates 1 and 2 showing the most notable
structural distortions.

The results of the MSM analysis of the L89G mutant are
shown in Figure 4. Again, the sampled space was projected
in the combined PCA space and color-coded according to the
MSM reweighted free energies. At pH 4.0, two deep minima are
visible in the reweighted PCA space. TICA analysis, followed
by the construction of an MSM discretizes the TICA space into
four macrostates (Figure 4A, right). Mapping these macrostates
back into the PCA space, we see that macrostates 1 and 2 are
attributed to the minimum around (5,3), while macrostates 3
and 4 correspond to the minimum at (0,0). Clustering of the
corresponding structures reveals, that all macrostates exhibit
varying degrees of unfolding, with state 1 showing the most fold
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FIGURE 3 | MSM analysis of the seeded simulations of the WT at pH 4.0 (A) and pH 7.0 (B). Simulations were projected into the combined PCA space, showing the

reweighted free energy surface, together with the positions of the representative macrostate structures. State separation is shown in the respective TICA space.

Macrostate and transitions are visualized, where width of the surrounding circle represents state population and arrow thickness denotes the transition timescale.

Colored structure denotes ensemble representative of the specific macrostate, while transparent, gray structures illustrate ensemble members. At pH 7.0 primarily

folded states are populated, with fast transitions into them. At pH 4.0, folded and unfolded states are populated equally with comparable transition timescales in

between.

distortions of the whole ensemble. While this state also shows
the lowest stationary distribution, also states 2 and 3, which
together hold almost 80% of the population, show clear signs of
unfolding. Transitions between states 2–4 are comparably fast,
with transition timescales below 100µs. Transitions to the highly
unfolded state 1 are slower (around 300 µs), transitions out of
this state are again fast, i.e., below the 100 µs margin.

At pH 7.0 on the other hand, the PCA is characterized
by one single minimum, similar to the wild type simulations
(see Figure 4B). Kinetically, again 4 states can be differentiated
by the MSM analysis, of which states 3 and 4 contain nearly
90% of the ensemble, while states 1 and 2 are significantly less
populated. Structurally, both highly populated states are overall
stably folded, with only state 3 showing slight disturbances. In
contrast, states 1 and 2 exhibit a significant degree of unfolding in
all parts of the protein. Mapping the cluster representatives back
into the PCA space, we find that the highly populated states 3 and
4 are located near the center of the minimum, while macrostates
1 and 2 are high energy states. Transitions between all states are
reasonably fast, with favored transitions into states 3 and 4.

Figure 5 shows the results of the seeded simulations for
the stabilized S46Y mutant. As described above, the S46Y

mutant retained a stable fold at all pH values in the cpH-aMD
simulations, showing little flexibility and structural changes. This
is emphasized by the comparably low number of seeds obtained
from the clustering of the cpH-aMD trajectories (see Table 1).
Additionally, the seeded simulations did not increase the sampled
space significantly, as is evident from projections into the PCA
space. At both pH values, only one deep, narrow minimum
is sampled. At pH 4.0 (Figure 5A) TICA and MSM analyses
revealed four kinetically separated macrostates. With a stationary
probability of 65%, macrostate 2 is the most populated of all
states, states 3 and 4 are significantly less populated (13 and
21%, respectively) and state 1 is almost negligible, with <1%.
Structurally, all macrostates are folded, only state 1 shows some
disturbance in helix 2. Transitions to and between states 2 and 4
are generally very fast (ranging from 45 down to 3µs), transitions
to other states are much slower (up to 400 µs). At pH 7.0
(Figure 5B) even less dynamics are captured in the simulations
as illustrated by the three macrostates. State 3 shows by far the
highest stationary distribution (80%) and completely retains the
native fold. State 2, with a stationary distribution of 18%, has
some diversity in helix 2, however overall its fold is stable. State 1
is the only state that shows some degree of unfolding, however its
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FIGURE 4 | MSM analysis of the seeded simulations of the L89G at pH 4.0 (A) and pH 7.0 (B). Simulations were projected into the combined PCA space, showing

the reweighted free energy surface, together with the positions of the representative macrostate structures. State separation is shown in the respective TICA space.

