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Neonatal DNA methylation profile in human twins is
specified by a complex interplay between intrauterine
environmental and genetic factors, subject
to tissue-specific influence
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Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contri-
bution of genetic and shared and nonshared environmental factors to phenotypic variability. Using DNA methylation
profiling of ~20,000 CpG sites as a phenotype, we have examined discordance levels in three neonatal tissues from 22 MZ
and 12 DZ twin pairs. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally
lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of
distance from islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low
mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The
largest component of variation was attributed to the combined effects of nonshared intrauterine environment and stochastic
factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes
involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link
between low birth weight and increasing risk for cardiovascular, metabolic, and other complex diseases. Finally, comparison
of our data with that of several older twins revealed little evidence for genome-wide epigenetic drift with increasing age. This
is the first study to analyze DNA methylation on a genome scale in twins at birth, further highlighting the importance of the
intrauterine environment on shaping the neonatal epigenome.

[Supplemental material is available for this article.]

Epigenetics has been defined as ‘‘the structural adaptation of

chromosomal regions so as to register, signal or perpetuate altered

activity states’’ (Bird 2007). This is exemplified by the epigenetic

mark of DNA methylation, which influences a gene’s transcrip-

tional potential and plays a role in differentiation (Reik 2007;

Brunner et al. 2009; Huang and Fan 2010) and aging (Rakyan

et al. 2010; Teschendorff et al. 2010). Disruption of epigenetic

profile is a ubiquitous feature of cancers and is likely to play a role

in the etiology of other complex diseases (van Vliet et al. 2007;

Foley et al. 2009).

The DNA methylation profile is heritable through mitosis, but

the fidelity of this transmission is imperfect (Bennett-Baker et al.

2003) and may contribute to differences in gene expression and

phenotype observed between genetically identical individuals,

whether isogenic strains of mice (Gartner and Baunack 1981;

Pritchard et al. 2006) or human MZ twins (Fraga et al. 2005; Martin

2005; Kuratomi et al. 2008; Kaminsky et al. 2009; Javierre et al. 2010).

Animal studies have demonstrated that the environment can

shape the epigenome, particularly during the intrauterine period,

when it demonstrates the greatest plasticity (Gluckman et al. 2007,

2010; Ozanne and Constancia 2007). The importance of this period

for human health is well documented, and mounting evidence im-

plicates the intrauterine environment in the fetal ‘‘programming’’ of

diseases of later life (Gluckman et al. 2007). Despite this, it remains

unclear as to how influential the intrauterine period is in shaping the

human epigenome, whether different genomic regions show varying
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sensitivities to this environment during this period, and the extent to

which this interaction is sensitive to genetic influences.

Twin studies, which have traditionally enabled estimation of

genetic and environmental components to phenotypic variance,

have been used to estimate the effect of these factors on DNA

methylation, at both a gene-specific level (Heijmans et al. 2007;

Wong et al. 2010) or throughout the genome (Kuratomi et al. 2008;

Kaminsky et al. 2009; Javierre et al. 2010; Rakyan et al. 2011a,b).

Such studies are improving our understanding of the processes

involved in the regulation of epigenetic variation and are disen-

tangling the relative contributions of epigenetics, environment,

and genetic variation, together with stochastic factors, in complex

traits (Bell and Saffery 2012). This information is critical to

understanding processes of development and evolution (Feinberg

and Irizarry 2011) and for future potential epigenetic-based in-

terventions in complex disease.

To investigate the components of epigenetic variation at birth,

we have established a longitudinal cohort of 250 twin pairs with

collection of extensive biospecimens and environmental data (Saffery

et al. 2012) and have shown, in two tissues from 14 twin pairs at

birth, that twins differ in levels of gene expression on a genome-wide

scale (Gordon et al. 2011), most likely in response to epigenetic

variability. Furthermore, we subsequently provided direct evidence

that DNA methylation can vary considerably within a single locus in

multiple tissues from MZ twin pairs collected at birth (Ollikainen

et al. 2010). This supports the previously demonstrated genome-scale

differences in methylation within MZ and DZ twin pairs in adults

(Kaminsky et al. 2009). However, no study has yet focused on

genome-scale methylation differences within twins at birth.

In this study, we used genome-scale DNA methylation pro-

filing to measure the level of epigenetic variation present in three

tissues from 22 MZ and 12 DZ twin pairs collected at birth. We then

estimated the within-pair variation of methylation profile gener-

ally and in the context of specific genomic features, and estimated

the contribution of genetic and common and unique environment

to DNA methylation profile. We further defined gene pathways

and networks subject to epigenetic change in association with

birth weight with the aim of investigating a possible epigenetic

link with risk for metabolic and cardiovascular disease.

Results

Genome-scale analysis of DNA methylation of three tissues
from newborn twins

We used the Illumina Infinium HumanMethylation27 BeadChip

array (HM27) platform to profile DNA methylation in cord blood

mononuclear cells (CBMCs; 18 MZ, nine DZ pairs), human um-

bilical vascular endothelial cells (HUVECs, 14 MZ, 10 DZ pairs),

and placenta (eight MZ and seven DZ twin pairs) (Table 1). The

HM27 platform interrogates 27,578 CpG dinucleotides primarily

associated with 14,475 transcription start sites and has a high

technical reproducibility (Weisenberger et al. 2008; Bibikova et al.

2009; Rajendram et al. 2011). It contains separate probes to detect

methylated and unmethylated sequences, and data from both

probes are used to calculate a b-value between 0 and 1 (equivalent

to 0%–100% methylation) (Bibikova et al. 2009). Initial quality

control led to the removal of two twin pairs from HUVECs, one

twin pair from CBMCs, and one twin pair from placenta (Table 1).

