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Summary
Objectives: We examine the knowledge ecosystem of COVID-19, 
focusing on clinical knowledge and the role of health informatics 
as enabling technology. We argue for commitment to the model 
of a global learning health system to facilitate rapid knowledge 
translation supporting health care decision making in the face of 
emerging diseases.
Methods and Results: We frame the evolution of knowledge in 
the COVID-19 crisis in terms of learning theory, and present a 
view of what has occurred during the pandemic to rapidly derive 
and share knowledge as an (underdeveloped) instance of a 
global learning health system. We identify the key role of infor-
mation technologies for electronic data capture and data sharing, 
computational modelling, evidence synthesis, and knowledge 
dissemination. We further highlight gaps in the system and bar-
riers to full realisation of an efficient and effective global learning 
health system.
Conclusions: The need for a global knowledge ecosystem 
supporting rapid learning from clinical practice has become more 
apparent than ever during the COVID-19 pandemic. Continued 
effort to realise the vision of a global learning health system, 
including establishing effective approaches to data governance 
and ethics to support the system, is imperative to enable continu-
ous improvement in our clinical care.
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1   Introduction
The emergence of the global pandemic of 
coronavirus COVID-19 dominated much 
of the health informatics and medical re-
search landscape during 2020. Hence it is 
appropriate that this end-of-year review of 
recent developments in medical knowledge 
management focuses on the pandemic.

The pandemic has highlighted the clear 
need for informatics to support manage-
ment and synthesis of health information 
at the global scale and pace in the face of 
a rapidly spreading infection. However, it 
has also highlighted the presence of severe 
limitations in our ability to share, integrate, 
and analyse data at this scale.

To address those limitations, we propose 
that the model of a “global learning health 
system” (gLHS) can be deployed. The con-
cept is of a learning health system (LHS) [1, 
2], expanded to a global scale but with the 
singular focus on the viral disease. Indeed, 
the international effort to quickly gather 
and share knowledge for clinical diagnosis, 
management, and treatment of COVID-19 
can be seen as an exemplar of a gLHS, albeit 
not yet fully realised or effective. 

The key elements of a LHS, including the 
core information cycles that characterise it, 
were observed throughout the interactions of 
the global scientific community. Information 
flowed from practice (what was being done on 
the ground to manage COVID-19 patients) to 
data (what was captured about those patients 
and their clinical characteristics or response 

to interventions) to knowledge (about dis-
ease characteristics and trends, what care 
approaches worked, and what did not, based 
on analysis and modeling of the data) and 
rapid implementation for practice again. Fur-
thermore, as required by a LHS, information 
technology infrastructure played a critical role 
in enabling these information flows. 

In the wake of the previous SARS and 
Ebola virus epidemics, it was already argued 
that unified frameworks supporting clinical 
and biological data integration were critical 
to support evidence generation in a pan-
demic [3] and that information technology 
was needed for knowledge management 
[4]. Broader adoption of electronic health 
records has facilitated evidence generation, 
including in observational studies and in 
traditional randomised controlled trials, 
through their use to identify eligible patients, 
support data collection, and monitor out-
comes [5]. Electronic sharing of patient-level 
data from trials facilitates re-analysis of 
outcomes and fosters reproducibility and 
trust in findings [6]. But, our public health 
and clinical responses during COVID-19 de-
manded much more sophisticated strategies 
for rapid information synthesis and knowl-
edge management than was available, which 
we argue an effective gLHS would facilitate.

The rapid spread of COVID-19 inter-
nationally and its immediate impact on the 
global economy has led to much more wide-
spread appreciation of the need to coordinate 
pandemic research, including substantially 
increased scientific globalism [7] – interna-
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tional research collaboration – and sharing of 
patient-level clinical data [6]. However, despite 
a few shining examples of rapid deployment 
of multi-site clinical trials [8-11], clinical 
research for COVID-19 has been highly 
fragmented [12], with a particular dearth of 
meaningful evidence in the area of non-drug 
interventions with public policy impacts [13]. 

This survey will show that although 
there is still work to be done, the pandemic 
has illustrated that many of the elements 
required for a global learning health system 
are in place, critically including the human 
motivation to achieve it.

The framework of the gLHS that we 
present is not only a useful way of char-
acterising how knowledge evolved during 
the pandemic under the strong impetus to 
support knowledge-informed clinical care 
and public health response to COVID-19, 
but also provides an architecture for a sys-
tem that we can invest in to ensure robust 
knowledge evolution for ongoing global 
health needs into the future. 

