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Alzheimer’s disease (AD) is a neurodegenerative disorder recognized as a global public
health priority. Although available treatments temporarily relieve the symptoms, they could
not prevent the progression of cognitive decline. Natural compounds have been rich
sources for drug discovery. Dendrobium nobile Lindl. alkaloid (DNLA) is the main active
compound in Dendrobium nobile Lindl, a traditional Chinese herbal medicine. Recent
studies indicated that DNLA produced neuroprotection. However, the mechanisms
underlying DNLA-generated neuroprotection remain unknown. To investigate
neuroprotection and the underlying mechanisms of DNLA, mouse hippocampus
injection of lipopolysaccharide (LPS)-induced neuronal damage was performed. DNLA
protected hippocampus neurons and working memory disorder against LPS-induced
neurotoxicity. In addition, DNLA suppressed cell undergoing membrane lysis and cell
swelling and inhibited the essential mediator of pyroptosis GSDMD-N expressions.
Furthermore, DNLA-mediated neuroprotection was dependent on the inhibition of
NLRP3 inflammasome activation, as evidenced by the fact that DNLA reduced pro-
inflammatory factor (IL-18 and IL-1β) production and inhibited the expression of related
proteins. DNLA-exerted neuroprotection against LPS-induced neuronal damage, and
cognitive impairment was not observed in NLRP3 knockout mice. Together, this study
suggested that DNLA attenuated NLRP3-mediated pyroptosis to generate
neuroprotection against LPS-induced neuronal damage and cognitive impairment.
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and has affected
more than 50million people worldwide (Lane et al., 2018). The primary neuropathological hallmarks
of AD are extracellular neuritic plaques massed by β-amyloid (Aβ) and intra-neuronal
neurofibrillary tangles (NFTs) aggregated by hyperphosphorylated tau protein (Kocahan and
Dogan, 2017). However, the aforementioned hypothesis should be reconsidered with the failure
of numerous clinical trials aiming directly at these hypotheses (Cummings et al., 2019). Recent
evidence demonstrates that neuroinflammation plays an important role in the progression of AD
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(Shi et al., 2020). In the brains of Alzheimer’s patients,
aggregation and activation of microglia and astrocytes as well
as association with the production of pro-inflammatory factors
have been found near misfolded and aggregated proteins.
Therefore, inflammation mediated by the immune system
might be the key to slowing or preventing the progression of
AD (Regen et al., 2017; Dong et al., 2019).

Production of interleukin-1β (IL-1β) is primarily dependent
on activation of the inflammasome, a multi-protein complex of
cytosolic proteins, such as NOD-like receptor family 3 (NLRP3),
apoptosis-associated speck-like protein (ASC), and pro-caspase-1
(Lamkanfi and Dixit, 2014). NLRP3 is the most widely studied
inflammasome and mainly expressed in microglia and probably
responsible for microglia activation (Eren and ÖZÖRen, 2019).
The activation of caspase-1 and subsequent release of IL-18 and
IL-1β following the formation of an inflammasome might play a
major role in pro-inflammatory responses around microglia
(Bauernfeind et al., 2009). Current studies demonstrated that
Aβ and NFTs could promote the activation of the NLRP3
inflammasome pathway in microglia, and NLRP3 deficiency
attenuated neuroinflammation and Aβ accumulation in the
AD mice model (Yin et al., 2017; Ising et al., 2019).

Recent evidence demonstrated that activation of inflammasome
pathways triggered pyroptosis and led to the extracellular release of
inflammatory cytokines (Liu et al., 2016). Pyroptosis is a kind of
inflammatory cell death regulation that relies on the activation of
cytosolic inflammasomes, mainly depending on the caspase family
(Bergsbaken et al., 2009). Gasdermin D (GSDMD) is recognized as the
pyroptotic executive protein, and caspase-1 may mediate the cleavage
of downstream GSDMD (Gao et al., 2018). In terms of the pathogenic
mechanism of AD, growing investigations have shown that pyroptosis
plays an essential role in the occurrence and progression of AD.
Moreover, the expression of GSDMD in cerebrospinal fluid of patients
was increased, suggesting that it could be employed as a biomarker for

AD diagnosis and differentiation from vascular dementia (Shen et al.,
2021).

