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Abstract: Myotonia congenita (MC) is a rare disorder characterized by stiffness and weakness of the
limb and trunk muscles. Mutations in the SCN4A gene encoding the alpha-subunit of the voltage-gated
sodium channel Nav1.4 have been reported to be responsible for sodium channel myotonia (SCM).
The Nav1.4 channel is expressed in skeletal muscles, and its related channelopathies affect skeletal
muscle excitability, which can manifest as SCM, paramyotonia and periodic paralysis. In this study,
the missense mutation p.V445M was identified in two individual families with MC. To determine
the functional consequences of having a mutated Nav1.4 channel, whole-cell patch-clamp recording
of transfected Chinese hamster ovary cells was performed. Evaluation of the transient Na+ current
found that a hyperpolarizing shift occurs at both the activation and inactivation curves with an
increase of the window currents in the mutant channels. The Nav1.4 channel’s co-expression with
the Navβ4 peptide can generate resurgent Na+ currents at repolarization following a depolarization.
The magnitude of the resurgent currents is higher in the mutant than in the wild-type (WT) channel.
Although the decay kinetics are comparable between the mutant and WT channels, the time to the
peak of resurgent Na+ currents in the mutant channel is significantly protracted compared with that
in the WT channel. These findings suggest that the p.V445M mutation in the Nav1.4 channel results in
an increase of both sustained and resurgent Na+ currents, which may contribute to hyperexcitability
with repetitive firing and is likely to facilitate recurrent myotonia in SCM patients.
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1. Introduction

The human SCN4A gene encodes the alpha-subunit of the voltage-gated sodium channel Nav1.4,
which is the pore-forming subunit. The Nav1.4 channel is expressed in skeletal muscles, and its
related channelopathies affect skeletal muscle excitability [1–3]. There are two prevalent clinical
symptoms: (1) muscle stiffness with hypertonia (myotonia) episodes (non-dystrophic myotonia,
NDM); and (2) muscle weakness leading to recurrent paralysis episodes (periodic paralysis, PP).
According to clinical and electromyographical (EMG) features, there are at least two disease entities for
NDM: sodium channel myotonia (SCM) and paramyotonia congenita (PMC). The clinical features of
dominant SCM are not significantly cold-sensitive and do not significantly decrease the compound
motor action potential in an EMG test. SCM can manifest as paramyotonia, potassium-aggravated
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myotonia, myotonia permanens, acetazolamide-responsive myotonia, painful myotonia and severe
neonatal episodic laryngospasm [4]. Patients with SCM may sometimes present with exercise-induced,
delayed-onset myotonia or acetazolamide-responsive myotonia [5]. An EMG examination will show
a progressive decrease of compound motor action potential in a post-repetitive short effort test.
Furthermore, PP caused by Nav1.4 channelopathy can be divided into hypokalemic PP (hypoPP)
and hyperkalemic PP (hyperPP), which are associated with the blood potassium level. Generally,
overlap, borderline or mixed clinical features between NDM and PP can be identified in patients with
a Nav1.4 mutation [6–9]. The age of onset is from early to late childhood. The prevalence of Nav1.4
channelopathies involving skeletal muscle has been estimated to be 0.4~1.4 : 100,000 [5]. As of today,
more than seventy mutations in the SCN4A gene have been identified as pathogenic, and twelve are
likely pathogenic [10]. Most SCN4A mutations are transmitted dominantly. The penetrance of the
mutations among pedigrees is variable. Thus, the variable genotypes and phenotypes render it difficult
to identify a correlation among Nav1.4 channelopathies.

Changes of the electrophysiological features with a Nav1.4 mutation in functional expression
models have been investigated for two decades. The repertoire of biophysical defects of mutant
channel behavior that predisposes the affected muscle affect both activation and inactivation gating
mechanisms [10]. Basically, a Nav1.4 gain of function mutation results in myotonia, hyperPP and
hypoPP; however, some defects predispose to myotonia, while others increase susceptibility to PP.
Previous studies on Nav1.4 mutations in SCM patients have demonstrated that the kinetics of channel
inactivation are altered with a slower rate of onset and, sometimes, with faster recovery as well [11,12].
Nevertheless, the most characteristic phenotype, myotonia, as shown in EMG, demonstrates repetitive
firing of action potentials. Considering the repetitive discharge, clinical phenotypes such as ataxia in
Scn8a-deficient mice, and recurrent attacks of erythromelalgia in patients with an SCN9A mutation have
been proposed to be ascribed to resurgent Na+ currents elicited during the repolarization stage [13,14].
The genesis of resurgent current occurred at repolarization stage with reopening of the voltage-gated
sodium channel. It has been proposed that there is competition between the Navβ4 peptides and the
inactivating molecules to block the reopened channel [14–17]. Nevertheless, how the mutations in
voltage-gated sodium channel facilitate the occurrence of resurgent current remains elusive.

