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Abstract: In this paper, a model of signaling pathways involving G proteins is investigated. The model incorporates reac-
tion-diffusion mechanisms in which various reactants participate inside and on the extra-cellular surface membrane. The 
messenger molecules may diffuse over the surface of the cell membrane and signal transduction across the cell membrane 
is mediated by membrane receptor bound proteins which connect the genetically controlled biochemical intra-cellular reac-
tions to the production of the second messenger, leading to desired functional responses. Dynamic and steady-state proper-
ties of the model are then investigated through weakly nonlinear stability analysis. Turing-type patterns are shown to form 
robustly under different delineating conditions on the system parameters. The theoretical predictions are then discussed in 
the context of some recently reported experimental evidence.
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Introduction
The ability to respond appropriately to signals in the environment is essential for the survival of 
any organism. A very sophisticated mechanism has therefore evolved for detecting external signals, 
transducing them into internal signals and eliciting cellular responses. As evidenced by several earlier 
investigations (Levchenko and Iglesias, 2002; Rapple et al. 2002; Iglesias, 2003; Krishnan and Iglesias, 
2003), the cells can sense spatial gradients as temporal changes in receptor occupancy and change certain 
behavioral patterns in response. Several biological systems have such ability to sense the direction of 
external chemical sources and respond by transient activation of specifi c intracellular signaling path-
ways. This ability to adapt to different levels of external stimuli, so that it is the gradient of signaling 
molecule rather than the average signal value that determines the response, is a common feature of most 
chemotactic signaling systems (Levchenko and Iglesias, 2002).

The amoeboid organism Dictyostelium discoideum has been widely recognized as a useful model 
system for the study of chemotaxis (Rapple et al. 2002; Iglesias, 2003). Several recent research reports 
have proposed and studied mathematical models of signal transduction applied to Dictyostelium discoi-
deum and other eukaryotic cells (Levchenko and Iglesias, 2002; Rapple et al. 2002; Krishnan and Iglesias, 
2003). In his study of feedback control in intracellular signaling pathways in Dictyostelium discoideum, 
Iglesias (Iglesias, 2003) stated that, for cells to sense and respond to change in their environment, 
they must fi rst have external sensors on receptors for each of the different stimuli to which it needs to 
respond. These external messages are then relayed to a series of internal reactants, which in turn trigger 
key cellular functions. A healthy functioning cell signaling mechanism, termed signal transduction, is 
essential for the well-being of the life form. Abnormalities of signal transduction pathways have been 
linked to the development of many serious disorders, such as cancer for example. 

Mostly, a cancer cell is a cell that has escaped the controls that maintain its normal differentiated 
function within the regulatory mechanism of the body (Norman and Litwack, 1997). This therefore 
underlines the role of signal transduction in the loss of organismic control. In other words, cancer may 
be viewed as an aberration of the signal transduction process since it derives from a cell that has lost 
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the ability to respond normally to controls from 
outside, or inside, the cell (Norman and Litwack, 
1997). It is thus not surprising that hormones and 
their receptors are intimately related to carcinogen-
esis. Many tumors produce ectopical amounts of 
biologically active hormones that create dysfunc-
tions of the signal transduction process leading 
to abnormal effects. Various tumors have been 
shown to secrete ACTH (Adrenocorticotrophic 
hormone) and to cause hypercortisolism, even 
when the tumor is undetectably small for many 
years (Norman and Litwack, 1997).

Additionally, hormones and antihormones are 
used to treat certain types of cancer. Many cancers 
are related to the status of hormones in the body. 
Hormone dependencies of a cell usually are a 
feature of the presence of the cognate receptor in 
the cell, while hormone independence becomes 
a feature of tumor cells that no longer express 
the appropriate receptor. An avenue for cancer 
treatment is to remove the grand responsible for 
the offensive secretion of a hormone. Another 
avenue would be to utilize appropriate hormones 
as chemotherapeutic agents. For an example, 
tamoxifen can interfere with offensive effects of 
estrogen and result in the inhibition of cellular 
growth of the tumor. For another example, Vaso-
pressin has been proposed for its potential effect 
of slowing down the fl ow of blood that tumors 
depend on for growth.

Since hormones and their receptors are so 
closely related to carcinogenesis, better under-
standing of signal transduction mechanisms have 
been subject of recent intense research (Norman 
and Litwack, 1997; Iglesias, 2003). However, 
signaling pathways are highly nonlinear processes, 
involving feedbacks and cross-talk among inter-
connected components, subject to control by many 
independent events, making clear-cut description 
highly diffi cult. New techniques and approaches 
are needed to understand these complicated 
networks. According to J. Michael Bishop, “In 
order to fully understand these pathways, we need 
a convenient and powerful model to compliment 
the experimental research” (Iglesias, 2003).