Natural compounds have been rich sources for drug discovery.
Dendrobium nobile Lindl. alkaloid (DNLA) is the main active
compound in Dendrobium nobile Lindl, a traditional Chinese
herbal medicine, which has anti-aging, life-span extension, and
immunomodulatory effects (Nie et al., 2020). Substantial studies
indicate that DNLA might be beneficial to improve cognitive
dysfunctions in AD animal models. The underlying mechanisms
were closely associated with reducing the production of
extracellular amyloid plaques and regulation of tau protein
hyper-phosphorylation (Nie et al., 2018; Liu B. et al., 2020). In
addition, DNLA could inhibit lipopolysaccharide (LPS)-induced
inflammation and activation of NLRP3 inflammasome in BV2
microglia (Liu H. et al., 2020; Liu J. J. et al., 2020). Whether the
neuroprotective effects of DNLA were related to its anti-
inflammatory actions was not clear.

In this study, we investigated the effects of DNLA on NLRP3
inflammasome activation and neuron pyroptosis. We further
tested the hypothesis that DNLA could alleviate pyroptosis by
inhibiting the NLRP3/GSDMD signaling pathway.

MATERIALS AND METHODS

Animals and Treatment
Eight-week-old wild-type C57BL/6 (WT) male mice and male
NLRP3 knockout (NLRP3−/−) mice on the C57BL/6J genetic
background mice were purchased from the Jiangsu ALF
Biotechnology Co., Ltd (Nanjing, China). Our laboratory
extracted DNLA from Dendrobium nobile stem parts. According
to LC–MS/MS, the alkaloids accounted for 79.8%. The chemical
structures and the chromatograms of DNLA were shown in our
latest articles (Nie et al., 2016). DNLAwas dissolved in 1% Tween 80

GRAPHICAL ABSTRACT | DNLA produced neuroprotection through the amelioration of NLRP3-mediated pyroptosis.
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and was orally administered to each group daily, and the equal
volume of vehicle was used as control. WT and NLRP3 KO mice
received intragastric administration with DNLA (20 or 40mg/kg)
once daily for 14 days. On the seventh day, the mice were injected
with LPS (2 μg in 1 μL normal saline, Sigma-Aldrich, United States)
in the hippocampus on both sides of the brain with the following
Bregma coordinates: AP 0.5 mm, ML 1.0mm, and DV −2.0 mm;
animals in the control group accepted equal volume of saline. All
experiments were in strict conformity with the Chinese Guidelines of
Animal Care and Welfare, and this study was approved by the
Animal Care and Use Committee of Zunyi Medical University
(Zunyi, China).

Y-Maze Test
Behavioral changes in the spontaneous alternation were assessed
via the Y-maze test (Liu B. et al., 2020). Themice were placed in the
start area and permitted to freely explore the left or right arm of the
maze for 5 min, while the sequence of the arm entrances and total
numbers of arm choices were monitored and recorded using a
camcorder (TopScan, United States). The total number of arm
entries and alternation behavior was counted, and the percentage
of spontaneous alternation was calculated by the formula [number
of alternation/(number of total arm entries −2)] × 100%.

Novel Object Recognition Test
Before the novel object recognition test, the mice were acclimated
to the open field testing arena for 5 min on day 1. On the second
day, the mice were allowed freely to explore two identical objects in
the open field for 5 min (training period). On the third day, the
mice were allowed to freely explore both objects (one of the objects
is novel) for 5 min (test period). The time spent in exploring the
objects wasmeasured. The location preference (to assess the impact
of position on preference) is described as the recognition index,
which is calculated by the time taken to explore novel objects/total
time taken to explore both objects *100%.

Immunofluorescence Staining
All mice were sacrificed after behavior tests. Mice brains were fixed
with 4% paraformaldehyde, and brain slices (4 μm thick) were
prepared and used for staining. The slices were washed in PBS for
5 min three times and then blotted in 5% goat serum for 1 h at

room temperature. The slices were incubated with the primary
antibodies overnight at 4°C. The primary antibodies used were:
rabbit anti-IBA-1 (1:200, Abcam, United Kingdom), rabbit anti-
NLRP3 (1:200, Novus Biologicals, United States), rabbit anti-
caspase-1, rabbit anti-GSDMD-N, and rabbit anti-NeuN (1:100,
Proteintech, China). After being washed in PBS three times, these
slices were incubated with secondary antibodies at 37°C for 1 h, and
the secondary antibodies used were Alexa Fluor 488-conjugated
goat anti-rabbit IgG (1:400, Abcam, United Kingdom) and Alexa
Fluor 594-conjugated goat anti-rabbit IgG (1:400, Abcam,
United States). Then, these slices were washed three times again
and stained with DAPI (Solarbio, China) for 5 min. The results
were imaged using a fluorescence microscope (Nikon, Japan).

