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Abstract: (1) Background: Highly flexible adaptive image receive (AIR) coil has become available for
clinical use. The present study aimed to evaluate the performance of AIR anterior array coil in lung
MR imaging using a zero echo time (ZTE) sequence compared with conventional anterior array (CAA)
coil. (2) Methods: Sixty-six patients who underwent lung MR imaging using both AIR coil (ZTE-AIR)
and CAA coil (ZTE-CAA) were enrolled. Image quality of ZTE-AIR and ZTE-CAA was quantified
by calculating blur metric value, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of
lung parenchyma. Image quality was qualitatively assessed by two independent radiologists. Lesion
detection capabilities for lung nodules and emphysema and/or lung cysts were evaluated. Patients’
comfort levels during examinations were assessed. (3) Results: SNR and CNR of lung parenchyma
were higher (both p < 0.001) in ZTE-AIR than in ZTE-CAA. Image sharpness was superior in ZTE-AIR
(p < 0.001). Subjective image quality assessed by two independent readers was superior (all p < 0.05)
in ZTE-AIR. AIR coil was preferred by 64 of 66 patients. ZTE-AIR showed higher (all p < 0.05)
sensitivity for sub-centimeter nodules than ZTE-CAA by both readers. ZTE-AIR showed higher
(all p < 0.05) sensitivity and accuracy for detecting emphysema and/or cysts than ZTE-CAA by both
readers. (4) Conclusions: The use of highly flexible AIR coil in ZTE lung MR imaging can improve
image quality and patient comfort. Application of AIR coil in parenchymal imaging has potential for
improving delineation of low-density parenchymal lesions and tiny nodules.

Keywords: lung; magnetic resonance imaging; zero-echo-time imaging; adaptive image receive coil;
ultrashort T2

1. Introduction

Magnetic resonance (MR) is an attractive imaging tool that can provide both morpho-
logical and functional information of objects without ionizing radiation. However, MR
imaging of the lung has been challenging because of low proton density in the lung and
rapid signal decay caused by susceptibility effects at the air—tissue interface [1]. Recently,
sequences using very short echo time (TE) such as ultrashort echo (UTE) and zero echo
(ZTE) sequences have gained attention due to their capability of imaging ultrashort T2* tis-
sues such as lung, bone, and ligament [2]. It has been shown that integration of UTE or
ZTE in routine chest MR protocol can provide high-resolution structural information of
the lung, potentially eliminating the need for CT [3-5]. Minimal gradient switching in a
ZTE pulse sequence can drastically decrease patient annoyance due to acoustic noise [6].
A recent direction of research involves respiratory gating of these sequence to generate 4D
images for assessing respiratory motion and regional ventilation [7,8].

Because of a relatively long scan time and the vulnerability to respiratory motion
artifacts in lung MR imaging, patients’ comfort is a very important factor for high-quality
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imaging [1,9]. Owing to confined spatial environment in an MR machine, some patients
become nervous and poorly cooperative to respiratory instructions during examination.
Conventional coil elements are fixed in rigid housing to prevent damage with repeated use.
The weight and pressure of rigid coil arrays on a patient’s chest can cause discomfort and
affect the patient’s breathing patterns [9].

Many efforts have been made in the development and elaboration of flexible MR
coils [10-12]. Recently, adaptive image receive (AIR) coil array has become available for
clinical use [13]. This coil array comprises of flexible coil elements together with highly
miniaturized electronic components. These elements are then enclosed in a lightweight,
flame-retardant padded textile. Owing to its flexibility and light weight, AIR coil is ex-
pected to maintain a close patient fit and offer comfortable examination. However, limited
information is available about the clinical performance of AIR coil. The feasibility of pro-
totype balaclava AIR coil for whole-brain imaging has been reported [14]. AIR coil in a
blanket type has been introduced for various body parts including spine, chest, abdomen,
and extremities [15]. The feasibility and performance of AIR coil in body imaging has not
yet been studied. Therefore, the purpose of this study was to evaluate the performance of a
30-channel AIR coil in structural lung MR imaging using ZTE sequence from a clinical per-
spective in comparison with 16-channel conventional anterior array (CAA) coil commonly
used for body imaging in practice.