2   A Global Learning 
COVID-19 System
In this section, we introduce the frame-
work for ‘learning’ that we will adopt in 
our analysis of the evolution of knowledge 
during the first year of the COVID-19 crisis 
(Section 2.1). We then present a model 
of the collective activity toward learning 
about COVID-19, viewed as a global-scale 
learning health system (Section 2.2), and 
illustrating the elements of the gLHS that 
emerged as observed from the literature.

2.1   Framework for Conceptualising 
Learning in a Crisis
To frame the evolution of knowledge in the 
COVID-19 crisis, we follow a recent propos-
al by Tovstiga and Tovstiga (2020) to adopt 
a classical four-quadrant ‘conscious-compe-
tence’ conceptual framework from learning 
theory [14]. The model is presented in Figure 
1, illustrating the stages of a learning trajec-
tory, from unconscious ignorance of lack of 
knowledge, to deeply embedded knowledge.

1. Quadrant 1: Zone of uncertainty, 
including lack of clarity about a topic 

2. Quadrant 2: Zone of learning, where 
the value of knowledge on the topic is 
recognised and sought. Questions play 
a crucial role in this zone;

3. Quadrant 3: Zone of actionable 
knowledge, where learning is con-
solidated and integrated with existing 
knowledge;

4. Quadrant 4: Zone of embedded un-
derstanding, enabling intuitive action. 
Knowledge in this zone is often not 
fully recognised.

While typically applied in the context of an 
individual learner, the Tovstigas argue that 
the framework effectively reflects the general 
knowledge evolution process in the context of 
the COVID-19 crisis. They further suggest that 
it is useful for structuring and understanding 
the learning trajectory with respect to the cri-
sis, demonstrating the various phases through 
an analysis of information about COVID-19 
communicated through news reports. 

Their analysis identifies data analytics 
and scientific knowledge sharing as key driv-
ers of the learning trajectory in COVID-19, 
citing efforts such as the World Health Or-
ganization’s creation of a global COVID-19 
clinical information platform based on a 
standard case report form1 requesting data 

1 https://www.who.int/publications/i/item/
WHO-2019-nCoV-Clinical_CRF-2020.4 

on specific detailed clinical and demographic 
parameters on COVID-19 positive patients. 
This underscores the important role of data 
standards in supporting the learning needed 
to manage the pandemic. These are also key 
elements of the gLHS and highlights the 
relevance of the model.

2.2   Modelling the COVID-19 
Knowledge Ecosystem Through the 
Learning Health System
Building on this framework for conceptualis-
ing learning, we propose that the core model 
of a LHS [1,2] can be applied to characterise 
the rapid evolution of knowledge that has 
occurred during the COVID-19 pandemic. 
In this model, data and analytics over clinical 
practice data from patient care drives learning 
of new knowledge that can be implemented 
to improve clinical practice, leading to con-
tinuous improvement. A number of critical 
knowledge management and information 
technology elements can be identified as key 
enablers of this learning process, supporting 
the significant human efforts that catalysed 
and provided the appropriate socio-technical 
conditions for the learning cycle.

Our proposed model for the COVID-19 
gLHS is shown in Figure 2. The impetus for 
the learning process in COVID-19 arose from 
a knowledge gap, the gap between purposeful 
action grounded in knowledge (Q3) that exists 
for routine clinical care and the uncertainty 

Fig. 1   The ‘conscious-competence’ matrix of learning, based on a model originally attributed to Broadwell (1969) [83]; adapted from [14].
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surrounding diagnosis and management of 
the novel virus in affected patients (Q1). This 
then triggered a broad effort to gather data 
to fill the gap, primarily taking advantage 
of data collected through electronic health 
record systems. Data collection and inte-
gration, facilitated through electronic data 
sharing, then enabled learning (Q2), actioned 
through observational analysis, clinical 
trials, predictive modelling, and other re-
search leveraging data, with the objective of 
turning data into information. Publications 
summarising these studies served as the 
key vehicle for sharing research results, 
but challenges in finding and interpreting 
papers – particularly in the face of a flurry of 
research activity – resulted in remaining un-
certainty in the knowledge that existed (Q4). 
Translation of new knowledge into practice 
(Q3) required evidence synthesis approach-
es such as systematic reviews, critically 

involving searching (information retrieval), 
screening, appraisal, and meta-analysis of 
research publications. Key conclusions were 
rapidly shared via actively maintained, living 
guidelines [15] and platforms [16] or tools 
[17] for making available clinical decision 
support knowledge artifacts.