Our goal is thus to extend current under-
standing of the signal transduction processes by 
creating a single model explaining adaptation and 
gradient sensing. Not unlike chemotaxis, subcel-
lular response calls for the cells to detect often 
exceedingly shallow and changing gradients of 
extracellular substances and regulating a complex 

response in accordance with the direction and the 
value of these gradients. Such highly complex 
and integrated response needs an explanation and 
modeling in order to translate biochemical obser-
vations and clinical evidence into a set of predic-
tions of dynamical and steady-state properties of 
the system.

Based on observation and principles of the signal 
transduction pathways proposed in earlier inves-
tigations (Norman and Litwack, 1997; Spiegel, 
2000; Levchenko and Iglesias, 2002; Rapple et al. 
2002; Iglesias, 2003), we may arrive at a model 
which describes gradient sensing and adaptation. 
The resulting model incorporates reaction-diffusion 
mechanisms in which various reactants participate 
inside and on the surface of the cell membrane. The 
messenger molecules diffuse over the extra-cellular 
membrane surface in two dimensions, while some 
transport of molecules across cell membrane may 
take place to a certain extent. Signal transduction 
across the cell membrane is mediated by membrane 
receptor bound proteins which connect the geneti-
cally controlled biochemical reactions in the 
cytosol to the production of the second messenger, 
eliciting desired intracellular responses. Dynamic 
and steady-state properties of the model are then 
investigated through the application of weakly non-
linear stability analysis. We show that Turing-type 
patterns will be formed robustly under different 
physiological conditions refl ected by the system 
parameters.

The Turing mechanism has often been put 
forward as a model for certain aspects of morpho-
genesis (Glansdorff and Prigogine, 1971; Mein-
hardt, 1982; Koch, 1994; Kondo and Asai, 1995; 
Sawai et al. 2000; Raunch and Millonas, 2004; 
Pansuwan et al. 2005) such as pre-patterning in 
the embryo (Raunch and Millonas, 2004). It has 
also been a basis for models of self-organization 
in several other physical systems (Glansdorff and 
Prigogine, 1971), supported by verifi able obser-
vations in a real chemical system (Castets et al. 
1990). The investigations involved the possibility 
of an instability occurring in purely dissipative 
systems of chemical reactions far from equilib-
rium and the transport process of diffusion but no 
hydrodynamic motion. If the system involves two 
chemical species, commonly termed an activator 
and an inhibitor, the existence of diffusive instabili-
ties of this sort requires an autocatalytic reaction 
for the activator and a diffusive advantage for the 
inhibitor (Turing, 1952). That is, it is necessary that 
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the activator species diffuses signifi cantly more 
slowly than the inhibitor. 

A more recent work by Rauch and Millonas, 
(2004) showed the formation of Turing-type 
patterns in trans-membrane signal transduction, by 
numerical simulations of the models based on their 
spectrum analysis of the linear stability theory. 
However, their work involves signalling in the 
context of a population of cells which are consid-
ered as point sources rather than at the subcellular 
level. Also, a great deal of useful information may 
be lost through the assumptions of linear stability 
analysis. In this paper, we are able to predict 
rhombic and hexagonal planforms in messenger 
hormone patterns on the cell membrane through 
nonlinear stability analysis. The theoretical results 
are then discussed in the context of experimental 
observations reported in recent literatures. 

G Protein-Coupled Signal 
Transduction
Since G proteins couple receptors for many 
hormones to effectors that regulate second 
messenger metabolism, we shall use heterotrimeric 
G protein pathways as a model of signal transduc-
tion mechanisms. G proteins couple hundreds 
of receptors for hormones, growth factors, 
neurotransmitters, odorants and other extracellular 
‘fi rst messengers’ to effectors such as adenylyl 
cyclase (AC), phospholipase Cb, and various 
ion channels (Spiegel, 2000). In recent years, an 
increasing number of human disorders, particularly
endocrine diseases, have been shown to be caused 

by mutations in either G protein or G protein-
coupled receptors (GPCRs).

G protein-coupled signal transduction involves 
the following components: GPCRs, the G proteins, 
G protein-regulated effectors such as AC, and a 
family of proteins that activates G protein guanosine 
triphosphatase (GTPase) activity (Spiegel, 2000).