2. Materials and Methods
2.1. Subjects

Our Institutional Review Board approved this study. Written informed consent was
obtained from all patients. From May 2019 to March 2021, 66 consecutive adult patients
underwent chest MRI for further evaluation of thoracic lesions detected on chest CTs
obtained using a multidetector scanner. Indication of chest MR was staging of lung cancer
(n = 31) and esophageal cancer (n = 2), differential diagnosis of lung nodule/mass (n =7),
evaluation of pleural (1 = 1), mediastinal (n = 23), and chest wall lesion (1 = 2). There were
50 males and 16 females with a mean age of 61.2 years (range, 19-88 years). Body mass
index of patients ranged from 16.3 to 35.5 (mean, 23.6).

2.2. Image Acquisition

MR images were obtained using a commercial 3T scanner (Signa Architect, GE Health-
care, Milwaukee, WI, USA). ZTE imaging is performed as part of routine chest MRI protocol
at our institution (Gyeongsang University Changwon Hospital, Changwon, Korea). Two
sets of ZTE lung MR imaging were obtained using 16-channel CAA (ZTE-CAA) and
30-channel AIR coils (ZTE-AIR), respectively, combined with a 40-channel posterior array
coil. The order of the two ZTE scanning was random for each patient.

Scans were performed during quiet breathing. Signals of respiratory bellows wrapped
around the patient’s upper abdomen were used as surrogates of respiratory motion. Data
were prospectively acquired when the position of the diaphragm was within an acceptance
window during approximately one-third of the end-expiration phase. Coronal images with
isotropic resolution of 1.5 mm were obtained. Original coronal image data were reformatted
into axial images. ZTE scan parameters in both scans were as follows: repetition time,
393~503 ms; echo time (AT), 16 ps; flip angle, 2°; No. of spokes per segment, 256; field of
view, 384 x 384 mm?; receiver bandwidth, +31.25 kHz; respiration trigger window, 30% of
respiratory cycle; and mean scan time, 137 s (127-148 s).

2.3. Quantitative Analysis

To compare quantitative image qualities between ZTE-AIR and ZTE-CAA, one ra-
diologist with 7 years of experience who was blind to the purpose of this study drew
circular regions of interest (ROIs) in both lungs and background air for all patients. When
placing ROI in the lung, vascular markings and fissures were avoided. Measurements
were performed in three different areas of each lung and background air. The mean of
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measurements was considered as the representative value for each structure or parameter.
Standard deviation (SD) of the intensity measured in background air was considered as
image noise. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of lung parenchy-
mal were calculated according to the following equations: SNR = mean signal intensity (SI)
of lung/image noise; CNR = (mean SI of lung—mean SI of back-ground air)/image noise.

_ mean SI of lung
SNR(lung) = image noise

CNR(lung) = mean SI of lung — mean SI of background air

image noise

Image sharpness of ZTE-AIR and ZTE-CAA was evaluated using blur metric. For blur
metric analysis, one radiologist with 7 years of experience marked rectangular ROIs on
the trachea of original coronal images (Figure S1). ROIs were drawn in the same location
on ZTE-CAA and ZTE-AIR for each patient. One computer scientist then calculated blur
metric values from radiologist-marked ROI areas for each image data set. We developed a
MATLAB (Mathworks, Natick, MA, USA)-based analysis program and added a blur metric
function developed by the original developer to our program [16]. Blur metric, which
quantitatively analyzes the sharpness of an image, is a no-reference-based measurement
method that can estimate the level of sharpness using the degree of variation for adjacent
pixel values [17-19]. The calculated value ranged from 0 to 1, with a lower value indicating
a sharper image and a higher value indicating a blurrier image.

2.4. Qualitative Analysis

Two radiologists with 25 and 26 years of experience, respectively, independently evalu-
ated ZTE-CAA and ZTE-AIR in terms of visualization of normal structures (intrapulmonary
vessels, bronchi, and fissures,), degree of noise and artifacts, and overall acceptability. Both
coronal and axial images were reviewed. The score of each category was rated using a
five-point scale (Table 1).

Table 1. Qualitative scoring system of ZTE lung MR images.