We chose a highly conservative P-value probe cutoff of 0.001,

lower than has previously been reported, to minimize the level of

variability attributable to technical factors. After removing probes

on the sex chromosomes and probes that had a detection P-value >

0.001, 19,350 probes for HUVECs, 19,204 for CBMCs, and 26,353

for placenta remained for subsequent analysis.

Twin pairs generally show a similar DNA methylation profile

In order to visualize the overall relationship between DNA meth-

ylation profiles of individuals, both within and between pairs,

unsupervised clustering was applied to sample data using all HM27

probes that passed quality-control measures for each tissue sepa-

rately (Supplemental Figs. S1–S3). Interestingly, twins within the

same pair did not always cluster together, and the proportion of

within-pair clustering varied considerably in a tissue-dependent

manner. For example, only 29% of pairs clustered in HUVECS,

whereas intrapair similarity predominated in CBMCS and pla-

centa, with 58% and 71% of individual pairs clustering together

respectively (Supplemental Table S1). In all three tissues, a greater

proportion of MZ pairs clustered together relative to DZ pairs

(Supplemental Table S1). In combination, these data provide prima

facie evidence for both tissue-specific and genetic factors in de-

termining neonatal epigenetic profile.

Identification of factors contributing to DNA
methylation profile

To quantify within-pair relationships both for measures of discor-

dance and similarity, we calculated Euclidean distance (ED) and

Pearson’s correlation coefficient (Fig. 1; Supplemental Table S2). Both

ED and Pearson’s correlation coefficient were plotted using logit-

transformed b-values (i.e., M-values) with mean-subtracted trans-

formed values used for the latter (Fig. 1). In all instances, MZ pairs

showed a greater median within-pair similarity and lower median

within-pair discordance than DZ pairs, confirming a role for un-

derlying genetic factors in contributing to neonatal epigenetic pro-

file. These data also show that a proportion of unrelated individuals

have a higher degree of similarity in overall DNA methylation profile

than some co-twins, highlighting the likely role of stochastic/non-

shared environmental factors in determining the epigenetic profile.

Surprisingly, when the effects of chorionicity were tested (within MZ

pairs only), dichorionic (DC) pairs were found to be generally more

similar (less discordant) epigenetically than monochorionic (MC)

pairs in both CBMCs (eight MC, nine DC) and HUVECs (eight MC,

five DC) (Fig. 1). Insufficient numbers precluded a similar examina-

tion in relation to the placental methylation profile. In addition,

there were no sex-specific significant differences in discordance or

similarity for all tissues (data not shown).

Estimation of variance components of DNA
methylation profile

Using methylation within our neonatal twin tissues as a variable

phenotype, we estimated the narrow sense heritability (h2, the

proportion of phenotypic variance due to additive genetic factors)

and common (intrauterine) environmental variance (c2) for all

HM27 probe-associated CpGs within our data sets using the least

squares estimation approach (Visscher 2004). The distribution of the

h2 estimates obtained for each probe in the three tissues was overlaid

against the expected null distribution with the variance equal to the

expected sampling variance (Visscher 2004) and a mean of zero (Fig. 2).

Mean heritability across all probes was 0.12 (60.0017, p = 0.0024)

for CBMCs, 0.07 (60.0014, p = 0.009) for HUVECs, and 0.05

(60.0016, p = 0.017) for placenta with calculated P-values from
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empirical null distribution of �h2 ¼ 0 determined by a permutation

analysis, suggesting a pattern of greater estimated heritability than

that expected by chance. Because the distribution of c2 did not differ

from a random distribution (median = 0), we conclude that shared

environment does not contribute significantly to methylation vari-

ation within our twins in utero and that the remaining variance in

methylation is due to the sum of unique intrauterine environment

and stochastic factors encountered by the tissues in each twin. An

investigation of probes with the highest (top 5%) heritability esti-

mates (Supplemental Table S3) revealed 961 probes in CBMCs with

h2 values ranging from 0.48 to 0.94; 968 probes in HUVECs with

h2 = 0.37–0.95, and 1304 probes in placenta with h2 = 0.49–0.97. In

addition, only 3%–10% of highly heritable probes were shared be-

tween two tissues (28 between placenta and HUVECs, 109 between

HUVECs, and CBMCs and 58 between CBMCs and placenta). Only

three probes were highly heritable in all three tissues (cg15052901/

SLC24A4, h2 = 0.49–0.62; cg14217157/WHSC2, h2 = 0.52–0.63;

cg01593886/COL1A1, h2 = 0.51–0.72). Ontology analysis of genes

linked to highly heritable probes revealed enrichment of genes in-

volved in differentiation and development for CBMCs and HUVECs,

metabolism, and biosynthesis in HUVECs and signaling in placenta

(Supplemental Table S4).

Within-pair discordance varies with genomic location

Because the annotation of the HM27 array focuses on CpG is-

lands and gene promoters (Bibikova et al. 2009), we examined

how within-pair methylation discordance, measured using me-

dian within-pair standard deviation, varies in relation to these

landmarks. Previous studies in unrelated individuals (Bock et al.