Western Blot Assay
Protein from hippocampus tissue was extracted using lysing
buffer according to the protocol from the previous study (Liu
B. et al., 2020). The protein was quantified using a BCA protein
assay kit (Generay, China) after centrifugation (12,000 rpm,
15 min at 4°C). Protein (30 µg) was loaded onto 10%
Tris–glycine polyacrylamide gels and then transferred onto the
PVDF membrane (Millipore Trading Co., Ltd.). The membranes
were soaked in 5% fat-free milk for 2 h at room temperature and
then incubated with primary antibodies overnight at 4°C: anti-
rabbit -NLRP3 (1:1000, Novus Biologicals, United States), anti-
rabbit ASC (1:1000, Proteintech, China), anti-rabbit-Caspase-1
(1:1000, Proteintech, China), anti-rabbit GSDMD-N (1:1000,
HuaAn, China), and anti-rabbit GAPDH (1:5000, Proteintech,
China). After washing three times, the membranes were
incubated with rabbit HRP-conjugated secondary antibody (1:
5000, Proteintech, China) for 1 h at room temperature. The
intensity of the blots was detected using a chemiluminescence
kit and quantified using Image Lab (Bio-Rad, United States).

Real-Time PCR Assay
The total RNA of the hippocampus tissues was prepared using
RNeasy kit, and the detailed steps of RT-PCR were described
previously (Liu J. J. et al., 2020). NLRP3, IL-18, IL-1β, Caspase-1,
and GAPDH genes were tested. Accordingly, the gene expression
was normalized with GAPDH. The primers are listed as follows
Table1:

Scanning Electron Microscope
The hippocampal tissues were dried in an increasing sequence of
ethanol (30–100%), placed on aluminum stabs with their treated
surfaces facing up, and sputtered with gold in the JEE-4X
equipment (Jeol, Japan). The Hitachi-3000N scanning electron
microscope (Hitachi High-Tech, Japan) was used for observation.

Statistical Analysis
Data were presented as mean ± SEM. The significant statistical
difference was analyzed using one-way ANOVA by Dunnett’s
post hoc t-test and two-way ANOVAwith the Bonferroni post hoc
test for comparison between WT and NLRP3-KO mice groups.
The differences were considered significant at p < 0.05. Analyses
were performed using GraphPad Prism (GraphPad Software,
Inc., United States).

TABLE1 | Primers sequence.

Gene Sequence (5’ to 3’)

IL-1β GCC CAT CCT CTG TGA CTC AT
AGG CCA CAG GTA TTT TGT CG

NLRP3 ATGCTG CTTCGA CAT CTC CT
AAC CAA TGCGAG ATC CTG AC

IL-18 GCCATGTCAGAAGACTCTTGCGTC
GTACAGTGAAGTCGGCCAAAGTTGTC

Caspase-1 CCCCAGGCAAGCCAAATC
TTGAGGGTCCCAGTCAGTCC

GAPDH AAC TTT GGC ATT GTG GAA GG
ACA CAT TGG GGG TAG GAA CA
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RESULTS

Dendrobium Nobile Lindl. Alkaloid
Ameliorated Lipopolysaccharide-Induced
Cognitive Impairment
Neuroprotective effects of DNLA on the LPS-induced learning
andmemory function disorder were investigated inWTmice.We

analyzed mice learning and memory function changes via
Y-maze and novel object recognition tests. As shown in the
Y-maze result (Figure 1A), LPS reduced the number of
alternations compared with the control group (p ＜ 0.05), and
DNLA improved spatial memory (p＜ 0.05). Similarly, the novel
object recognition test indicated that the percentage of time to
explore new objects was reduced in the LPS group compared with
the control group (p ＜ 0.05). However, DNLA treatment

FIGURE 1 | DNLA ameliorated LPS-induced spatial learning and memory function. Wild-type mice were given DNLA (20 or 40 mg/kg) intragastrically for 14
consecutive days. On the seventh day, after DNLA treatment, mice received single intranigral injection of LPS (2 μg) on both sides of the hippocampus. After DNLA for
10 days, the Y-maze test (A) and novel object recognition test (B)were performed.*p < 0.05 compared with the control group, #p < 0.05 compared with the LPS-treated
group. Results were expressed as mean ± SEM, n = 10.