As of today, the resurgent Na+ currents found in the Nav1.4 channel and the impact of a Nav1.4
mutation on SCM have yet to be characterized, aside from a single study on PMC in dorsal root ganglion
(DRG) neurons [18]. Studying a known mutation in the Nav1.4 channel in two individual families with
SCM, our research aims to determine the changes of the resurgent Na+ current caused by the mutation
in the Nav1.4 channel and correlate the phenotype with its aberrant electrophysiological features.

2. Results

2.1. Genetic Findings from Two Families with Myotonia Congenita (MC)

Two probands from two individual Taiwanese–Chinese families were selected. They had
developed stiffness with difficulty relaxing their limb and truncal muscles. No periodic weakness
occurred, and their muscle bulk was conspicuously large as compared with the age-matched controls.
According to the family pedigree (Family I, upper panel of Figure 1A), the index case developed NDM,
his sister had mental subnormality, and one of his cousins had a history of epilepsy. The nuclear
family (Family II, lower panel of Figure 1A) with two affected brothers developed similar features
of NDM. The candidate gene screening for a CLCN1 mutation did not find any sequence variant;
however, further sequencing of SCN4A gene identified a missense variant, c.1333G>A, that results
in the p.V445M change in both index cases. The DNA from the parents of the proband in Family I
was not available. Although the parents of Family II were dead, both the index case and his brother
harbored the mutation. The amino acid Val445 was found to be not only conserved across the species
in evolution but also across the alpha-subunits of the human voltage-gated sodium channel protein
family (Figure 1B). Topologically, the p.V445M mutation is located at the sixth transmembrane α–helix
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of the first domain (DI/S6, Figure 1C). The mutation has been reported to be pathogenic in previous
studies [19,20].

Figure 1. Sequence chromatography of the mutation and multiple sequence alignments for Nav1.4
channels. (A) The pedigrees from two individual families (Family I and II) with the index cases are
shown in the upper and lower panels, respectively. Both index cases suffered from muscle myotonia
with muscle hypertrophy. In Family I, the sister of the index case suffered from mental subnormality
and one of her relative had seizure history. Both the index case and his brother from Family II suffered
from myotonic myopathy. The sequence chromatography (left side of lower panel) shows a variant,
c.G1333A at exon 9 of the SCN4A gene, which causes a p.V445M mutation. Both probands have the
sequence variant. The variant is not found in the relatives of the index case of Family I. In Family II,
both the proband and his brother share the same sequence variant. (B) The amino acid V445 is highly
conserved among species during evolution and in the protein family of voltage-gated sodium channels.
(C) The topology of the Nav1.4 channel shows that the mutation is located at the sixth transmembrane
segment of Domain I (DI/S6).

2.2. A Smaller Sustained Na+ Current in the WT Channel than in the p.V445M Mutant Channel

We compared the electrophysiological characteristics of the basic gating control of the WT and
p.V445M mutant Nav1.4 channels. Figure 2A shows the sweeps after the depolarization via either an
escalating (from −140 to +40 mV, left panel of Figure 2A) or constant (+10 mV, right panel of Figure 2A)
depolarizing current. The activation and inactivation curves of the WT and p.V445M mutant channels
were fitted with the following Boltzmann function: 1 / [1 + exp((Vh − V) / k)], where V is the membrane
potential and k is the slope factor. From the equation, Vh and k were −25.79 ± 1.5 mV and 6.67 ± 0.43
for the activation curve and −63.99 ± 2.17 mV and −8.93 ± 0.33 for the fast steady-state inactivation
curve in the WT channel, respectively and −36.53 ± 1.4 mV and 6.61 ± 0.23 for the activation curve
and −73.81 ± 1.2 mV and −9.11 ± 0.21 for the inactivation curve in the p.V445M mutant channel,
respectively (n = 9; p < 0.05; Figure 2B). Both the activation and fast steady-state inactivation curves in
the p.V445M mutant channel were hyperpolarization-shifted compared with those in the WT channel.
The slopes of both gating curves of the Nav1.4 channels remained grossly unchanged (Figure 2B).
We further analyzed the window currents, which were defined by the area under the activation and
fast steady-state of the inactivation curves. The window currents obviously increased in the mutant
channel as compared with the WT channel (Figure 3A), although hyperpolarization shifting was
observed at both the activation and inactivation curves. Figure 3B shows the products of the activation
and inactivation curves, which indicate that the window currents or sustained Na+ currents were
significantly larger in the mutant channels than in the WT channels at different membrane potentials
(i.e., −20, −40, −60 and −80 mV). Moreover, the ratio between the sustained and peak currents in
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the p.V445M mutant channel was significantly larger than that of the WT channel (Figure 3C). The
increase of a sustained Na+ current associated with a large window current may partially account for
the phenotype of hyperexcitability. Theoretically, increased sustained Na+ currents could imply a
decreased inactivation rate and/or increase of a reverse rate. These findings suggest that the p.V445M
mutation plays a role as a gating modifier of the Nav1.4 channel. To investigate whether the kinetics
of fast-inactivation were changes by p.V445M mutant channel, we measure the time constants of
fast-inactivation (Figure 3D). The inactivation time constants were measured by fitting the decaying
phases of transient sodium currents (NaT) from 80% of maximal to the end with a mono-exponential
function. The inactivation rate of p.V445M was faster than that of WT channel at -35 mV but it was not
significantly different at more depolarized potentials.