2008) and twins (Kaminsky et al. 2009; Sandoval et al. 2011) have

suggested that such regions are more refractory to methylation

variation than non-island CpGs. To test this in our data, we

compared median within-pair methylation discordance for CpG

islands, CpG island ‘‘shores’’ (sequences up to 2 kb from CpG

islands), CpG island ‘‘shelves’’ (sequences within 2 kb and 4 kb of

CpG islands), and CpGs >4 kb from CpG islands (Fig. 3; Sandoval

et al. 2011). In agreement with previous studies (Doi et al. 2009;

Irizarry et al. 2009), we found that mean absolute methylation

levels in our samples increased as a function of distance from

CpG islands (data not shown). We also found that median

within-pair methylation discordance increased with increasing

distance from CpG islands (up to 4 kb) in all tissues for both MZ

and DZ pairs, with no evidence for a further increase at distances

>4 kb.

Table 1. Twin pair characteristics

Twin pair
ID no. Zygositya Chorionicityb Twin 1 sex Twin 2 sex

Twin 1 birth
weight (g)

Twin 2 birth
weight (g)

Birth weight
discordance (%)c

Gestational
age

Cell types
studiedd

1001 DZ DC M F 2530 1785 29.4% 34 H,C
1002 MZ DC M M 3020 3175 4.9% 37 H,e Ce

1012 MZ MC F F 2155 2635 18.2% 37 H,e Ce

1016 MZ DC M M 2902 2746 5.4% 36 H,e Ce

1019 MZ DC M M 2430 2330 4.1% 37 H,e Ce

1021 DZ DC F M 3038 3096 1.9% 37 C
1022 MZ MC M M 2622 2298 12.4% 38 H,e Ce

1048 DZ DC M M 2030 2440 16.8% 38 P, H, C
1049 DZ DC M M 3155 3065 2.9% 34 H, C
1065f DZ DC M M 2455 2330 5.1% 38 H, C
1072 DZ DC F F 2664 3114 14.5% 36 P
1074 DZ DC F M 2625 2455 6.5% 37 P, H, C
1082 MZ DC F F 1710 1955 12.5% 34 C
1104 MZ MC M M 2130 1785 16.2% 38 P, H
1108 MZ MC F F 2655 2525 4.9% 32 P
1114 MZ MC F F 2485 2610 4.8% 36 P, H, C
1126 MZ MC F F 1746 1270 27.3% 37 P
1130 MZ DC F F 2140 2755 22.3% 38 P, H, C
1138 MZ DC M M 2788 2612 6.3% 38 C
2010 MZ MC M M 2533 2407 5.0% 35 H,e Ce

2027f DZ DC M F 3510 2810 19.9% 38 P, H
2028 MZ DC F F 2630 2210 16.0% 36 C
2029 MZ DC F F 2230 1470 34.1% 34 H,e C
2036 MZ MC M M 2349 2295 2.3% 38 C
2051 DZ DC F M 2660 1890 28.9% 36 P, H
2064f MZ MC F F 2120 1920 9.4% 37 P, H, C
2071 MZ MC F F 2850 2650 7.0% 38 P, C
2075 DZ DC F M 3050 2980 2.3% 37 P, H, C
3001 MZ MC F F 2480 2680 7.5% 34 H,e Ce

3006 DZ DC M M 2765 2665 3.6% 32 H, C
3027 DZ DC M M 2500 2280 8.8% 36 P, H, C
3034 MZ DC F F 2950 2550 13.6% 38 C
3051 MZ MC F F 2813 2105 25.2% 33 H
3068 MZ MC M M 2392 2534 5.6% 38 P, C

a(MZ) Monozygotic; (DZ) dizygotic.
b(MC) Monochorionic; (DC) dichorionic.
c[(Weight of heaviest twin) � (weight of lightest twin)]/(weight of heaviest twin) 3 100.
d(H) HUVECs; (C) CBMCs; (P) placenta.
eExpression data previously generated (Gordon et al. 2011).
fHUVECs from pairs 1065 and 2027, CBMCs from pair 2064, and placenta from pair 2027 were dropped from the analysis because one twin failed quality
control during array data analysis.
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Relationship between within-pair methylation discordance
and age: no evidence for genome-scale epigenetic drift

We have presented evidence that the nonshared intrauterine envi-

ronment contributes to methylation discordance at birth for both

MZ and DZ twins. However, little is known about how nonshared

environment can influence epigenetic discordance postnatally. We

and others have shown using array analysis that within-twin pair

discordance in the gene expression profile increases as a function of

age (Fraga et al. 2005; Gordon et al. 2011). Additionally, limited

evidence from low-resolution analysis also suggests that within-pair

DNA methylation discordance increases with age (a phenomenon

termed ‘‘epigenetic drift’’) (Fraga et al. 2005). However, a recent

Infinium HM27 array analysis of saliva from adult twins did not find

evidence for such drift (Bocklandt et al. 2011). We plotted within-

pair methylation discordance using Euclidean distance for blood-

derived data from twins from birth to 73 yr of age from our data and

94 MZ pairs and 17 DZ pairs from Infinium HM27 data sets from

a previously published data set (Rakyan et al. 2010), with additional

sets of unpublished data (Fig. 4; Table 2). We found no evidence for

epigenetic drift throughout the life course in either MZ or DZ pairs.

Identification of highly discordant gene classes

Despite the overall low median discordance in methylation appar-

ent in all twin pairs (Supplemental Fig. S4), almost all pairs had

several HM27 probes with a high level of methylation discordance

in excess of ;20% (Db > 0.2). To investigate the potential biological

relevance of such probes, we ranked each gene-associated CpG by

median within-pair standard deviation, a measure that summarizes

the typical discordance between co-twins for that gene, separately

for MZ and DZ pairs, for all three tissues (Supplemental Table S5).