2.2.1   Electronic Data Capture and Data 
Sharing
Electronic health records (EHRs) are a key 
resource in the learning health system, as 
they provide the data that is used to drive 
learning from practice. For COVID-19, 
EHRs were analysed to characterise early 
cases of the infection in Wuhan, China [18, 
19], to provide important information related 
to the efficacy of symptom-based screening 
[20], and to collect data on patients prospec-
tively after enrolment in a trial [21]. In the 

UK, the OpenSafely Platform2 was used to 
identify factors associated with COVID-19 
deaths through analysis of the primary care 
records of over 17 million patients [22], 
facilitated through the use of a single EHR 
system (TPP SystemOne) by general practice 
surgeries covering approximately 40% of the 
UK population. Similarly, a study of risk fac-
tors associated with death due to COVID-19 
[23] was made possible by the use of a single 
integrated EHR system across many sites, and 
the Quick COVID-19 Severity Index was de-
veloped with data from a single health system 
with nine Emergency Departments [24]. A 
highly-cited study demonstrating lack of ef-
fectiveness of hydroxychloroquine treatment 
was conducted using data extracted directly 
from the New York-Presbyterian / Columbia 
University Irving Medical Center EHR [25].

2 https://opensafely.org 

Fig. 2   Abstraction of the structure of the global learning system in place for COVID-19. Knowledge management activities are overlaid onto the Learning Health System model (core LHS cycle figure adapted from [84]), 
and related to the learning framework of ‘conscious-competence’ presented in Figure 1.
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Leveraging distributed EHRs across na-
tional and international boundaries through 
collaborative consortia and clinical data 
networks [26], several large-scale studies 
were undertaken to characterise COVID-19 
patients in relation to similar disease groups 
[27], to understand the trajectory of the 
disease [28], and to study interaction of the 
disease with patient medications [29]. Such 
studies were enabled through the adoption 
of common data models to harmonise data, 
prominently the Observational Health Data 
Sciences and Informatics (OHDSI) Ob-
servational Medical Outcomes Partnership 
(OMOP) Common Data Model (CDM) 
[30]; partners in the OHDSI network con-
tribute statistical results based on federated 
querying of local data sources represented 
with the CDM. 

The Columbia Open Health Data for 
COVID-19 Research (COHD-COVID) data 
set [31] takes a different approach, also based 
on the OMOP CDM. They make publicly 
available prevalence data for conditions, drugs, 
procedures and their co-occurrences, calculat-
ed from their EHR, thereby sharing aggregate 
counts rather than patient-level data. Coupled 
with slight perturbation and suppression of 
rare concepts, this eliminates privacy concerns 
while still enabling comparative data analysis.

Absent adoption of common data models 
and data sharing platforms for EHR data, re-
search across multiple sites required manual 
extraction of defined clinical data elements 
from EHRs submitted to a central study 
team. This was done in the UK for a pediatric 
study related to COVID-19 [32] and for a 
study of factors associated with coronavi-
rus death in the US [33]. In China, targeted 
national data reporting to a central research 
team supported observational studies [34, 
35]. Data harmonisation and cleaning in 
these cases relied on expert review of data 
submissions. For example, to support the 
development of a machine learning-based 
predictive model for COVID-19 associated 
mortality based on EHR data from five 
New York hospitals, expert mappings and 
data harmonisation were performed by a 
multi-disciplinary team of clinicians [36]. 

Other approaches to collecting electronic 
clinical data were also utilised, including 
deployment of clinical natural language 
processing to rapidly identify and charac-

terise patients relevant to COVID clinical 
questions [37]. Registries were established 
to collect disease-specific data items util-
ising case report forms (CRFs). The most 
sophisticated of these used electronic CRFs 
mapped to common data standards and 
submitted to a central database, such as 
the VIRUS-COVID-19 registry3 [38, 39] 
based on REDCap [40], which coordinated 
data entered in over twenty sites. Electronic 
surveys to gather data directly from patients4 
were introduced to allow for collection of 
data from non-hospital settings [41].