Macrostate and transitions are visualized, where width of the surrounding circle represents state population and arrow thickness denotes the transition timescale.

Colored structure denotes ensemble representative of the specific macrostate, while transparent, gray structures illustrate ensemble members. Already at pH 7.0

partially unfolded states are sampled with reasonably fast transitions in between. At pH 4.0 all macrostates show partial unfolding, most transitions are below 100 µs.

probability is very low (∼2%) and transitions to it are extremely
slow (above 4ms). Notably, the dynamics captured on pH 4.0 and
on pH 7.0 appear to be very similar for the S46Y mutant and
little to no unfolding is sampled in the simulations. This stands
in contrast to the WT and the L89G simulations, which both are
significantly more flexible at lower pH and extensive unfolding
processes are sampled.

DISCUSSION

We performed constant pH aMD simulations to profile pH
induced local unfolding events in the Phl p 6 wild type as
well as two point mutants. To increase the statistics and obtain
accurate thermodynamics and kinetics of the sampled unfolding
processes, we seeded classical constant pH simulations from the
aMD trajectories and constructed Markov State Models on the
obtained seeded trajectories.

Already in the cpH-aMD simulations clear differences
between the simulated systems can be observed (see Figure 2). At
pH 7.0 all three systems show limited dynamics in the combined
PCA space. Helicity analyses indicate that the wild type and
the L89G mutant are more flexible and structurally diverse
compared to the S46Y mutant (see Supplementary Figure 1

in the supporting information). This is consistent with the
experimental melting temperatures, which show a thermal
stabilization of 14◦C of the S46Y mutant compared to the wild
type (Winter et al., 2020). On the other hand, the slight thermal
destabilization of−5◦C of the L89Gmutant compared to the wild
type is less pronounced in our simulations, with both systems
showing comparable dynamics in our analyses.

At lower pH values, the stabilization effect of the S46Y
mutation becomes even more apparent. The mutant retains an
overall stable structure, all four helices remain intact and the
DRMSD distributions are quite similar across all pH values
(see Supplementary Figures 1, 2). In contrast, the L89G mutant
shows considerably more flexibility and indications of partial
unfolding, which is further reflected in our clustering analyses
as discussed below. The direction of unfolding appears to be
different in the PCA projection between the wild type and the
L89G simulations (see Figure 2). This can be attributed to a slight
displacement of helix 1 relative to the rest of the protein, which
is captured in the pH 4.0 WT simulation but not in the L89G
simulation. The unfolding captured in the L89G simulation is
concentrated on the unfolding of helix 2.

While for the S46Y the number of obtained clusters in
our analyses is basically constant between pH 4.0 and pH 7.0,
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FIGURE 5 | MSM analysis of the seeded simulations of the S46Y at pH 4.0 (A) and pH 7.0 (B). Simulations were projected into the combined PCA space, showing

the reweighted free energy surface, together with the positions of the representative macrostate structures. State separation is shown in the respective TICA space.

Macrostate and transitions are visualized, where width of the surrounding circle represents state population and arrow thickness denotes the transition timescale.

Colored structure denotes ensemble representative of the specific macrostate, while transparent, gray structures illustrate ensemble members. Fold remained stable

at pH 7.0, the single partially unfolded macrostate is small in population, and transition timescales into it are above 4ms. At pH 4.0 transitions are faster, however

transitions into the folded state (3) are much faster than transitions to an unfolded state.

both for the wild type as well as the L89G mutant, a strong
increase in the number of clusters can be observed going from
pH 7.0 to pH 4.0 (see Table 1). Interestingly, nearly double
the amount of clusters was obtained for the L89G mutant
at pH 7.0, compared to the wild type. This indicates that
while appearing to be quite similar in the other analyses, the
captured structural ensemble was still more diverse for the L89G
mutant. At pH 4.0 we find the exact opposite, which again
is in line with our other observations. Given the importance
of allergen stability and proteolytic digestion at lower pH
levels, we further focused on the differences between pH values
4.0 and 7.0.