Using a combination of Gene Ontology (Supplemental Table S6)

and pathway analysis (Supplemental Table S7), we found that genes

associated with development and morphogenesis were over-repre-

sented in MZ and DZ pairs from all three tissues, closely followed by

genes involved in response to environment and the cell cycle/cell

division. In contrast to our previous analysis of gene expression

(Gordon et al. 2011), we found no evidence that imprinted differ-

entially methylated regions (DMRs) (Choufani et al. 2011) and

housekeeping genes are significantly variably methylated within

MZ twin pairs (p > 0.14 and p > 0.37 for all tissues, respectively).

Identification of discordantly methylated genes associated
with birth weight

We are particularly interested in identifying epigenetic variation

in genes potentially associated with birth weight because of the

Figure 2. Analysis of variance components of DNA methylation in CBMCs, HUVECs, and placenta. Data from all probes were used to plot histograms of
heritability (h2) and common (intrauterine) environmental variance (c2). Distributions of h2 were also compared with the random distribution (dotted lines).

Figure 1. Relationship between within-pair methylation discordance/
correlation, zygosity, and chorionicity. Box-and-whisker plots of within-
pair methylation discordance (Euclidean distance) and Pearson’s corre-
lation coefficient of mean-corrected values in HUVECs, CBMCs, and pla-
centa from MZ and DZ twins, same-sex unrelated (UR) individuals, and
MC and DC MZ twins. Numbers of pairs within each category are shown
above each graph.

Gordon et al.
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numerous previous studies linking low birth weight with later de-

velopment of cardiovascular, metabolic, and other complex diseases

(Barker 1990; Morley and Dwyer 2005; Burdge et al. 2007; Gluckman

et al. 2007). We have previously identified genes whose expression

levels correlate with birth weight in a subset of tissues from newborn

twins and shown that these genes are enriched for functions and

pathways associated with metabolism, growth, and cardiovascular

disease (Gordon et al. 2011). In the present study, we performed

a similar regression analysis of methylation M-values on birth

weight, using a statistical model that estimates association based on

within-pair variation of both DNA methylation and birth weight.

Methylation of a small number of genes (seven in DZ CBMCs, one in

MZ HUVECs) was significantly associated with birth weight after

adjustment for multiple testing (adjusted P-value < 0.1) (Supple-

mental Table S8) and included genes with links to metabolism,

growth, and cardiovascular disease. For example, APOLD1 (apoli-

poprotein L domain containing 1), identified in HUVECs and EDG1

(sphingosine-1-phosphate receptor 1), identified in CBMCs, both

regulate vascular function in mice and humans (Liu et al. 2000;

Regard et al. 2004; Simonsen et al. 2010; Gordon et al. 2011). Even

though no genes in placenta reached significance after multiple

testing, polymorphisms in the genes ranked 1 and 2, HLA-B (ma-

jor histocompatibility complex class 1B) and SCD (stearoyl-CoA

desaturase), have been associated with low birth weight and meta-

bolic disease, respectively, in humans (Warensjo et al. 2007; Sampath

and Ntambi 2008; Capittini et al. 2009; Shin et al. 2010).

To investigate pathways and processes that may be subject to

epigenetic variation in association with birth weight, genes from

the above regression analysis were ranked by adjusted P-values for

birth weight and analyzed using Gene Ontology (Supplemental

Table S9) and pathway analysis (Supplemental Table S10). An

over-representation of genes associated with metabolism and bio-

synthesis was found for all three tissues for both MZ and DZ pairs,

genes associated with cardiovascular function/disease were over-

represented in all three tissues from MZ pairs and HUVECs from DZ

pairs, and genes associated with growth and proliferation were

over-represented in only CBMCs for both MZ and DZ pairs. To test

for an association of specific classes of genes previously linked to

birth weight and metabolic function, we performed gene set test

analysis on a list of 167 imprinted DMRs (Choufani et al. 2011),

247 cardiovascular-associated genes (http://www.ucl.ac.uk/silva/

Figure 3. Relationship between methylation discordance to location within CpG islands, shores, and shelves. Median within-pair methylation dis-
cordance is plotted as box-and-whisker plots against probes depending on location in relation to CpG islands. Data are plotted for CpG islands, CpG
island shores (0–2 kb from islands), CpG island shelves (2–4 kb from islands), and ‘‘open sea’’ probes (>4 kb from CpG islands).

Figure 4. Relationship between within-pair methylation discordance
with age in blood-derived tissues. Euclidean distance is plotted, as in
Methods, for twins from birth to 73 yr of age from our data and 94 MZ
pairs and 17 DZ pairs from previously published and unpublished Infinium
HM27 data sets (see text and Table 2).

Methylation discordance in twins at birth
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cardiovasculargeneontology) (Lovering et al. 2008), and 41 genes

previously linked with obesity by genome-wide association studies

(Thorleifsson et al. 2009; Willer et al. 2009; Heid et al. 2010; Speliotes

et al. 2010). No evidence of association of imprinted or cardiovascular-

associated genes with birth weight was found in any tissue from MZ

or DZ twins (p > 0.15 and p > 0.2, respectively), whereas some

evidence for a moderate relationship between obesity-associated

genes and birth weight was found in HUVECs from DZ (p = 0.01)

and MZ pairs (p = 0.11), but not in other tissues (p > 0.56).

To further validate the observed associations, we performed

locus-specific DNA methylation analysis on three genes using the

Sequenom EpiTYPER platform, which we have previously found

to be accurate and reproducible (Novakovic et al. 2010, 2011;

Ollikainen et al. 2010). Methylation assays were designed to in-

terrogate specific CpG sites (plus adjacent sites) measured by the

HM27 platform, with measurements performed using the same

sample set. Absolute DNA methylation was highly correlated

across the two platforms (Spearman’s correlation coefficient

0.485–0.947) (Supplemental Fig. S5) and validated the relationship

between within-pair methylation discordance and birth weight

discordance (Supplemental Figs. S6–S8). This analysis also high-

lighted that the observed association of birth weight with meth-

ylation level is regional rather than localized to a specific CpG site.