Visualization of intrapulmonary vessels

1, indistinguishable segmental vessels

2, blurred visualization of segmental vessels
3, clear visualization of segmental vessels

4, visualization of subsegmental vessels

5, visualization of sub-subsegmental vessels

Visualization of the bronchi

1, indistinguishable lobar bronchus

2, visualization of lobar bronchus

3, visualization of segmental bronchus

4, visualization of subsegmental bronchus

5, visualization of sub-subsegmental bronchus

Visualization of fissures

1, no visualization

2, partial visualization of one fissure

3, partial visualization of two fissures

4, visualization of near whole course of one fissure
5, visualization of near whole course of two fissures

Noise and artifacts

1, unacceptable noise/artifacts

2, above-average noise/artifacts

3, average and acceptable noise/artifacts
4, less-than average noise/artifacts

5, minimum or nothing
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Table 1. Cont.

Overall acceptability
1, unacceptable

2, suboptimal

3, satisfactory

4, good

5, excellent

2.5. Lesion Evaluation

To evaluate the capability for parenchymal lesion detection on ZTE images, two
board-certified chest radiologists with 24 and 25 years of experience, respectively, reviewed
thin-section chest CT scans. Images were evaluated for the presence of nodule (<3 cm),
emphysema, and lung cysts including bullae (>1 cm). The final decision for each patient
was determined as consensus by two radiologists. It served as the reference standard for
lesion evaluation in this study.

Two readers with 7 and 6 years of experience in chest imaging, respectively, who were
blinded to the diagnosis evaluated all ZTE image data sets during two reading sessions
within a two-week interval. Two ZTE data sets of the same patient were not provided
during the same reading session. For evaluation, lungs were divided into four zones (right
upper [RU], right lower [RL], left upper [LU], and left lower [LL] zones) using the bronchus
intermedius as reference. Readers were asked to record the presence or absence of nodules,
emphysema, and/or lung cysts on each lung zone. When there were multiple nodules
in a lung zone, up to three nodules in size order (from the largest to the smallest) were
evaluated. Mass, consolidation, and parenchymal distortion were ignored. The diagnostic
confidence for lesion was rated using a five-point scale (1, definitely absent; 2, probably
absent; 3, suspicious; 4, probably present; 5, definitely present). Scores of 3, 4, and 5 were
considered positive for detection. Diagnostic performance for nodule was evaluated per
nodule and per zone-by-zone basis. Diagnostic performance for emphysema/bullae was
evaluated on a zone-by-zone basis.

2.6. Assessment of Patients” Comfort

After scanning, patients were asked to rate the level of comfort during two ZTE scans
on a 5-point scale: score 1, much more comfortable during ZTE-CAA; score 2, slightly
more comfortable during ZTE-CAA; score 3, equally comfortable; score 4, slightly more
comfortable during with ZTE-AIR; and score 5, much more comfortable during ZTE-AIR.

2.7. Statistical Analysis

The Wilcoxon signed-rank test was used to compare differences in SNR and CNR of
lung parenchyma and image sharpness between ZTE-CAA and ZTE-AIR. Subjective image
quality between ZTE-CAA and ZTE-AIR was also compared using the Wilcoxon signed-
rank test. McNemar’s test was used to compare diagnostic performances of ZTE-CAA
and ZTE-AIR for lung nodule and emphysema. The effect size (also known as strength of
association) was estimated using eta squared (n?). Effect sizes were interpreted as follows:
0.01 < 12 < 0.06, small effect; 0.06 < 12 < 0.14, moderate effect; and n2 > 0.14, large effect.

Inter-reader agreements for qualitative assessment and lesion evaluation were de-
termined by calculating the weighted kappa coefficient. The weighted kappa value was
interpreted as follows: 0.20 or less, poor; 0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80,
substantial; and 0.81 or greater, almost perfect agreement. All statistical analyses were
performed using SPSS package version 24.0 (SPSS Inc., Chicago, IL, USA). p values of less
than 0.05 indicated statistical significance.

3. Results
ZTE lung imaging was successfully performed for all patients without any adverse events.
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3.1. Quantitative Evaluation

Both SNR and CNR of lung parenchyma were significantly (both p < 0.001) higher
in ZTE-AIR than in ZTE-CAA. Blur matric value of ZTE-AIR was significantly (p < 0.001)
lower, indicating better image sharpness than ZTE-CAA (Table 2).

Table 2. Comparison of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image sharp-
ness between ZTE-CAA and ZTE-AIR.