FIGURE 2 | DNLA attenuated LPS-induced hippocampus neuronal damage. After DNLA treatment for 14 days, the neuronal quantification in hippocampus CA1
was measured by immunofluorescence staining. The red color indicated NeuN-positive cells, and the blue color showed a DAPI-stained nucleus. Scale bar = 50 μm (A).
Quantitative analysis of the number of NeuN-positive cells (B). Cell membrane structure of hippocampal neurons was observed using the scanning electron microscope
(C). *p < 0.05 compared with the control group; #p < 0.05 compared with the LPS-treated group. Data were expressed as mean ± SEM from four mice.
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increased the percentage of time to explore new objects (p＜ 0.05,
Figure 1B). These findings suggested that DNLA improved LPS-
induced spatial learning and memory deficits.

Dendrobium Nobile Lindl. Alkaloid
Attenuated Neuronal Damage in Mouse
Hippocampus
Neuron-specific nuclear protein (NeuN) is a mature neuronal
marker, and the number of NeuN-positive cells reflects the
growth and development of neurons. As shown in Figures
2A,B, the hippocampus in control and DNLA alone groups was
normal with high NeuN-positive immunoreactivity. However, the
reduced neuron numbers occurred in the hippocampus CA1 area
of the LPS group (p ＜ 0.05). DNLA pretreatment protected
neurons against LPS-induced neurotoxicity by enhancing the
NeuN-positive neuronal number (p ＜ 0.05).

Pyroptosis plays an important role in the occurrence of
progression of AD. To examine whether pyroptosis affected
the neuroprotective effect of DNLA in the WT mice, we
assessed the cell membrane structure of hippocampal neurons
using the scanning electron microscope. As shown in Figure 2C,
the cell membrane of hippocampus neuronal disruption by pores
was discerned in the LPS group, and DNLA pretreatment
attenuated the LPS-induced neuron membrane damage. These
results show that DNLA could generate neuroprotective effect
against LPS-induced neurotoxicity.

Dendrobium Nobile Lindl. Alkaloid
Suppressed Microglia and NLRP3
Activation
Neuroinflammation is critical in the pathophysiological process of
AD. Activation of the NLRP3 inflammasome andmicroglia plays a
key role in the regulation of neuroinflammatory response. To
investigate the effects of DNLA on microglia-induced
neuroinflammation, the co-localization of microglia and NLRP3
was determined by double immunofluorescence analysis
(Figure 3A). In parallel with neuronal damage, LPS induced
microglia and NLRP3 activation (p ＜ 0.05), and DNLA
suppressed these activations (p ＜ 0.05, Figure 3B).
Furthermore, we revealed that DNLA downregulated the
mRNA expressions of NLRP3, caspase-1, IL-1β, and IL-18 in
the hippocampus (p ＜ 0.05, Figure 3C). Similar results were
shown in protein expression of NLRP3, ASC, and caspase-1 in
Figure 4A. Together, DNLA treatment attenuated LPS-induced
neuroinflammation by inhibiting microglia, NLRP3
inflammasome activation, and release of pro-inflammatory factors.

Dendrobium Nobile Lindl. Alkaloid Inhibited
NLRP3/GSDMD Signaling Pathway
Activation
To confirmwhether DNLA inhibited the NLRP3/GSDMD signaling
pathway in mouse hippocampus, immunofluorescence analysis was