Discussion
Despite the growing awareness of the importance of inter-

individual epigenetic variation in modulating the risk associated

with human disease, it remains largely unclear as to when and how

such variation arises in humans. In this study, we capitalized on

the strengths of a twin study design to present the first evidence for

widespread, genome-scale epigenetic discordance between genet-

ically identical humans at birth. These findings highlight the im-

portance of the intrauterine environment in determining the

neonatal DNA methylation profile and reveal the presence of tissue-

specific variability in response to such factors.

Nonshared environmental/stochastic factors predominate
in determining neonatal DNA methylation

Unsupervised clustering and pair-specific analysis of discordance

and correlation revealed compelling evidence for a limited genetic

contribution to the neonatal methylation variability, supported by

analysis of variance components of DNA methylation, which pro-

duced mean levels of heritability of 0.05–0.12 depending on tissue

(Fig. 2). However, the HM27 platform we used for this analysis

contains probes associated with gene promoters and CpG islands,

and previous studies have demonstrated that genomic regions

showing a high heritability of DNA methylation are under-repre-

sented in CpG islands (Gertz et al. 2011). As such, our heritability

estimates are potentially conservative and may not be representative

of the genome as a whole. Additionally, it is important to remember

that epigenetic heritability estimates will not only be population-

specific, but also cell-, tissue-, time-, and locus-specific. These will

also be largely dependent on the sensitivity, resolution, and cover-

age of the specific epigenetic assay used for measurement.

The suggestion that the DNA methylation profile is only

minimally influenced by genetic variation agrees with a previous

array-based, genome-scale study of DNA methylation in buccal cell

DNA from teenage twins (Kaminsky et al. 2009) and with an analysis

of DNA methylation at 1760 CpG sites in CD4+ lymphocytes from

adult twins (Gervin et al. 2011). One study that measured DNA

methylation at ;1500 CpG sites in whole blood from 43 MZ and 43

DZ twin pairs found that 23% of all CpG sites displayed significant

heritability of methylation level (Boks et al. 2009). Although low

power makes comparison difficult, the range of heritability within

the top 5% of probes in the Boks and colleagues study (0.62–0.94) is

similar to that found for the top 5% of probes for CBMCs in our

study (0.48–0.94). Studies of allele-specific methylation (ASM) have

also found evidence for a high heritability of DNA methylation at

a subset of genomic loci, with proportions varying with the method

of analysis and the tissue examined (Kerkel et al. 2008; Boks et al.

2009; Zhang et al. 2009, 2010; Meaburn et al. 2010; Schalkwyk et al.

2010; Shoemaker et al. 2010; Gertz et al. 2011).

Surprisingly, we found little evidence for an effect of common

environment on the overall DNA methylation profile at birth using

variance component analysis. This does not rule out the possibility

that a minority of genes are influenced by a common environment.

Indeed, previous genome-scale studies of DNA methylation have

found a range of probes significantly associated with maternal en-

vironmental, from 0.6% (Breton et al. 2009) and 1.1% (Fryer et al.

2011) to 23% (Katari et al. 2009). Because the accuracy of the esti-

mation of effect size depends on study power, further investigation

in larger numbers of twins is needed (Visscher 2004).

Given the small genetic effect and lack of evidence for wide-

spread common environmental effects observed in our study, the

largest residual variance component contributing to overall DNA

methylation profile represents cumulative nonshared (individual

intrauterine) environment and stochastic factors. There is prior

evidence that nonshared environmental factors can influence

Table 2. Details of the Infinium HumanMethylation27 data sets used for Figure 4

Tissue Age range (yr) Number of twin pairs Cohort details Figure 4 letter

Whole cord blood 0 3 DZ Phenotypically normala A
1 MZ

CBMCs 0 17 MZ Phenotypically normalb B
9 DZ

CD4+ T-cells 29–73 21 MZ Discordant for mild psoriasisc C
Whole peripheral blood 45–69 12 MZ Phenotypically normald D

17 DZ
Whole peripheral blood 13–15 11 MZ Autism cohort, normal pairse E
Whole peripheral blood 4–17 2 MZ Autism cohortf F

9 DZ

Source of data: aK.N.C. and A.K.S.; bthis study; cRobert Lyle, Kristina Gervin, and Jennifer Harris, Oslo; dJordana Bell and Pei-Chien Tsai, UK; eJonathan Mill
and Chloe Wong, UK; fR.A.
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phenotype (Bergvall and Cnattingius 2008; Plomin 2011; Torche

and Echevarria 2011). Such factors in twin pregnancies include

discordant placental weight, discordant placental umbilical cord

insertion (both resulting in differential fetal blood supply), or

differential exposure to infection (Stromswold 2006; Antoniou

et al. 2011). Further evidence that factors specific to each twin can

influence methylation comes from our finding that genes involved

in response to environment are discordantly methylated (this

study) or expressed (Gordon et al. 2011) within twin pairs.