G proteins are heterotrimers composed of three 
subunits, a, b and c. The latter two subunits form 
a tightly, but noncovalently associated functional 
unit, the b/c dimer. In the resting state, the a-subunit 
tightly binds guanosine diphosphate (GDP) and is 
associated with the b/c dimer. When a hormone 
or other fi rst messenger binds to a receptor, the 
receptor causes the G protein to exchange GDP 
for the nucleotide guanosine triphosphate (GTP) 
which activates the G protein. The GTP-bound
a-subunit dissociates from the b/c dimer. In Figure 1, 
a schematic description of the pathways, based on a 
scheme shown in a report by A.M. Spiegel, (2000), 
is shown, where the arrows between the GTP-bound 
a-subunit and effector and between the b/c dimer 
and effector indicate the interaction between the 
effector(AC) and the respective subunits. Thus, 
G proteins are the true signal transducers since 
they respond to the occupancy of the receptor and 
modulate the activity of the catalytic subunit of the 
membrane-bound adenylate cyclase(AC) enzyme 
(Norman and Litwack, 1997). Under physiologic 
conditions, effector (AC) activation by G protein 
subunits is transient and is terminated by the GTPase 
activity of the a-subunit. The latter converts bound 
GTP to GDP, thus returning the a-subunit to its 
inactivated state with high affi nity for the b/c dimer 

Figure 1. The G protein GTPase cycle (Figure is based on a scheme in the report by A.M. Spiegel (2000)). (1) Synthesis and targeting of 
components, (2) Receptor activation by signaling molecule, (3) Receptor activation of G protein, (4) G protein subunits-effector interaction 
and (5) GTPase activity terminates the interaction and returns a subunit to inactivated state.
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which reassociates to again form the heterotrimer 
(Spiegel, 2000).

The physical interaction of the G protein 
subunits, with the membrane-bound adenylate 
cyclase (AC) activates the catalytic activity of AC 
so that the substrate ATP is converted to produce 
cyclic adenosine mono-phosphate (cAMP) which 
functions as a second messenger. Intracellular 
responses are subsequently elicited. It activates 
protein kinase A, freeing its active C subunits. 
These liberated C subunits in turn function as an 
active kinase to phosphorylate proteins, which 
thereby amplifi es the initial hormonal signal. This 
amplifi cation effect is an important factor in the 
signaling pathways and will be incorporated into 
our model construction later (Equation (2.13)).

To arrive at a model for the signal transduc-
tion process, we are guided initially the work of 
Iglesias, (2003) and let R stand for the concentra-
tion of regulators in their inactive forms. We may 
think of these as the inactivated units of adenylate 
cyclase. The number of activated regulators is then 
represented by R*(t). We assume that the activation 
and inactivation are modulated by a pair of agents 
A, and I, respectively. In our particular pathway 
of interest, the G proteins are the true signal trans-
ducers that switch effectors on and off. According 
to Norman and Litwack, (1997), the a-subunits 
of the G protein take on two functions: Gas of the 
amount A, which activates the AC, and the active 
Gai of the amount I, which inhibits the activity of 
AC. Both Gas and Gai are activated by guanosine 
triphosphate (GTP) and both also functions as a 
GTPase. The GTPase activity thus endows the G 
protein with a turn on-off mechanism (Norman 
and Litwack, 1997). Therefore, R transforms to R* 
according to the following reaction equation.

 R
A

I
R*E  (2.1)

Using mass action dynamics, an equation for the 
above reaction is

 ( ) ( )dt
dR

k IR k A t R t
*

*
r r=- +-  (2.2)

Assuming that the total number RT = R + R* of the 
regulators remains constant, (2.2) becomes

 ( ) ( ) ( )
dt
dR k I k A t R t k A t R

*
*

r r r T=- + +-7 A  (2.3)

On the other hand, the activating agent A and inhib-
iting agent I are regulated by the external signal 
which is proportional to the membrane surface 
concentration S of the signaling hormone, such 
as the external cAMP, giving rise to the following 
equations:

 dt
dA k A k Sa a=- +-  (2.4)

 dt
dI k I k Si i=- +-  (2.5)

where the fi rst terms in (2.4) and (2.5) are the rate 
of removal by natural means and the last terms are 
rates of their synthesis.

It is commonly assumed (Iglesias, 2003) that 
in such a process, the activated regulator R* and A 
equilibrate relatively quickly while I has the slower 
dynamics. Using equation (2.3), one fi nds that R* 

will equilibrate to the value

 R
A K I

R A*

R

T=
+

 (2.6)

where

 K
k
k

R
r

r= -  (2.7)

From setting A = 0 in (2.4), one fi nds

 A
k
k

S
a

a=
-

 (2.8)

which transforms (2.6) into

 R
b S I

k S*

1

=
+u
u

 (2.9)

where andk bK k

R k

k K

k

1R a

T a

a R

a $= =
- -

u u

Now, as the subunits of G protein interact
with AC aggregates, they activate AC to synthesize 
intra-cellular cAMP, the level of which is denoted 
by C(t), described by the following equation:

 
dt
dC k C k R R k* *

c c c=- + +- l  (2.10)

in which the fi rst term corresponds to the removal 
rate. The last two terms correspond to its synthesis, 
k'C being the apparent zero order synthesis rate. 
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The second term is the synthesis rate arising from 
the interaction between the activating subunits Gas 
of the G protein of the amount A given by (2.8) 
among the activated catalytic subunits of AC whose 
amount is R* as given in (2.9).