FIGURE 3 | DNLA inhibited microglia and NLRP3 activation. After DNLA treatment for 14 days, the protein expressions of IBA-1 and NLRP3 in the hippocampus
CA1 region were measured by immunofluorescence staining. The red color indicated NLRP3, the green color presented IBA-1, and the blue one exhibited a DAPI-
stained nucleus. Scale bar = 50 μm (A). Quantitative analysis of protein density of IBA-1 and NLRP3 (B). mRNA levels of NLRP3, IL-18, IL-1β, and caspase-1 in the
hippocampus were tested by real-time RT-PCR (C). *p < 0.05 compared with the control group; #p < 0.05 compared with the LPS-treated group. Data were
expressed as mean ± SEM, n = 4.
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performed to determine the expression of caspase-1 and GSDMD-
N. As shown in Figures 4A,B, the fluorescence intensity of caspase-1
and GSDMD-N was more prominent after LPS treatment (p ＜
0.05). Compared with the LPS group, DNLA reduced the protein
expressions of caspase-1 and GSDMD-N (p＜ 0.05). Moreover, the
protein expression of the NLRP3/GSDMD-N signaling pathway was
measured by Western blotting; the higher level of GSDMD-N,
caspase-1, ASC, and NLRP3 protein expressions was observed in
the LPS group (p＜ 0.05), which were inhibited by DNLA treatment
(p ＜ 0.05, Figures 4C,D).

Additionally, the results further exhibited the strong
binding affinity between DNLA and NLRP3 with a binding
energy of −6.15 kcal/mol. Thereafter, the presumptive binding
modes and the pocket of the amino acid were tested by
molecular docking, including Val72, Trp73, Tyr84, Ala87,
Glu91, and Lys88, which further confirmed that DNLA
bound to the hydrophobic pocket of NLRP3, which is
consistent with the results in vivo (Figure 5). These
findings indicated that DNLA might directly bind to NLRP3
to exert its pharmacological activities.

NLRP3 Signaling Participated in
Dendrobium Nobile Lindl.
Alkaloid-Mediated Neuroprotection
Since DNLA ameliorated NLRP3 inflammasome activation, the
neuroprotection effect of DNLA was further evaluated by using
NLRP3 KO mice. First, the DNLA-ameliorated LPS-induced

learning and memory function disorder was not discerned in
NLRP3 KO mice (Figures 6A,B). In addition, DNLA-mediated
neuroprotection was absent in NLRP3 KO mice via NeuN
immunostaining in the hippocampus. In detail, as shown in
Figure 6C, LPS injection caused neuronal death in WT mice,
while DNLA-attenuated neuronal loss in NLRP3 KO mice
appeared to be less evident than that in WT mice. Similar
results were shown in the cell membrane structure of
hippocampal neurons using the scanning electron microscope
(Figure 7A). Furthermore, DNLA reduced LPS-induced protein
expressions of caspase-1 and GSDMD-N in WT mice, whereas
DNLA-mediated reduction expressions of caspase-1 and
GSDMD-N were not discerned in NLRP3 KO mice (Figures
7B–D). Collectively, these results suggested that inhibition of
NLRP3 expression participated in DNLA-mediated
neuroprotection in mice hippocampus.

The results further demonstrated that knockdown of NLRP3
attenuates GSDMD-N expression. Furthermore, the docking of
NLRP3 and GSDMD-N was carried out by the ZDOCK method
same as the previous study. The results showed that there were
strong interactions between NLRP3 and GSDMD-N as evidenced
by the output value score of 1330.175 (Figure 8). Of note, the
results further demonstrated that hydrogen bond and charge
interactions were generated through the amino acid residues
including Gln45, Ile59, Arg100, Val101, Ser102, Asn103 and
Thr105 in NLRP3 and Asp20, Thr22, Arg41, Tyr53, Arg212,
Asp227, and Gln248 in GSDMD-N. These findings suggested that
there existed a potent affinity between NLRP3 and GSDMD-N.

FIGURE 4 | DNLA inhibited NLRP3/GSDMD signaling pathway activation. After DNLA treatment for 14 days, the protein expressions of GSDMD and NLRP3 in
hippocampus CA1 were measured by immunofluorescence staining. Scale bar = 50 μm (A). The green color indicated caspase-1-positive cells, and red color exhibited
GSDMD-N-positive cells. Quantitative analysis of protein density of GSDMD-N and caspase-1 (B). Protein expressions of GSDMD-N, caspase-1, NLRP3, and ASC in
the hippocampus were measured byWestern blotting assay (C). Quantitative analysis of the expression of GSDMD-N, caspase-1, NLRP3, and ASC; the reference
value of the protein/GAPDH was the ratio of the control group (D). Data were expressed as mean ± SEM, n = 3–4. *p < 0.05 compared with the control group; #p < 0.05
compared with the LPS-treated group.
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DISCUSSION