The MSMs (Figures 3–5) clearly show that at pH 7.0 the
highly populated states are all mainly composed of folded
structures, illustrating the overall stability of all systems at
this pH value. Local unfolding events do occur; however, their
transition timescales are quite slow and the respective stationary
distributions are always very small compared to the folded states.
Of all systems the L89G mutant shows the fastest transitions to
partially unfolded states. This assessment is supported by the
calculated DRMSD distributions (see Supplementary Figure 6,
lower panel). While the peaks of the distributions are quite

similar, the distribution at pH 7.0 is distinctly broader for the
L89G mutant.

This picture changes at pH 4.0. Here, the folded states
show a decrease in probability, while unfolded states become
more probable. Both the wild type and the L89G mutant show
comparably fast transitions (below 100 µs) from the folded to
an unfolded state, which is comparable in probability. Especially
the L89G shows a highly diverse structural ensemble, comprising
multiple local unfolding hotspots, with relatively fast transitions
between all states. Similar but not equivalent in its properties,
is the captured conformational ensemble of the wild type. As
is visible from the stationary distributions, folded and unfolded
states are populated almost equally, with transitions below 100µs
between the folded and the dominant unfolded state. Compared
to the L89G ensemble, however, the unfolding events in the
wild type appear to be less fuzzy and more localized to certain
parts of the allergen. Taken together, the expected destabilizing
effect of the lower pH value is clearly captured and reproduced
by our simulations. While still visible, this pH effect is least
pronounced in the S46Y ensemble, as all four macrostates at
pH 4.0 show only small disturbances in their fold. However, the
ensembles are more dynamic than at pH 7.0, as illustrated by
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FIGURE 6 | Overview of PCA spaces of the seeded simulations and the representatives of the ensembles of all simulated systems at pH 4.0 and 7.0. Structural

ensembles of wild type and L89G mutant clearly become more diverse at lower pH values, while the S46Y mutant shows low structural flexibility at both pH values.

the estimated transition timescales. Again, this is nicely captured
in our DRMSD analysis (Supplementary Figure 6 upper panel).
The DRMSD distributions show two peaks for the wild type and
the L89G mutant, while the S46Y mutant remains stable.

Our findings in this study, as discussed above, are well in
line with the reported experimental degradation behavior and
discussion of its origins made by Weiss and coworkers (Winter
et al., 2020).

To further link our findings to the experimental degradation
reports and early cleavage patterns, we focused on the resulting
degradation peptides and proteolytic cleavage positions as
reported by Winter et al. The reported peptide fragments—
and in consequence also the cleavage positions—are remarkably

similar for all systems and can be grouped into four separated
“clusters” depending on their sequence position. The first and
fourth cluster are located at the N-terminus and near the C-
terminus, respectively. Clusters two and three, on the other
hand, are located within the core of the protein. Taking a closer
look at cluster 2, which spans from amino-acid position 45 to
around 65, and the involved cutting positions, we note that
while the cutting at position 64–65 is very clear and frequent,
the N-terminal end point of the peptide is much more variable.
Interestingly, this cluster is distinctly less represented in the
S46Y degradation pattern. The peptides of cluster 3 (65–85)
are less fuzzy and the related cutting positions clearer. For all
these fragmentations, a prior local unfolding at and around the
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cleavage position is necessary. Our simulations depict the second
helix (residues 31–56) to be one of the most flexible parts of the
whole protein. Especially its C-terminal half is very flexible and
shows a strong tendency to unfold, which is well captured and
visualized in our MSM analysis of the wild type and the L89G
mutant simulations at pH 4.0. Native contact and helical content
analyses of helix 2 further support this, showing a significant shift
toward a lower fraction of native contacts for the L89G mutant,
compared to the other systems (see Supplementary Figures 3–
6). We surmise that the local unfolding of helix 2 opens up the
protein to proteolytic attack and subsequent fragmentation. The
high diversity in the unfolding of these parts is in line with the
fuzzy N-terminal cleavage of the second peptide cluster of the
wild type and the L89G mutant mentioned above.