This enzyme is also found to equilibrate quickly 
to

 C
k
k

R R
k
k* *

C

C

C

C= +
- -

l  (2.11)

Using (2.8) in (2.11), one obtains

 
( )

C
b S I

b S
KC

1
2

2
2

=
+

+
u

u
 (2.12)

at equilibrium, where , andb Kk k
k k k

C k
k

2
C a

C a

C

C $= =
- - -

lu u

This cAMP (C) in turn acts as a second 
messenger and amplifi es the initial hormone signal 
S(t,x,y). Thus, the rate equation for the signaling 
hormone level at the point (x,y) on the extra-
cellular membrane-surfaces at time t should read 
as follows.

( )
t
S a S

b S

b S
k C t SS3

4

3 2

2
2 d=- -

+
+ + nu u

u
u  (2.13)

where the fi rst term is the rate of removal by natural 
means, while the second accounts of its transport 
through the cell membrane causing its disappear-
ance from the extra-cellular membrane surface. 
Since it is reasonable to expect this to saturate 
as the level of hormone increases, the absorption 
term assumes the form of a Hill-type saturation 
function, b3 being the maximum absorption rate 
and b4 the half-saturation constant. The third term 
accounts for the signal amplifi cation arising from 
the synthesis of cAMP mentioned earlier. We have 
incorporated the diffusion effect of S over the 2 – D 
cell-membrane surface by the last term in (2.13), 
where ,x y

2
2

2

2

2
d = +2

2
2
2  the rate of disappearance 

through the cell membrane having been accounted 
for by the second term.

Substituting (2.12) into (2.13), and introducing 
dimensionless variables , ,I S[ ] [ ]G

I
G
S

i T s T= =t t  where 
[Gi]T and [Gs]T are the total concentrations per 
cell of Gai and Gas, respectively, in nmol m–2, we 
arrive at our model consisting of the following 2 
equations

 I a I a S1 22
2
x =- +
t t t  (2.14)

 ( )
S a S

b S
b S

a S I
a S

a S

3

2

1

5
2

4
2

6
2

2
2

dn

=- -
+

+
+

+ +

x
t t

t
t

t t
t

t
 
(2.15)

where x = t
t
b
, a1 = tb [Gi]T k–i, a2 = tb [Gs]T ki,

a3 = tb [Gs]T ã3, a4 = ,b
[ ]

[ ]

G

t G
3

i T

b s T

2

2 u  a5 = [ ]

[ ]

G
b G

i

s1

T

T
u , a6 = thksKc, 

b1 = tb , ,b b [ ]

[ ]

G
b

d

t G
3 2 s

b s4

2
T

Tn= =
nu u u , with tb being the 

characteristic ligand binding time, and d the inner 
plus outer membrane thickness. Typical values of 
tb and d are 0.01 s (Erban and Othmer, 2005) and 
20 nm (Institute for Biomolecular Design, http://
redpoll.pharmacy.ualberta.ca).

In the next section, we shall carry out a weakly 
non-linear stability analysis on (2.14)-(2.15) in 
order to show the existence of rhombic and hexag-
onal planform solutions to our model following the 
technique discussed by Wollkind et al.(1994) and 
reviewed by Stephenson and Wollkind (1995).

Nonlinear Stability Analysis
In order to apply the technique of weakly nonlinear 
stability theory, we let

 ( , )F I S a I a S1 2=- +t t t t  (3.1)

 
( , )

( )

G I S a S
b S
b S

a S I
a S a

3

2

1

5
2

4
2

6

=- -
+

+
+

+

t t t
t

t

t t
t

 (3.2)

which transforms (2.14)-(2.15) into

 ( , )I F I St=t t t  (3.3)

 ( , )S G I S St
2d= + nt t t t  (3.4)

By expanding ( , ) and ( , )F I S G I St t t t  into Taylor’s 
series about the steady state (I0,S0) of (3.3) 
and (3.4)  and let t ing the perturbat ions

, and ,i I I s S S0 0/ /- -t t  we obtain the following 
system:
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f

g

f

g

i

s
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g
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2
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2

2

5
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e ^ e
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 (3.5)
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where
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 (3.6)