ZTE-CAA ZTE-AIR p-Value Effect Size
SNR 747 £2.81 11.79 £5.75 <0.001 0.368
CNR 117 £1.25 210 £ 1.84 <0.001 0.147
Image sharpness * 0.49 £ 0.37 % 044 +0.32* <0.001 0.378

* Expressed as blur metric values, with a lower value indicating a sharper image. A p-value < 0.05 was considered
statistically significant. ZTE-CAA, zero echo time lung MR imaging using conventional anterior array coil;
ZTE-AIR, zero echo time lung MR imaging using adaptive image receive coil.

3.2. Qualitative Evaluation

Subjective image qualities assessed by two independent readers regarding visualiza-
tion of intrapulmonary structures (vessels, airway, and fissures) were significantly higher
(all p < 0.05) in ZTE-AIR (Table 3). Scores for image noise/artifacts and overall acceptability
were superior in ZTE-AIR (all p < 0.001) to those in ZTE-CAA.

Table 3. Subjective image quality of ZTE-CAA and ZTE-AIR by two independent readers (1 = 66).

Reader 1 Reader 2
ZTE-CAA ZTE-AIR p-Value Effect Size ZTE-CAA ZTE-AIR p-Value Effect Size
Vessels 4.74 + 0.56 4.89 +0.31 0.003 0.063 4.73 £ 0.54 4.83 +0.41 0.007 0.053
Bronchi 3.59 + 0.68 3.98 + 0.64 <0.001 0.183 3.52 + 0.64 4.82 +0.70 <0.001 0.156
Fissures 245+ 1.13 2.79 +1.00 <0.001 0.130 2.53 +1.03 2.77 £ 0.87 <0.001 0.137
Noise/Artifacts 3.36 + 1.11 3.89 + 0.86 <0.001 0.153 3.14 £1.12 3.50 +1.04 <0.001 0.175
Overall Acceptability 3.5+1.04 3.89 + 0.88 <0.001 0.128 3.29 +£1.12 3.83 +0.92 <0.001 0.125

Data are presented as mean and standard deviation. A p-value < 0.05 was considered statistically significant.
ZTE-CAA, zero echo time lung MR imaging using conventional anterior array coil; ZTE-AIR, zero echo time lung
MR imaging using adaptive image receive coil.

Inter-reader agreements were substantial in evaluations of intrapulmonary vessels
(k =0.748 in AIR, k = 0.824 in CAA), fissures (k = 0.773 in AIR, k = 0.779 in CAA), image
noise/artifacts (x = 0.775 in AIR, k = 0.756 in CAA), and overall acceptability (x = 0.781 in
AIR, k =0.77 in CAA) in both ZTE datasets. Inter-reader agreements for bronchi (k = 0.588
in AIR, k = 0.423 in CAA) were moderate in both ZTE datasets (Table S1).

3.3. Lesion Detection

There were 80 pulmonary nodules in 54 lung zones of 38 patients. Sizes of nodules
ranged from 3 mm to 30 mm (mean, 10.6 mm). A total of 51 nodules were less than 1 cm in
diameter. There were emphysema and/or bullae in 46 lung zones of 22 patients.

Diagnostic performances of ZTE-CAA and ZTE-AIR in detecting nodules on zone-
by-zone and nodule-base analyses by both readers were not significant different (Table 4).
In subgroup analysis according to nodule size, ZTE-AIR showed significantly higher (both
p < 0.05) sensitivity than ZTE-CAA for sub-centimeter nodules by both readers (Table 5,
Figure 1). Sensitivity and accuracy for detecting emphysema and/or cysts were signifi-
cantly (all p < 0.05) higher for ZTE-AIR than ZTE-CAA by both readers (Figures 2 and 3).
Specificity for detecting emphysema was not significantly different between ZTE-AIR than
ZTE-CAA for both readers. Inter-reader agreements in evaluations of nodules (k = 0.75
in AIR, k = 0.616 in CAA) and emphysema and/or lung cysts (kx = 0.685 in AIR, k = 0.7 in
CAA) were substantial in both ZTE datasets (Table S1).
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Table 4. Comparison of diagnostic performance for nodules and emphysema on a zone-by-zone basis
between ZTE-CAA and ZTE-AIR.