Remarkably, the stabilized S46Y mutant shows distinctly
less flexibility and little to no unfolding in this region (see
again Supplementary Figures 4, 6), which is again consistent
with its reported cleavage pattern. This difference in flexibility
can be attributed to the stabilizing effect of the serine to
tyrosine mutation in this region. The introduction of the tyrosine
at position 46 stabilizes the core by the introduction of an
additional hydrophobic pi-stacking partner, without removing
the hydrogen bonding potential.

The L89G mutation, on the other hand, is most likely not
directly related to the unfolding tendencies and degradation
patterns of helix 2 due to its position and orientation.
Experimentally, the destabilizing effect of the L89G mutant, is
primarily reflected by its lower melting temperature and faster
degradation at higher pH values compared to the wild type.
Notably, the frequency of the first peptide cluster and to a lesser
degree the frequencies of clusters 2–4 are increased. Weiss and
coworkers attributed these observations to a local increase in
flexibility in helix 4, caused by the mutation to glycine, which
likely propagates into the surrounding parts of the protein. As
discussed above, our results of the DRMSD analyses support
this argument (Supplementary Figures 5, 6), attributing a higher
flexibility to the L89G mutant at pH 7.0 than the other systems.
Furthermore, a native contact analysis of helix 1, to which the
first peptide cluster can be attributed, shows a distinct shift to a
lower fraction of native contacts in the L89Gmutant, which is not
captured for the other two systems.

The difference in flexibility and degradation behavior between
pH 4.0 and 7.0 found for all systems, can be attributed to
the changes in protonation states of the titratable residues. As
we have shown previously many of the 18 residues, which we
consider titratable in the analyzed pH range, are actually titrating
around pH 4.0 (Hofer et al., 2019). In Supplementary Table 8 in
the supporting information we compare the average protonation
of each titratable residue in the systems at both pH values. We see
that most acidic residues show a notable fraction of protonation
at pH 4.0, while at pH 7.0 all acidic residues are negatively
charged. We surmise that this dramatic change in the charge
distribution within the system is the main cause of the strong
difference in dynamics between low and high pH. However, we
do not deem our approach suitable for a detailed investigation
of the pH-induced unfolding mechanism itself. To do that, a
dedicated, slow titration study could be performed to slowly

adapt the system to the change in pH and monitor its reaction
to that.

In summary, our results are perfectly in line with the observed
experimental stabilities and proteolytic degradation patterns.
Figure 6 recaps our findings, showing the PCA spaces of the
seeded simulations on the left side and a representation of the
conformational ensemble on the right side. At pH 7.0, the wild
type and the S46Y mutant remain mostly stable and folded, while
the L89G mutant is more flexible and shows local unfolding.
At lower pH values the flexibilities and unfolding tendencies
of the wild type and the L89G mutant increase significantly.
In contrast to that, the thermally and proteolytically stabilized
S46Y mutant shows only a slight increase in flexibility at lower
pH values and mostly retains a stable fold. We surmise that
local unfolding events captured in our models sufficiently open
up the secondary structure elements of the protein to facilitate
proteolytic cleavage. Both the location and the frequency of the
unfolding events captured in our simulations are in line with the
observed experimental cleavage patterns.

In conclusion, our approach provides valuable information
in atomistic detail of the unfolding kinetics and differences
therein of allergenic proteins. We are able to capture pH-
induced local unfolding events, which can be directly linked to
the experimentally observed cleavage patterns. Our workflow
combining enhanced and classical MD simulations, with
MSM analysis provides accurate thermodynamic and kinetic
information of the underlying unfolding dynamics.
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