A Rhombic Planform Analysis
In order to investigate the possibility of occurrence 
in our model of rhombic-type patterns, we shall 
consider a rhombic planform solution of (3.5) of 
the form (referring the readers to Stephenson and 
Wollkind, (1995) for the motivation for the choices 
of functions therein)
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where vu (x, y, t) = ,( , , )
( , , )

s x y t
i x y t
_ i  v jlmn s

i
jlmn

jlmn=u _ i and z = x 
cos(z) + y sin(z) with the amplitude equations:

 
( )

( ) ( )[ ( )

( )]

dt
dA t

A t A t A t

B t

1
1 1 1 1

2

1 1
2

v a

b

+ -

+

 (3.8)

 ( )
( ) ( )[ ( )

( )]

dt
dB t

B t B t A t

B t

1
1 1 1 1

2

1 1
2

v+ -

+

b

a

 
(3.9)

as the zerot h order system of the most dangerous 
mode (Stephenson and Wollkind, 1995), a1 and  
b1 being the Landau constants to be determined 
later, as well as v.

In (3.7), we are using the notation vu jlmn for 
the coeffi cient of each term in (3.7) of the form 

( ) ( ) ( ( )).cosA t B t q mx nzj l
c1 1 +  Please see the work 

of Stephenson and Wollkind, (1995) for more detail 
of the technique. On substituting this solution (3.7) 
into (3.5), we obtain a sequence of vector systems, 
each of which corresponds to one of these terms. 
We now catalogue the solutions for the fi rst-order 
system. In particular, the fi rst order system which 
corresponds to j = m = 1, l = n = 0 is

 f

g

f

g q

1

1

0

c

1

1

2

2
2

v
v n

= +
-

e e e eo o o o (3.10)

Hence, v = g1 + g2 – nqc
2

0/v , and n = 
q

1

c
2 (g1 + 

g2– f1 – f2).
The solutions for the four second-order systems, 

which can be solved in a straight forward manner, 
are as follows:
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From the third-order systems, we can fi nd the 
Landau constants a1 and b1 as

 
[( )
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g f
f
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and
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leaving the derivation to the Appendix.
Having developed these formulae for Landau 

constants, we now turn our attention to the rhombic 
planform amplitude equations (3.8)-(3.9) which 
possess the following equivalence classes of 
critical points ( , ) :A B q 1when c1

0
1
0 2 =  

 A B 0I: 1
0

1
0= =  (3.13)

 ( ) ,A B 0II: 1
0 2
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1 1a b
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+

 (3.15)

By assuming that a1 > 0 and a1 + b1 > 0, we 
investigate the stability of the critical points in 
(3.13)-(3.15) by seeking a solution of our ampli-
tude equations (3.8)-(3.9) of the form

 A1(t) = A1
0 + ec0 exp(pt)  + O(e2) (3.16)

 B1(t) = B1
0 + ec0 exp(pt) + O(e2) (3.17)

with |e| % 1. One fi nds the following associated 
roots for p.

 ,pI: ,1 2 v=  (3.18)
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which yield the stability criteria for each critical 
point ( , )A B1

0
1
0  that I is stable for v < 0, II is stable 

for v > 0, a1 > 0 and ( )1 1

1

- a
b  < 0, and III is stable 

for v > 0, a1 + b1 > 0 and ( )
1 1

1 1

a b

b a

+

-  < 0. According to 
Stephenson and Wollkind (1995), I and II represent 
the homogeneous and striped states, respectively, 

while III can be identifi ed with a rhombic pattern 
possessing characteristic angle z.

We now investigate the critical points II and III, 
when stable, of our amplitude equations in relation 
to Turing patterns of interest. To the lowest order, 
the solution of the model associated with these 
critical points is given by the deviation

 cos coss A x B z2 2
c c

1
0

1
0

m
r

m
r+ +c cm m (3.21)

where z = x cos(z) + y sin(z) and mc = q
2

c

r . The 
contour plot of this deviation function with A1

0 > 0 
and B1

0 = 0 relevant to critical point II is shown in 
the (x, y) plane in Figure 2. Clearly, such alternating 
light and dark parallel bands produced by the 
critical point II should be identifi ed with a striped 
Turing pattern as anticipated above. In order to 
make an analogous interpretation of critical point 
III, we consider the deviation function (3.21) with 

1
0A  = B1

0 > 0. We generate the contour plot of s in 
Figure 3, which exhibits the rhombic pattern.