Our finding that MZ twins sharing a single placenta (MC) were

more discordant for methylation profile than MZ twins with their

own placenta (DC) is counterintuitive but similar to that reported

previously (Kaminsky et al. 2009). It was suggested that the earlier

embryo splitting associated with DC pairs potentially reflects epi-

genetically divergent cell populations in the pre-splitting blastomere

(Kaminsky et al. 2009), although there is no direct evidence sup-

porting this hypothesis. An alternative explanation could be that

MC twins are more likely to experience competition for resource

allocation, with or without associated vascular connections that in

extreme cases can lead to a large flow of blood in one direction

known as twin-to-twin transfusion syndrome (TTTS). Although

each of these scenarios is possible, it is worth noting that we have

shown previously that the effect of chorionicity on DNA methyla-

tion can be tissue-dependent (Ollikainen et al. 2010; Novakovic et al.

2011). Clearly, larger studies are needed to resolve this issue.

Extensive evidence exists for a role of stochastic influence in

determining DNA methylation and other epigenetic marks dur-

ing early development (for review, see Whitelaw et al. 2010). An

elegant example of this was reported by Feinberg and colleagues,

who demonstrated that the genome-wide DNA methylation

profile in the livers of newborn inbred mice raised in identical

environments was hypervariable at certain loci, termed variably

methylated regions (VMRs) (Feinberg and Irizarry 2011). VMRs

were enriched in genes involved in development and morpho-

genesis both in mice and unrelated humans (Feinberg et al. 2010),

and such genes are also discordantly methylated within our twin

pairs (Supplemental Tables S9, S10). Because early development is

associated with rapid cell division, this could explain our finding

that genes involved in the cell cycle are discordantly methylated

within twins, which was also found in adult twins (Kaminsky

et al. 2009). We also found that genes associated with response to

environment are hypervariable within MZ and DZ twin pairs in

multiple tissues (Supplemental Tables S9, S10), which agrees with

previous studies of expression discordance within MZ twin pairs

(Sharma et al. 2005; Choi and Kim 2007).

Evidence for a tissue-specific effect on heritability
of methylation profile

We found no compelling evidence for a common set of highly

heritable DNA methylation variants across different tissues, sup-

porting similar findings in a study of ASM in multiple human cell

lines (Shoemaker et al. 2010) and recent data using gene expression

as a phenotypic outcome (Powell et al. 2012). This contrasts with

a subset of recently described ASM events described in a single in-

dividual that appear to be shared across kidney and skeletal muscle

(Gertz et al. 2011). Such tissue-specific differences in the heritability

of DNA methylation (and expression) may arise due to the possi-

bility that different CpGs or combinations of CpGs may be involved

in control of the expression of the same gene in different tissues, in

association with the biological function of specific cells (Altschuler

and Wu 2010).

Genomic regions with high within-pair methylation
discordance; constraint at CpG islands?

We found that in all tissues and in all twins, within-pair differences

in DNA methylation increased with increasing distance from CpG

islands (Fig. 3). This agrees with a similar finding for highly var-

iably methylated regions (VMRs) between unrelated individuals

(Zhang et al. 2010) and with data showing that interindividual

differences in methylation are lowest in unmethylated CpG is-

lands and highest in methylated regions of the genome (Bock et al.

2008). Furthermore, our data have shown that such regions are

hypervariable irrespective of zygosity, in support of our findings of

only a minor genetic effect in determining the overall DNA

methylation profile. In combination, these data suggest that

methylation levels are more constrained in CpG-dense genomic

regions, possibly because of a stabilizing influence from neigh-

boring CpGs (Bock et al. 2008).

What function does variable methylation serve?

Because MZ twins share the same mother and genotype, factors

present with the residual variance component ‘‘nonshared envi-

ronment’’ are most likely driving variation here (see above). Al-

though the relative proportions of nonshared (intrauterine) envi-

ronment versus stochastic influences on the neonatal epigenome

remain to be demonstrated, Feinberg and colleagues have proposed

a model in which a genetically inherited propensity to stochastic

variability in DNA methylation has evolved to increase fitness in

a varying environment (Feinberg and Irizarry 2011). Furthermore,

a combination of influences have been proposed to explain the

phenomenon of metastable epialleles, which are variably expressed

due to epigenetic modifications that are established in a stochastic

manner during early development, and that are also environmen-

tally labile (for review, see Bernal and Jirtle 2010).

DNA methylation in relation to low birth weight:
A mechanistic link with complex disease in later life

We found that the genes whose methylation was tightly associated

with birth weight were enriched for functions and pathways associated

with growth, metabolism, and cardiovascular disease (Supplemental

Tables S9, S10). A subset of these was confirmed by locus-specific

DNA methylation analysis that revealed up to 60% methylation

discordance between heaviest versus lightest twins (Supplemental

Figs. S6–S8). Taking into account our previous data from expres-

sion arrays, we speculate that DNA methylation and expression

levels of key genes associated with cardiovascular and metabolic

function can be set in utero to confer elevated risk for disease in

later life and that this setting is linked with low birth weight.

Lack of evidence for genome-wide epigenetic drift throughout
postnatal life

Our data support the idea that a combination of stochastic and

nonshared intrauterine environment can generate a net within-

pair difference in DNA genome-wide epigenomic profiles at birth.

But do such factors influence the epigenome after birth in a similar

way? The cumulative effects of environmental and stochastic

variation on changing epigenetic profile (known as ‘‘epigenetic

drift’’) were first described by a study that examined both genome-

wide and locus-specific DNA methylation variation in a small

number of young and middle-aged MZ twins, which found

a greater within-pair discordance in the latter (Fraga et al. 2005).