Reader 1 Reader 2
ZTE-CAA ZTE-AIR p-Value ZTE-CAA ZTE-AIR p-Value
Nodules
Sensitivity  87.0 (47/54) 88.9 (48/54) 1.00 85.2 (46/54) 88.9 (48/54) 0.625
Specificity 98.1 (206/210)  98.6 (207/210)  1.00 98.1 (206/210)  98.6 (207/210)  1.00
Accuracy 95.8 (253/264) 96.6 (255/264) 0.625 95.5 (252/264) 96.6 (255/264) 0.375
Emphysema/cysts
Sensitivity 78.3 (36/46) 91.3 (42/46) 0.031 73.9 (34/46) 89.1 (41/46) 0.039
Specificity  98.6 (215/218)  98.6 (215/218)  1.00 98.6 (215/218)  99.5(217/218)  0.500
Accuracy  95.1(251/264)  97.3(257/264)  0.031 94.3(249/264)  97.7 (258/264)  0.012

Numbers are shown in percentages. Raw data are shown in parentheses. A p-value < 0.05 was considered
statistically significant. ZTE-CAA, zero echo time lung MR imaging using conventional anterior array coil;
ZTE-AIR, zero echo time lung MR imaging using adaptive image receive coil.

Table 5. Comparison of sensitivity on nodule-wise evaluation between ZTE-CAA and ZTE-AIR.

Reader 1 Reader 2
ZTE-CAA ZTE-AIR p-Value ZTE-CAA ZTE-AIR p-Value
All 80.0 (64/80) 88.8 (71/80) 0.065 80.0 (64/80) 87.5 (70/80) 0.070
1-3 cm 93.1 (27/29) 93.1 (27/29) 1.000 96.8 (28/29) 93.1 (27/29) 1.000
<lcm 72.5 (37/51) 86.3 (44/51) 0.039 70.6 (36/51) 84.3 (43/51) 0.016

Numbers are shown in percentages. Raw data are shown in parentheses. A p-value < 0.05 was considered
statistically significant. ZTE-CAA, zero echo time lung MR imaging using conventional anterior array coil;
ZTE-AIR, zero echo time lung MR imaging using adaptive image receive coil.

Inter-reader agreement on nodule-wise evaluation was moderate (k = 0.574 for ZTE-
AIR, k = 0.421 for ZTE-CAA) for pulmonary nodules. Inter-reader agreement was substan-
tial for emphysema and/or cysts (k = 0.754 for ZTE-AIR, k = 0.751 for ZTE-CAA).

3.4. Patients” Comfort

Of 66 patients, 64 responded that AIR coil was slightly (n = 26) or much more (1 = 38)
comfortable than CAA coil (Table S2). The other two patients responded that both coils
were equal.
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Figure 1. A 61-year-old male with lung cancer in the right upper lobe. A 24 mm-sized primary nodule
and a tiny satellite nodule in the right upper lobe in ZTE-CAA (a) and ZTE-AIR (b) are shown. Chest
CT image (c) is presented as reference. ZTE-CAA, zero echo time lung MR image using conventional
anterior array coil; ZTE-AIR, zero echo time lung MR image using adaptive image receive coil.
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Figure 2. A 55-year-old male with lung cyst in the right upper lobe. Note signal difference between
lung parenchyma and cyst (short arrows) and visualization of peripheral bronchi (thin arrows) in
ZTE-CAA (a) and ZTE-AIR (b). Chest CT image (c) is presented as reference. ZTE-CAA, zero echo
time lung MR image using conventional anterior array coil; ZTE-AIR, zero echo time lung MR image
using adaptive image receive coil.
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Figure 3. An 83-year-old male with lung cancer. A lobulated mass in the left upper lobe is well-
defined in both ZTE-CAA (a) and ZTE-AIR (b). However, the presence of emphysema is more clearly
defined in ZTE-AIR. CT image is presented for comparison (c). ZTE-CAA, zero echo time lung MR
image using conventional anterior array coil; ZTE-AIR, zero echo time lung MR image using adaptive
image receive coil.
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4. Discussion

By adopting densely overlapped thin wire loops with a special conductive material
named a INCA conductor instead of conventional copper loops, AIR coil has gained
lightness and flexibility [13,14]. Conventional coil arrays are fixed in rigid housing to avoid
damage and maintain critical overlap between loops for delivering the best SNR. With an
INCA conductor connected to a printed circuit board module, AIR coil was designed to
reduce coil-coil mutual inductance and coupling between adjacent loops, achieving high
decoupling between coil elements and relaxing coil overlap requirements [13,14]. The major
interest of this work was to evaluate how such flexibility and interaction between closely
overlapped coil elements of 30-channel AIR Anterior Array coil benefit the image quality
in lung imaging, combined with a 40-channel posterior array coil.