A Hexagonal Planform Analysis
In order to investigate the possibility of occurrence 
in our model of hexagonal-type patterns, we shall 
consider a hexagonal planform solution of (3.5) of 
the form (Stephenson and Wollkind, 1995)
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Figure 3. Contour plot of s for the critical point III in (3.15) with a1 = 0.1, a2 = 0.2, a3 = 0.5, a4 = 0.4, a5 = 0.05, a6 = 0.001, b1 = 0.001, 
b2 = 1.5, n = 0.0959972, and z = 3

r .

Figure 2. Contour plot of s for the critical point II in (3.14) with a1 = 0.6, a2 = 0.8, a3 = 0.5, a4 = 0.4, a5 = 0.005, a6 = 0.001, b1 = 0.0002, 
b2 = 0.55, n = 0.00262, and z = 2

r .
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with the amplitude equations
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as the zeroth order system of the most dangerous 
mode (Stephenson and Wollkind, 1995).

In (3.22), we are employing the notation vu jlmn for 
the coeffi cient of each term in (3.22) of the form 

( ) ( ) ( ) ( )cos cost B tj l mq x n q y

2 2 2 2

3c cA . Substituting this 
solution into (3.5) and proceeding in exactly the 
same manner as in the rhombic planform analysis, 
we again obtain a sequence of vector systems, each 
of which corresponds to one of these terms. In 
particular, the fi rst order system which corresponds 
to j = m = 1,l = n = 0 is
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Hence, v = g1 + g2 – nqc
2 = v0, and n = 

q

1

c
2 (g1 + 

g2 – f1 – f2).
There are eight second-order systems, two of 

which contain the Landau constant a0. We can 
write one of them as
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Considering the adjoint linear eigenvalue problem 
of (3.27):

 M v v* * *T
1 1 1 1v=u u  (3.28)

where *
1 0=v v  is an eigenvalue of andM MT

1 1 , we 
obtain ( )v *

f
g

1 2

1=u . By taking inner products of (3.26) 
with ,v *

1u  we fi nd, upon making use of the adjoint 
property, that
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Then, taking the limit as 00"v  we obtain
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The other six second-order systems can be 
solved in a straight forward manner, yielding 
solutions as follows:
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Using the third-order systems, we can fi nd the 
other two Landau constants a1 and a2 as
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also leaving the detail of the derivation to the 
Appendix.

Having developed these formulae for Landau 
constants, we now turn our attention to the hexag-
onal planform amplitude equations (3.23)-(3.24) 
which possess the following equivalence classes 
of critical points ( , ) when :A B q 1c2
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where we assume that a1 > 0, a1 + 4a2 > 0, v–1
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The orbital stability conditions for these 
critical points can be posed in terms of v. This 
sort of stability of pattern formation is meant in 
the sense of a family of solutions in the plane 
which may interchange with each other but do not 
grow or decay to a solution type from a different 
family. Such an interpretation depends upon the 
translational and rotational symmetries inherent 
to the amplitude-phase equations. This invari-
ance also limits each equivalence class of critical 
points to a single member that must be explicitly 
considered. This line of reasoning was used in our 
cataloguing of the critical point for the rhombic 
planform analysis in the previous section as well. 
Thus, critical point I is stable in this sense for v < 0 
while the stability behavior of II and III± , which 
depends upon the signs of a0 and 2a2 – a1 as well, 
has been summarized in Table 1 under the further 
assumption that a1 + a2 > 0.

We next offer a morphological interpretation 
of the potentially stable critical points described 
above relative to the Turing patterns under inves-
tigation. To the lowest order, the solution of the 
model associated with these critical points is given 
by the deviation function

( )cos cos coss A x B x y2
2
1

2
3

2
0

2
0+ + b cl m (3.37)

Since ( )A2
0 +  >  0 for a0  ≤  0 and ( )A2

0 -  >  0 for
a0 ≥ 0, we can conclude that the contour plots of 

Table 1. Orbital stability behavior of critical points 
II and III±

a0 2a2 – a1 Stable Structures

+ –, 0 III– for v > v–1
+ + III– for v–1 < v < v2, II for v > v1
0 – III± for v > 0
0 + II for v > 0
– + III+ for v–1 < v < v2, II for v > v1
– –, 0 III+ for v > v–1
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(3.37) would have circular elevations at the centers 
of the hexagonal for critical point III+ when stable, 
and circular depression for III–. These contour plots 
are shown in Figure 4 and Figure 5 for III+ and 
III–, respectively. As in analogous plots relevant to 
our rhombic planform analysis, elevations appear 
light and depressions dark in these fi gures. Hence, 
recalling that the Turing patterns under consid-
eration are classifi ed by their light regions, we 
identify hexagonal arrays of nets or honeycombs 
with critical point III– and of spots or dots with 
critical point III+.