Despite these successful demonstrations 
of the use of EHR and registry data to study 
COVID-19, a number of challenges remain, 
summarised effectively in Madhavan et al. 
[26]. EHRs are not primarily designed to 
support coordinated research and public 
health response, and their use in this context 
placed substantial strain on informatics and 
data science teams at hospitals. Even basic 
conversion of spreadsheet-based systems for 
research data collection to formal database 
structures can prove a challenge where local 
differences exist in how fields are interpreted 
or used [4]. Infrastructure for individual-level 
storage and exchange of data for research 
purposes is required, as well as commitment 
to common data models, terminologies, and 
data interchange standards [42]. Rapid adap-
tation of standard clinical vocabularies such 
as ICD, LOINC, and SNOMED-CT to include 
relevant new vocabulary is needed [43, 44]. 
Governance and ethics factors must also be 
crucially addressed. The National COVID 
Cohort Collaborative5 (N3C) in the US aims 
to address many of these points, utilising the 
OMOP CDM to bring together data from 
disparate sources, and aiming to facilitate 
record-level analysis of COVID-19 patients 
(and matched controls) in a secure environ-
ment [45]. Tremendous progress has been 
made in the rush to address the pandemic, but 
there is still much work to be done before truly 
international-scale data can be efficiently and 
effectively brought together.

3 https://www.sccm.org/Research/Research/
Discovery-Research-Network/VIRUS-
COVID-19-Registry 

4 http://covidhealthquest.com/ 
5 https://covid.cd2h.org/n3c 

2.2.2   Data Analytics and Modelling
With the availability of large-scale and 
complex data about COVID-19 came the 
need to analyse and model it. Advanced 
computational methods including machine 
learning, natural language processing and 
other artificial intelligence (AI) methods can 
play key roles [46], and indeed significantly 
contributed to detecting the COVID-19 out-
break, diagnosing the disease, and predicting 
outcomes [47]. Models are critical to inform 
decision making [48], supporting prediction 
and simulation of outcomes under varying 
conditions or patient characteristics. 

Several of the EHR-based studies cited 
above utilise machine learning over clinical 
variables [21, 36], while more traditional 
statistical or epidemiological modelling 
is typically employed for observational 
studies. Imaging analysis models have also 
been adapted to COVID-19 from models 
for related diseases such as pneumonia [49], 
facilitated by public sharing of COVID-19 
images with the AI community6,7,8 [50].

The challenges faced in building suffi-
ciently large data sets has meant that the 
modelling of COVID-19 has resulted in 
high risk of bias and poor external validation 
[51-53]. Additionally, the inherent nature of 
observational EHR-based studies, lacking 
controlled cohort selection, may lead to un-
reliable results due to confounding [5] and a 
risk of case contamination due to ambiguous 
cohort definitions [54].

2.2.3   COVID-19 Information Retrieval and 
Synthesis
The amount of COVID-19 research output 
has been remarkable; based on the LitCovid 
index of this research at the US National 
Library of Medicine9 [55], over 75,000 
COVID-19-related publications were added 
to the PubMed literature repository between 
January and late November 2020, at a 
steady pace of approximately 2000 articles 
per week (see Figure 3). A review of the 

6 https://github.com/ieee8023/covid-chestx-
ray-dataset 

7 https://coronacases.org/ 
8 http://medicalsegmentation.com/covid19/ 
9 https://www.ncbi.nlm.nih.gov/research/

coronavirus/ 
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literature focused on clinical presentation 
and management of COVID-19 as of June 
15, 2020, prioritised for general medicine 
readers, identified over 100 relevant articles 
[56]. Over 7000 COVID-19 clinical trials are 
registered in the World Health Organization’s 
International Clinical Trials Registry Plat-
form10, which plays a key role in identifying 
research gaps [57]. Nearly 3000 systematic 
reviews related to COVID-19 are currently 
catalogued in the Living OVerview of Evi-
dence (L·OVE) platform11 [58]. 

This scientific knowledge is also broadly 
accessible; over 75% of this research is avail-
able in open access publications, an unprece-
dented proportion, more than double the rate 
for publications generally during 2015-2019 
and for other topics in 2019-2020 [7]. 