Methylation discordance in twins at birth
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Our cross-sectional analysis of genome-scale data from HM27 ar-

rays from blood-derived DNA from twins from birth to >70 yr of

age does not support a generalized age-related epigenetic drift at

the genome-scale level (Fig. 4) and agree with other recent data

from saliva using the same platform (Bocklandt et al. 2011). These

discrepancies are most likely due to differences in methodology,

sample size, and genomic regions the genome studied. Despite our

lack of compelling evidence for epigenetic drift over the life course,

others have shown that DNA methylation can vary over time, using

cross-sectional (Boks et al. 2009; Christensen et al. 2009; Rakyan

et al. 2010) or longitudinal (Bjornsson et al. 2008; Feinberg et al.

2010) approaches. Further studies are needed that focus on both

epigenetic change and epigenetic discordance within twin pairs over

time, ideally addressing the suggestion that epigenetic drift could be

driven by differences in environment (Fraga et al. 2005).

Strengths and weaknesses of this study

In focusing on newborn twins, we have isolated effects accumulated

solely during intrauterine life. This is a unique time during the life

span in which individuals share the same maternal environment,

thus minimizing differences in shared environment. This has also

enabled us to use traditional modeling of variance components to

estimate the relative influence of genetic, common, and nonshared

environment throughout the genome. Because only one other study

has measured chorionicity in twins (Kaminsky et al. 2009), this has

enabled us to investigate the effects of sharing or having separate

placentas on the methylome. Studying twins at birth has also en-

abled us to identify a possible epigenetic mechanism linking low

birth weight and risk for complex disease in later life. This has im-

plications for future minimization of the poor health outcomes as-

sociated with low birth weight, through reversing the associated

epigenetic changes. Technologically, we have used a reproducible

and accurate method of genome-scale measurement of DNA

methylation, which compares well to and is more quantifiable than

immunoprecipitation or enzyme-based methods (Bock et al. 2010).

We have also looked at multiple tissues, which has enabled us to

determine whether methylation variation occurs in a tissue-specific

manner. Twin studies sometimes attract the criticism that they may

not be applicable to the rest of the population. However, apart from

sharing a placenta, and a relatively smaller birth size and lower

gestational age, twins have similar health outcomes to singletons

(Morley et al. 2003; Morley and Dwyer 2005). Greater than 95% of

twins and all singletons have their own amniotic sac and therefore

would have similar issues of nonshared environment, albeit with

different magnitudes of variation in placenta weight, cord place-

ment, and cord thickness (Antoniou et al. 2011).

The main weakness of this and similar studies (e.g., Boks et al.

2009) is the relatively small sample size. However, our primary focus

is not on specific genes, but on groups of genes with shared ontol-

ogy, and on compound measurements of similarities and differences

between the methylomes of twins. We have also focused on gene

promoters and CpG islands, which constitute a relatively small

proportion of the genome, and acknowledge that some of our

findings may not be reflected in the rest of the genome.

In our calculations of within-pair discordance and heritabil-

ity, it is possible that genetic differences within DZ pairs result in

differing probe-hybridization efficiencies within such pairs. How-

ever, our unpublished studies have shown that such sequence

variants do not affect the estimation of DNA methylation at the

CpG associated with each probe, essentially because any changes

to hybridization kinetics will affect the methylation-specific

probes and the non-methylation-specific probes in the same

manner. But what of the effect of SNPs at CpG sites assayed by

Infinium HM27 probes? Of a small number of probes for which

this is the case (Chen et al. 2011), only one appeared in our list of

;1000 genes with a high heritability (data not shown).

In summary, our study uses biological samples from twins at

birth and contributes to the understanding of prenatal human

development and the factors by which it is influenced. It is es-

sential to understand these factors in healthy individuals in order

to compare with states of disease and disease predisposition.

Methods

Subjects and tissues
Sample collection from twins at the time of delivery was performed
with appropriate human ethics clearances from the Royal Women’s
Hospital (06/21), Mercy Hospital for Women (R06/30), and Monash
Medical Center (06117C), Melbourne. The twin pairs chosen for
methylation array analysis are shown in Table 1. They shared
a similar sex ratio, gestational age, and birth weight to the full group
of 250 pairs. For CBMCs, we studied 18 MZ and nine DZ pairs; from
HUVECs, 14 MZ and 10 DZ pairs; and from placenta, eight MZ and
seven DZ pairs. HUVECs and CBMCs were examined in combina-
tion for 19 pairs, and all three tissues were profiled in seven pairs
(Table 1).

Sample preparation and DNA extraction

CBMCs were purified using density gradient centrifugation, CD31-
positive HUVECS were isolated using collagenase and magnetic
sorting, and full-thickness placental samples were isolated as de-
scribed previously (Novakovic et al. 2010; Gordon et al. 2011).
DNA was extracted using phenol:chloroform as described pre-
viously (Novakovic et al. 2010).

Infinium methylation analysis

DNA samples were processed using the MethylEasy Xceed bisulphite
conversion kit (Human Genetic Signatures), according to the
manufacturer’s instructions. Genome-wide DNA methylation anal-
ysis was performed by the Australian Genome Research Facility
(Melbourne, Australia) or ServiceXS (Leiden, The Netherlands).
Infinium HM27 BeadChip arrays (Illumina) were hybridized and
scanned as per the manufacturer’s instructions. Raw data were
exported from BeadStudio (Illumina). All statistical analysis was
performed in R (version 2.12) (R_Development_Core_Team 2009)
using packages from the Bioconductor project (Gentleman et al.
2004) and in-house scripts. Data quality was confirmed using
arrayQualityMetrics (Kauffmann et al. 2009). Probes on the X and Y
chromosomes were removed from further analysis to eliminate
sex-specific differences in methylation. The lumi package, which is
specifically designed for Illumina data, was used to calculate the
log2 ratio for methylated probe intensity to unmethylated probe in-
tensity, the M-value (Du et al. 2008, 2011). These values underwent
background correction and normalization using lumi. Possible batch
effects from samples processed at different times were compensated
for with ‘‘color adjustment’’ from lumi. Any probe within a sample
with a highly conservative detection P-value of 0.001 or greater was
excluded from further analysis. For correlation coefficients, M-values
with batch effects removed were used to calculate a mean M-value for
each probe. This was then subtracted across all of the samples to
create a mean-corrected set of M-values. The correlation coefficients
for each pair for MZ, DZ, MZMC, and MZDC were then calculated
from these values. Correlation coefficients were also calculated only
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within each array, for every unrelated individual (UR) comparison,
i.e., pairwise comparison of unrelated individuals. Euclidean dis-
tances were also calculated using M-values from all probes.