Discussion
Since the values of various kinetic constants are not 
yet known, we have chosen particular sets of para-
metric values for illustration purposes, following 
the example of Krishnan and Iglesias, (2003). For 
example, to plot the contours in Figure 5, we used 
the following dimensionless parameters: a1 = 0.5, 
a2 = 1.5, a3 = 0.6, a4 = 0.5, a5 = 0.00001, a6 = 0.01, 
b1 = 0.95, b2 = 3.0 and n = 1.13812. This dimen-
sionless diffusion coeffi cient n corresponds to the 
physical diffusion constant of  2.726 × 10–10 m2s–1, 
while the cAMP diffusion constant was estimated 
to be 2.5 × 10–10 m2s–1 by Rapple et al.(2002). 
Our choice of the parametric values took into 

account several physical features. The activation 
and deactivation of the inhibitor are more or less of 
the same order of magnitude. The production rate 
of cAMP in the absence of the activated regulator 
in very low so that a6 << 1. The amplifi cation of 
the signal by the second messenger is comparable 
with the removal rate of the signaling hormone 
from the system.

Comparing the planforms in Figures 4 (quantum 
dots) and Figure 5 (honeycombs), we observe that 
quantum dots are expected to occur in the signaling 
system in which the maximum absorbtion b1 is not 
so high. On the other hand, the honeycombs pattern 
is expected when the maximum rate of disap-
pearance through the membrane of the signaling 
hormone is relatively high. The values used here 
are of a comparable order of magnitude as those 
of the corresponding parameters in the work of 
Krishnan and Iglesias, (2003). Stripes and rhombic 
patterns, however result when the rate of diffusion 
over the membrane surface n and disappearance 
through the membrane are noticeably lower.

It has only recently been appreciated that G 
protein coupled receptors (GPCR) and their asso-
ciated signaling components are not randomly 
dispersed throughout the plasmalemma. According 
to Ostrom et al.(2002), expression of bARs

Figure 4. Contour plot of s for the critical point III+ in (3.35) with a1 = 0.1, a2 = 1.5, a3 = 0.6, a4 = 0.9, a5 = 0.001, a6 = 0.0001, b1 = 0.5, 
b2 =2, n = 0.841495.
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(b-Aderenergic receptors) and AC in   several 
cultured cell models and cardiac muscle cells is 
enriched in distinct microdomains of the plasma 
membrane. In these microdomains, one can 
observe retention of proteins that have particular 
post-translational modifi cations (Shaul et al. 1996). 
Moreover, caveolin in caveolae contains a binding 
domain that interacts with certain signaling mole-
cules and thereby facilitate localization of signaling 
molecules in caveolae (Ostrom et al. 2002). Such 
compartmentation of signaling molecules contra-
dicts the belief that components of GPCR signal 
transduction are randomly distributed and have 
extensive mobility in the plasma membrane. On 
the contrary, these proteins appear to be restricted 
to plasmalemmal microdomains, probably conduc-
tive to rapid and specific signal transduction 
(Anderson, 1998; Okamoto et al. 1998; Ostrom
et al. 2000; Ostrom et al. 2002).

In their recent study, Ostrom et al. (2002) tested 
the hypothesis that expression and localization 
of GPCRs and isoforms of AC might be critical 
determinants of how vascular smooth muscle cells 
respond to extracellular signals. They observed that 
localization of AC and the components that infl u-
ence AC activity might help “tailor” the ability of 
cells to respond to extracellular and intracellular 

signals by defi ning a precise environment in which 
the second messenger (cAMP) will be generated. 
In addition, the spatial organization of signaling 
molecules was found to be a likely important 
factor in vascular smooth muscle cell regulation, 
in particular with respect to regulation of cAMP 
formation which leads to decreased contractile 
tone, decreased vascular resistance and decreased 
blood pressure (Ostrom et al. 2002).

Because primary cells in culture can rapidly lose 
their differentiated phenotype, Ostrom et al.(2002) 
examined RASMC (rat aortic smooth muscle cells) 
morphology using transmission electron micros-
copy. Ultrastructural examination of passage 5 
RASMC indicated that these cells possess both 
morphologic caveolae (light vesicular structures) 
enriched with b-aderenergic receptors, facilitating 
localization of signaling molecules, which might be 
identifi ed with stable III+ pattern (hexagonal arrays 
of dots), and morphologic features consistent with 
contractile phenotype (or fi laments) which may 
facilitate formation of stable pattern of type II 
(stripes) identifi ed theoretically in the text.