In the present study, lung parenchyma was 58% higher SNR in ZTE-AIR than ZTE-
CAA. CNR of lung parenchyma with background air as reference was also 80% higher
in ZTE-AIR. These results reflect higher sensitivity and lower noise level with AIR coil,
which might be attributed to both higher channel counts and more compact fit of the coil to
patients’ bodies. By conforming to patient anatomy and thereby closely fitting the coil to
the object, AIR coil is likely to capture more signal and less noise than CAA coil [20].

Image sharpness measured using blur metric on the trachea was superior in ZTE-AIR
than in ZTE-CAA. Owing to lower image noise and higher signal in original ZTE-AIR,
intensity variations in the trachea might appear larger in ZTE-AIR, presenting lower blur
metric value (i.e., sharper image) than in ZTE-CAA.

With their exceptional capability in imaging ultrashort T2* structures, ultrashort TE
sequences including ZTE and UTE showed excellent performances in detecting pulmonary
nodules [21-24]. In the present study, subjective image qualities regarding visualization
of intrapulmonary structures such as pulmonary vessels, bronchi, and fissures; degree of
image noise/artifacts; and overall acceptability were all superior in ZTE- AIR. Nevertheless,
diagnostic performances for lung nodule detection were not different between ZTE-AIR
and ZTE-CAA both on per-lung zone and per-nodule base analyses. However, when
nodules were subcategorized according to their sizes, ZTE-AIR showed superior sensitivity
for sub-centimeter nodules to ZTE-CAA by both readers.

Radiologists” detection sensitivity for emphysema and/or cysts appeared better in
ZTE-AIR than in ZTE-CAA. Pulmonary pathological conditions with low density such as
emphysema or bronchiectasis are the most challenging part in lung MR imaging [25-28]. Ac-
cording to Ohno et al., diagnostic capability of UTE for emphysema/bullae and bronchiec-
tasis was inferior to standard /low-dose CT, while diagnostic capability of UTE for dense
parenchymal lesions such as pulmonary nodules and ground-glass opacity was comparable
to that of standard /low-dose CT [26]. In the present study, higher CNR of lung parenchyma
and lower artifacts in ZTE-AIR could explain its better detectability of area with parenchy-
mal loss, i.e., emphysema or cysts. In addition to functional imaging, improved structural
imaging may also contribute to expansion of lung MR in advanced diagnosis and follow-up
of chronic lung disease such as chronic obstructive pulmonary disease, interstitial lung
disease, and cystic fibrosis [29,30].

In the present study, AIR coil was preferred by most (97%) patients. No patient
preferred CAA coil to AIR coil. AIR coil was fit to all patients regardless of their body
size or shape. AIR coil did not complicate the placement of medical devices including
respiratory bellows.

This study has some limitations. First, we compared performances of AIR coil and
CAA coil in a single lung MR sequence. Considering scan time in clinical settings, we
preferentially tested the performance of AIR coil in high-resolution structural imaging
using ZTE pulse sequence. Second, we could not test the diagnostic performance using
various types of lung nodules other than solid nodules because we only had a limited
number of cases. Third, better image quality and lesion detectability in ZTE-AIR might not
be solely attributable to performance of the coil per se. Since respiratory movement has a
great impact on lung MR image quality, the difference in patients’ respiratory cooperation
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between the two scans could also affect image quality. Fourth, although we used the
same scan parameters and protocols, minimal differences between the two scans could
affect quantitative evaluation. Last, the geometry of two coils, including number of coil
elements, was not equivalent. AIR coil is a new device developed to improve image quality
and applicability of MRI. Since our study focused on clinical implication of new coil, the
performance of AIR coil was assessed via comparison with currently used coil in practice.

In conclusion, AIR coil offered greater patient comfort and better image quality than
CAA coil on high-spatial-resolution ZTE lung MR imaging. Higher SNR and CNR of
lung parenchyma on ZTE-AIR show potential for improved diagnosis of tiny nodules and
low-density parenchymal lesions such as emphysema.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10.3
390/diagnostics12010148/s1, Figure S1: Measurement of image sharpness, Table S1: Interobserver
agreements in the evaluation of intrapulmonary structures and lesions in two ZTE datasets, Table S2:
Patients’ response regarding comfort level.
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