We previously demonstrated that DNLA improved cognitive
deficits in several AD animal models (Yang et al., 2014; Nie
et al., 2018; Liu B. et al., 2020). Here, the current investigation
found that LPS-induced NLRP3 inflammasome activation caused
neuronal injury in a pyroptotic-dependent way. DNLA inhibited
the activation of the NLRP3 inflammasome and the subsequent
release of pro-inflammatory cytokines such as IL-1β and IL-18 in
the hippocampus. Furthermore, DNLA protected LPS-induced
neuronal injury in hippocampus and working memory
impairment. Collectively, these findings revealed that NLRP3-
mediated pyroptosis played a detrimental role in the etiology of
LPS-induced memory impairment, and DNLA acted as a
promising therapeutic agent for the prevention and treatment
of AD.

It is well-known that the hippocampus is responsible for
learning and spatial memory, while acute inflammation,
oxygen deficit, or other cause damage to the hippocampus
(Wu et al., 2015). Those acute damages are selectively sensitive
in the hippocampal CA1 region neurons and cause cell death,
whereas the cortical, dentate gyrus (DG), and CA3 regions appear
to be more resistant (Bartsch et al., 2015; Bartsch and Wulff,

2015). Thus, we investigated neuronal injury in the hippocampal
CA1 region and discovered that mice exposed to LPS had
significantly damaged neurons in this region. Moreover, mice
exposed to LPS performed worse in the Y-maze test and novel
object recognition test than those in the control group, indicating
that spatial learning and memory dependent on the hippocampus
were impaired.

In addition, neuroinflammation is a pathological feature of
AD (Webers et al., 2020; Leng and Edison, 2021). Several studies
revealed that inflammatory processes might promote neuronal
loss and cognitive decline (Calsolaro and Edison, 2016; Bradburn
et al., 2019). LPS, an inflammation inducer, has been confirmed to
influence Aβ deposition, and LPS injection to the mouse brain
ventricle caused memory deficiency and Aβ accumulation (Park
et al., 2020). Another evidence clearly demonstrated that DNLA
treatment protected rat brains from LPS-induced
neuroinflammation via inhibiting microglia and NLRP3
activation.

Studies revealed that activation of the NLRP3 inflammasome
in the hippocampus might cause neuronal damage, cognitive
dysfunction, and even neuronal death (Hanslik and Ulland,
2020). NLRP3 inflammasome is a protein complex and
consists of NLRP3, ASC, and pro-caspase-1, leading to the

FIGURE 5 | Molecular docking of the DNLA and NLRP3 complex. Residues of amino acids between DNLA and NLRP3 complex (A). Binding of DNLA to the
hydrophobic surface of the NLRP3 protein; hydrophilic (blue) and hydrophobic parts (orange) of the protein surface (B). Overview of the predicted bindingmode between
GSDMD-N and NLRP3 (C).
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FIGURE 6 | NLRP3 signaling participated in DNLA-mediated neuroprotection. WT mice and NLRP3-KO mice were given DNLA (40 mg/kg) intragastrically for 14
consecutive days. On the seventh day after DNLA treatment, mice received a single intranigral injection of LPS (2 μg) on both sides of the hippocampus. After DNLA
treatment for 10 days, the novel object recognition test (A) and Y-maze test (B) were determined. The neuronal number in hippocampus CA1 was measured by
immunofluorescence staining; the red color indicated NeuN-positive cells, and the blue represented the DAPI-stained nucleus. Scale bar = 50 μm (C). Quantitative
analysis of the number of NeuN-positive cells (D).*p < 0.05 compared with the WT control group; #p < 0.05 compared with the WT LPS-treated group.