However, the accumulation of this body 
of evidence about one disease in such a short 
time is also overwhelming. A key challenge 
in COVID-19 knowledge management lay in 
navigating this massive quantity of research 
evidence to support diagnosis, treatment, and 
public policies, as well as molecular infor-
mation about the virus. The sheer volume of 
the research – published in natural language 
texts that must be read and interpreted – 
requires significant effort to translate into 
knowledge. Studies must be synthesised and 

10 https://www.who.int/clinical-trials-
registry-platform 

11 https://iloveevidence.com/ 

evaluated, and broader conclusions drawn 
from comparing multiple studies examining 
the same question. 

Therefore, many systems based on infor-
mation retrieval or text mining were created 
in response to this challenge, including our 
COVID-SEE Scientific Evidence Explorer 
system [59]; more are reviewed in [60-62]. 
An important resource in these efforts was 
the COVID-19 Open Research Dataset 
(CORD-19) which compiled a significant 
collection of literature for both COVID-19 
and related coronaviruses into a single, 
downloadable resource [63].

Leveraging such tools, community-based 
approaches to collect, curate, and model 
knowledge rapidly emerged for COVID-19. 
Groups began working together to review the 
literature and build living evidence guide-
lines that were updated as new information 
was made available [15]. Utilising systematic 
review automation technologies, complete 
reviews could be undertaken in a matter of 
weeks [64].

However, in the rapidly changing in-
formation space of COVID-19, the rush 
to explore and share research outcomes 
also resulted in poor study designs, poor 
research reporting, and lack of coordination 
and redundancy in research activities [13]. 
Coupled with the data biases noted above, 
this creates new problems – wasted effort, 
increased review and quality appraisal work, 
and uncertainty about key diagnostic, prog-

nostic, and treatment decisions. The gLHS, 
effectively implemented, could provide the 
coordination and feedback mechanisms 
needed to address these problems.

2.2.4   Knowledge Dissemination
Knowledge has been recognised as strate-
gically important for managing pandemics 
[48] and it plays a central role in our learn-
ing-based model. As knowledge is acquired 
through learning, it must be shared in order 
to have impact. While publications serve a 
key role in disseminating knowledge, alone 
they are insufficient and ambiguous to 
guide practice. Social media have been used 
effectively for knowledge dissemination 
during COVID-19 [65], but this focuses on 
transferring knowledge between individuals.

Knowledge management implemented 
through information technology can improve 
information sharing and coordination [4]. 
Several key elements for knowledge manage-
ment in pandemics have been identified [66]:
• Shared knowledge spaces utilising con-

sistent vocabulary.
• Formal representations of knowledge.
• Enabling reusable knowledge.
• Empowering human collaboration 

through knowledge sharing.

All of these elements were adopted to one 
degree or another during the COVID-19 
pandemic, through the scientific globalism 

Fig. 3   Weekly publications in 2020 related to COVID-19, as indexed in the LitCovid collection of PubMed [55].
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that emerged; in consortia like the N3C [45], 
working groups like those organised through 
the Research Data Alliance [42], and infor-
mal data and clinical networks. 

Knowledge has been disseminated 
through numerous mechanisms, including 
online platforms such as the Australian 
National COVID-19 Clinical Taskforce12, 
Registry sites [39] and through clinical 
decision support tools such as the Magic 
Evidence Ecosystem Foundation (MAGIC) 
MAGICApp [17].

The push for formal representation of 
knowledge, including computational and 
executable models that can be integrated into 
health information systems to enable appli-
cation of knowledge to practice [67, 68], 
has gained momentum during COVID-19. 
The COVID-19 Disease Map project [69, 
70] captured and made available molecular 
interaction information for the SARS-CoV-2 
virus, based on manual curation, supported 
by weekly videoconferences. Knowledge 
graphs are also being used to support rep-
resentation and integration of the variety of 
biomedical data related to COVID-19 [71], 
including via text mining [72]. Through the 
adoption of standardised ontology identifi-
ers, comparable data in different resources 
can be linked together for analysis, and com-
bined in different ways for different tasks.

Much of this work has been based on 
automated or semi-automated analysis of 
literature. Direct generation of computable 
evidence from structured clinical trial regis-
tries has also been proposed [73, 74], which 
would shortcut the need for literature-based 
synthesis.

3   Discussion
Friedman and colleagues have stated [75]:
 “A national-scale LHS will have to be 

understood and designed as such a cy-
ber-social ecosystem: a large-scale, de-
centralized, human-intensive, cyber-cat-
alyzed and cyber-supported information 
processing system. The system as a 
whole—not just the digital infrastructure, 
but also networks of people and institu-

12 https://covid19evidence.net.au/

tions—will have to be understood not just 
as users of a technological infrastructure, 
but also as parts of the information sys-
tem itself.”