Differential methylation analyses were performed using the
limma package (Smyth 2005), which is designed for the analysis of
microarray data. Array quality weights were estimated to allow for
the possibility of variable DNA quality between the samples
(Ritchie et al. 2006), and these weights were incorporated in all
differential methylation analyses. To study discordance between
co-twins, a linear model was fitted to the M-values for each gene
with twin-pair as a predictive factor, equivalent to a one-way
ANOVA analysis in which variability is broken up into between-
twin and within-twin components. This analysis yielded a within-
twin standard deviation for each CpG across all twin pairs, which
was taken to summarize the level of discordance between co-twins
for that gene. To examine the relationship between birth weight
and DNA methylation, genewise linear models were fitted with
twin-pair as a factor and log-weight as a covariate. The linear
models also included a correction for possible batch effects. The
association of birth weight on each gene was assessed using
moderated t-statistics (Smyth 2004). Genes were judged to be dif-
ferentially methylated if the false discovery rate was under 0.1 after
adjustment for multiple testing using the Benjamini and Hochberg
algorithm (Hochberg and Benjamini 1990).

Limma was also used to conduct several gene set tests. These
tests use a Wilcoxon rank-sum test to assess whether a particular set
of genes tends to be more highly ranked according to some given
criterion than the remaining genes (Michaud et al. 2008). To test
whether certain functional categories of genes tend to be more
discordant than others, genes were ranked by within-pair standard
deviation. This approach was applied to 45 imprinted genes and to
568 housekeeping genes (Eisenberg and Levanon 2003). To test
whether certain functional groups of genes are associated with
birth weight, genes were ranked by moderated t-statistic when
testing for birth weight as a covariate. This approach was applied to
a list of 247 cardiovascular-associated genes from the Cardiovas-
cular Gene Ontology Annotation Initiative (Lovering et al. 2008).

Estimating variance components of DNA methylation

Using genetic (twin) models, we are able decompose the observed
variance in methylation levels into its additive genetic and com-
mon environmental components (Neale and Cardon 1992). Ad-
ditive genetic variance (A) denotes the variance resulting from the
sum of allelic effects throughout the genome, whereas common
environmental variance (C) relates to the environmental influences
shared within twin pairs. The remaining variance (E) is nonshared
(individual) environmental effects and includes error terms. We can
estimate A, C, and E for each methylation probe based on the
resemblance between MZ twins and DZ twins, who share, on average,
50% of segregating loci. For each methylation probe, we calculate the
intraclass correlation between MZ (rMZ) and DZ (rDZ) twin pairs using
a least-squares estimator (Visscher 2004). Variance components
A, C, and E are calculated as follows: A = 2(rMZ � rDZ); C = rMZ � A;
E = 1 � rMZ. Heritability (h2) is calculated as h2 = A/P, where P is the
sum of A, C, and E (observed phenotypic variance).

Locus-specific methylation analysis

Sequenom MassARRAY EpiTYPING was performed as previously
described (Ollikainen et al. 2010; Novakovic et al. 2011). The
primers are listed in Supplemental Table S11. In brief, amplifica-
tion was performed after bisulfite conversion of genomic DNA
with the MethylEasy Xceed bisulphite conversion kit (Human
Genetic Signatures). All PCR amplifications and downstream pro-

cessing were performed at least in duplicate, and the mean meth-
ylation level at specific CpG sites was determined. Raw data
obtained from MassArray EpiTYPING were cleaned systematically
using an R-script to remove samples that failed to generate data for
>70% of CpG sites tested. Also, technical replicates showing $5%
absolute difference from the median value of the technical repli-
cates were removed, and only samples with at least two successful
technical replicates were analyzed. Samples were compared across
each analyzable CpG site in the amplicon, as well as the mean
across the whole amplicon.

Gene Ontology and pathway analysis

Gene Ontology (GO) analyses were conducted using GOrilla soft-
ware (Eden et al. 2009), with the default options and searching all
ontologies. This program identifies enriched GO terms from
ranked gene lists using all ranked genes, an approach that is
analogous to the limma Wilcoxon gene set tests. Genes were
ranked for GOrilla analyses using the same ranking statistics as
described above for the gene sets tests. Pathway analysis was per-
formed using Ingenuity Pathways Analysis (IPA) software (In-
genuity Systems). The functional analysis identified the biological
functions and/or diseases that were most significant for each of the
data sets. IPA was used to identify enriched canonical pathways,
gene networks, and functional classes. Genes corresponding to all
Infinium probes that passed QC were used as a reference set.

Public microarray data analysis

Illumina HumanMethylation27 BeadChip twin data were obtained
from various sources (see Table 2). The data sets used were restricted
to blood and, wherever possible, phenotypically normal twins.
X- and Y-chromosome probes were removed from the analysis, and
correlation coefficients and Euclidean distances were calculated
from all probes as described above (Fig. 4).

Data access
The data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE36642.
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