FIGURE 7 | DNLA suppressed pyroptosis through inhibition of NLRP3 signaling. After DNLA treatment for 14 days, the cell membrane structure of the
hippocampal neurons was discerned using the scanning electron microscope (A). Protein expressions of caspase-1 and NLRP3 in hippocampus CA1 were measured
by immunofluorescence staining. The green color indicates caspase-1-positive cells, and red color indicated GSDMD-N-positive cells. Scale bar = 50 μm (B).
Quantitative analysis of protein density of GSDMD-N (C) and caspase-1(D). *p < 0.05 compared with theWT control group; #p < 0.05 compared with theWT LPS-
treated group. Data were expressed as mean ± SEM (n = 3).
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cleavage of caspase-1 and the maturation and secretion of IL-1β
and IL-18 (Chen et al., 2019; Stancu et al., 2019). To estimate the
effects of DNLA against LPS induced-NLRP3 inflammasome
pathway activation of hippocampus, we analyzed gene
expression of the principle members of the NLRP3
inflammasome pathway in the hippocampus and found that
DNLA downregulated the mRNA expressions of NLRP3,
caspase-1, IL-1β, and IL-18 in mouse hippocampus.

Several preliminary studies proved that the NLRP3
inflammasome accelerated activation of caspase-1. Caspase-
1 could cleave GSDMD into the GSDMD-N domain, which
further forms pores on lipid membranes and induces cell
swelling (Fan et al., 2018; Li et al., 2020). Pyroptosis, a
caspase-1-mediated form of cell death, is characterized by
an early breakdown of the integrity of plasma membranes
that leads to an extracellular spill of intracellular pro-
inflammatory cytokines (Sun et al., 2019). Like apoptotic
cell death, pyroptosis is another mode of programmed cell
death associated with the cellular inflammatory response.
Pyroptosis plays a crucial part in immune defense against
body damage, such as stroke and infection (Liu H. et al., 2020).
When cells are damaged, damage-associated molecular
patterns (DAMPs) initiate the inflammatory response by
binding to DAMP receptors, such as TLRs. For infection,
the microbial molecules with DAMPs initiate the response
by binding to the corresponding PRR (Humphries et al. .,
2020). Following this, the cell undergoes membrane lysis and
cell swelling, and eventually the membrane ruptures leading to
the release of the pro-inflammatory contents. In this study, we
found that DNLA inhibited IL-1β release and pyroptosis of
hippocampal neurons.

In addition, a large number of studies confirmed that GSDMD
is a candidate for pyroptotic pore formation and the key
contributor to pyroptosis (Humphries et al., 2020). As a result,
we hypothesized that GSDMD was essential for the effect of
DNLA on hippocampal pyroptosis. This investigation discovered

that DNLA reduced LPS-induced GSDMD enhancement as well
as caspase-1 expression. Furthermore, we demonstrated that
several pores were formed on neuronal membranes, and
GSDMD-N was upregulated in the hippocampus exposed to
LPS, which was reversed by DNLA.

At present, nutraceuticals have become new promising
compounds for preventive and beneficial for AD. DNLA is the
main active compound in Dendrobium nobile Lindl. As reported,
substantial preclinical studies indicate that DNLA is a promising
molecule to counteract various pathophysiological processes of
AD, by improving cognitive functions and inhibiting
neurodegeneration. The underlying mechanisms might be
related to inhibition of the production of Aβ plaques and Tau
protein hyper-phosphorylation as well as by suppressing
neuroinflammation and apoptosis and activating autophagy (Li
et al., 2011; Li et al., 2017). However, the molecular mechanism of
DNLA inhibiting neuroinflammation complex formation
remains elusive. This study demonstrated that DNLA
produced neuroprotection through the amelioration of
NLRP3-mediated pyroptosis (Graphical Abstract).
Nevertheless, we used lateral ventricle injection with LPS to
induce neuroinflammation, study the mechanism of
neuroinflammation in hippocampal neuron damage, and learn
about memory defect, but this is far from the clinical progression
of AD patients. Therefore, DNLA-mediated neuroprotection still
warrants the exploration in other animal models, such as 3XTg or
5XTg AD mice, and also further comprehensive clinical
investigations are needed to elucidate the multiple practical
and theoretical issues of DNLA-generated neuroprotection
in AD.

CONCLUSION

This study demonstrated that DNLA suppressed neuronal
pyroptosis induced by LPS, and these beneficial effects were

FIGURE 8 | Interaction between NLRP3 and GSDMD-N. Interaction between NLRP3 and GSDMD-N was displayed using ZDOCK. Substrate-binding surface (A).
Interactions of NLRP3 with active amino acid sites and GSDMD-N (B). The NLRP3 protein is shown in purple color solid ribbon, while GSDMD-N protein is in yellow.
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closely associated with the inhibition of NLRP3/GSDMD
pathway activation.
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