Extending this to a global-scale LHS de-
mands an even broader view of the relevant 
ecosystem. The scale is larger, even more 
decentralised, and crosses a more diverse 
set of legal jurisdictions. It is apparent that 
the people and institutions play a critical part 
of the information system, to make possible 
the required data sharing – including tackling 
legal barriers and leading ethical discussions 
around data sharing – as well as by support-
ing effective communication of knowledge. 
It has been observed that we entered the pan-
demic without a functioning LHS [76]. The 
authors ask [76]:
 “We have the motivation. We have the 

vision. We have the technology. We have 
a roadmap. What are the barriers?”

answering:
 “The issue is culture. We need to treat 

medical data as a public good.”

They further point to the ethics framework of 
Faden et al. [77] that identifies the dual obli-
gations of health professionals to learn and 
implement, and patients to participate in the 
learning system by contributing their data. 

Initiatives such as the US N3C are making 
important strides towards realising a gLHS. 
We do appear to have the motivation, the 
vision, and the technology. A recent review 
of the use of digital technologies during 
COVID-19 highlights how far we have come 
in leveraging technology for the pandemic 
response [78]. What is required to achieve 
an ongoing gLHS is a commitment to the vi-
sion, coupled with rigorous data governance 
and legal and regulatory frameworks that 
safeguard patient privacy while supporting 
the learning knowledge ecosystem.

4   Conclusions
The model we have proposed is strongly 
aligned with the Agency for Healthcare 
Research and Quality evidence-based Care 
Transformation Support (ACTS) Knowledge 
Ecosystem initiative referred to as the ‘ACTS 

COVID-19 Evidence to Guidance to Action 
Collaborative’13, which aims to continually 
enhance patient care throughout the pan-
demic, as the evidence base evolves. This 
Collaborative emphasises development of 
digital infrastructure to support the Knowl-
edge Ecosystem, a cycle of Action-Data-Ev-
idence-Guidance that mirrors the LHS cycle. 
It has further been active in developing 
groups such as COKA, the COVID-19 
Knowledge Accelerator Initiative14 [74], 
a response focused on COVID-19 to the 
call by Dunn and Bourgeois [73] to aim for 
computable knowledge synthesis and repre-
sentation, through the use of standards such 
as EBMonFHIR15 [79] and CPGonFHIR16, 
or rule formalisms for computational clinical 
guideline specification [80]. 

The vision pursued in these initiatives 
is still under active development, and has 
required a vast community of clinicians, 
researchers, informaticians, developers, 
industry and government representatives, 
and beyond coming together with the com-
mon objective of addressing the technical, 
policy or legal, and cultural hurdles to 
enable more effective management of the 
COVID-19 pandemic. It has been argued that 
infrastructure is currently sorely lacking in 
most public health organisations to realise 
this vision effectively or efficiently [81]. 
There are still many unanswered questions 
about how to overcome bias and determine 
causality through real-world data [24, 82]. 
As we have shown, many of the learning and 
knowledge sharing activities in the context 
of the pandemic have been limited to very 
human-intensive approaches. 

However, the core gLHS framework is 
in place, technology has been harnessed in 
many ways to share data and knowledge at 
a pace that arguably outstripped the spread 
of the virus, the requirements for informa-
tion technology systems to support data 
and knowledge exchange are increasingly 
being clarified, and the initial steps toward 
achieving the vision have been made. This 

13 https://covid-acts.ahrq.gov/
14 https://www.gps.health/covid19_knowl-

edge_accelerator.html 
15 https://confluence.hl7.org/display/CDS/

EBMonFHIR 
16 http://build.fhir.org/ig/HL7/cqf-recom-

mendations/ 
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is entirely thanks to a tremendous response 
by the scientific community with a shared 
objective of improving outcomes for pa-
tients. Successful examples of large-scale, 
truly international data sharing and research 
collaborations now exist [28]. Both the need 
for and the value of continued work towards 
a healthcare system enabled through data 
and information technologies – a system 
that can be achieved through the gLHS – are 
now obvious. 

Continued efforts towards achieving 
a robust gLHS are important, not only to 
allow us to respond to this pandemic and to 
prepare us to respond to the next pandemic, 
but to support continuous improvements in 
how we care for human health. We now know 
that we can do this.
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