Another recent report by Kriebel et al.(2003) 
investigated the role of AC localization in regu-
lating the streaming formation in chemotaxis. In 
their work, the authors presented experimental 

Figure 5. Contour plot of s for the critical point III– in (3.35) with a1 = 0.5, a2 = 1.5, a3 = 0.6, a4 = 0.5, a5 = 0.00001, a6 = 0.01, b1 = 0.95, 
b2 = 3, n = 1.13812.
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results concerning the morphological polariza-
tion of Dictyostilium cells with a cAMP gradient, 
and showed that local accumulation of AC at the 
uropod of a cell is required for stream formation. 
They proposed that the asymmetric distribution of 
AC provides a compartment from which cAMP 
may act to amplify the chemical gradient. Thus, 
this could represent a unique mechanism that cells 
use to amplify chemotactic responses.

To date, little has been published in terms of 
pictured spatial distribution of membrane receptors. 
Using radioactivity-labelled drugs and so-called 
affi nity labels, Peter Gaudeng Waser (1983) has 
been able to produce binding with high strength 
or irreversible binding on specifi c receptors which 
permitted their isolation and characterization. His 
electronmicrograph with high resolution shows 
Acetylcholine receptors in membrane fragments 
(Waser, 1983) which exhibit hexagonal structure 
of localization. Other images that show striped or 
rhombic structures may be found in the work of 
Unwin et al. (1988) and on http:\\gingi.uchicago.
edu/archr.html. Since signaling molecules are 
expected to colocalize with their receptors, such 
pictured receptor complex shown in Waser’s report 
(1983) provides experimental evidence, to a certain 
extent, in support of our theoretical predictions that 
the system of interest may operate, under certain 
circumstances, in such weakly nonlinear regimes.

Conclusion
In this paper, we have concentrated on the signal 
transduction pathways that involve membrane-
based receptors which couple to adenylate 
cyclase. G proteins play a key role in these path-
ways by activating adenylate cyclase to produce 
cAMP which functions as a second messenger. 
Examples of hormones that act via the utilization 
of a cAMP system are ACTH, GnRH, PTH, and 
Vasopressin,which are signifi cantly implicated in 
carcinogenesis.

For some time, various stages of cancers have 
been classified by means of measurement of 
receptor levels and their hormone dependence from 
biopsy specimens. Unfortunately, the indications 
of measurements of steroid receptor levels are 
not always absolute and it appears that the ability 
of receptors to bind steroid does not ensure the 
complete functioning of the receptors on the cell. 
Clearly, more research into this area of steroid 
receptors dysfunction is needed to sharpen prog-
nostic ability. The continued identifi cation of the 

presence of receptors and their hormone depen-
dence as correlated to their specifi c functions will 
greatly enhance prognosis and treatment of such 
disease.

The result of our mathematical modelling 
underlines the need for more detailed and precise 
microscopic study on the spatial distribution of the 
protein-receptor complexes and the plasmalemma 
morphology, in the hope of shed more light on the 
precise manner in which spatial organization of 
multiple component signal transduction cascades 
may provide a means to generate signals with high 
fi delity and effi ciency. How the different spatial 
patterns or gradients described in this paper are 
related to specifi c cellular function or dysfunction 
also remains to be investigated and characterized. 
More specialized experimental studies are required 
to provide microscopic data to test hypotheses and 
establish linkages among the different dynamic 
activities in the signal transduction cascades. Our 
model provides a useful context in which to explore 
the relevance of Turing-type pattern formation to 
signaling pathways.
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Appendix

Rhombic Planform
Although there are 10 third-order systems, we need 
only consider explicitly two specifi c ones to obtain 
the Landau constants a1 and b1, namely
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Considering the adjoint linear eigenvalue problem 
of (7.1)-(7.2) of the form
  M v v* * *T v=u u  
where v* = 2v0 is an eigenvalue of M and MT, we 
obtain ( )v *

f
g
2

1=u .  By taking inner products of (7.1) 
and (7.2) with v *u , we fi nd, upon making use of the 
adjoint property
  Mv v v M v v v* * * *T$ $ $v= =u u u u u u  
that
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Then, taking the limit as v0 → 0, we obtain a1 
and b1 as given in (3.11) and (3.12).

Hexagonal Planform
Although there are 15 third-order systems, it is 
necessary for us to consider explicitly only the two 
specifi c ones for this planform in order to derive the 
other two Landau constants a1, a2 given below:
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Cosidering the adjoint linear eigenvalue problem 
of (7.3)-(7.4) of the form

  M v v* * *T
2 2 2 2v=u u  

where *
2v = 2v0is an eigenvalue of M2 and M T

2 ,we 
obtain ( )v *

f
g

2 2

1=u . By taking inner products of (7.3) 
and (7.4) with v *

2u ,we fi nd, upon making use of the 
adjoint property, that
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Then, taking the limit as v0 → 0 we obtain a1 and 
a2 as given in (3.31) and (3.32).
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