Figure 2. Activation and inactivation curves of wild-type (WT) and p.V445M mutant channels in the
CHO-K1 cells. (A) Sample sweeps of the activation (left panel) and inactivation (right panel) curves of
the WT and p.V445M mutant channels with 0.1 mM Navβ4 peptide. For the current-voltage (I-V) plot,
each patch cell configuration was held at −120 mV, and step test pulses were from −140 to +40 mV for
100 ms in each 5 mV escalation and plotted against test pulse voltage where each with 5 potential step.
For the inactivation curve of Na+ currents, the maximal currents at +10 mV were documented after
100 ms prepulses at various voltages. (B) The activation and fast steady-state inactivation curves of the
WT and p.V445M mutant channels are fitted with a Boltzmann function according to the following
formula: 1 / [1 + exp((Vh − V) / k)], where V is the membrane potential, Vh and k are −25.79 ± 1.5 mV
and 6.67 ± 0.43 for the activation curve and −63.99 ± 2.17 mV and −8.93 ± 0.33 for the inactivation curve
in the WT Nav1.4 channel; −36.53 ± 1.4 mV and 6.61 ± 0.23 for the activation curve and −73.81 ± 1.2 mV
and −9.11 ± 0.21 for the inactivation curve in the p.V445M mutant channel, respectively (n = 9 for
each measurement).
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Figure 3. Larger window currents in the p.V445M mutant channel in the Chinese hamster ovary
(CHO-K1) cells (A) An enlarger view of Figure 2B between −100 and +5 mV. (B) The product of
G/Gmax and I/Imax at each voltage from Figure 1B is plotted against the different voltages in the WT
and p.V445M mutant channels (*, p < 0.05 compared to the WT). (C) The ratio between the sustained
(the average currents between 90 and 95 ms of the pulse) and peak (maximal) transient currents at
+40 to −40 mV (sample sweeps in Supplementary data Figure S2) is significantly smaller in the WT
channels in comparison with the p.V445M mutant channels (*, p<0.05 between the WT and p.V445M
mutant channel). (D) Fast-inactivation kinetics of WT and p.V445M mutant channels. The inactivation
time constants were obtained by fitting the decay phase of transient sodium currents (NaT) shown in
Figure 2A with a mono-exponential function. Data are expressed as means ± SEM.

2.3. The p.V445M Mutant Channel Increases Resurgent Na+ Currents

Resurgent Na+ currents can be observed in voltage-gated Na+ channels containing a Navβ4
peptide at the repolarization stage [21]. Figure 4 shows the resurgent Na+ currents elicited at the
repolarization (0 to −100 mV) following a prepulse depolarization at +40 mV in the p.V445M mutant
and WT Nav1.4 channels. The sweeps show that the magnitude of the resurgent Na+ currents in the
p.V445M mutant channel was larger (Figure 4B) compared with that of the WT channel (Figure 4A).
Upon evaluating the ratio between the resurgent and transient currents, the mutant channel had a
significantly high ratio at the repolarizing voltages, from −70 mV up to −10 mV (Figure 4C). These
results demonstrate that the p.V445M mutation located at Domain I/segment VI (DI/S6) may play a
role in the genesis of resurgent Na+ currents that is mediated by the inter-transformation between
inactive and open (activation) states of the channel (refer to Discussion). The changes in the gating
conformation caused by p.V445M mutant channels facilitate repetitive firing, which, in turn, can induce
a drastic increase in muscular stiffness and clinical symptoms of SCM. We also evaluated whether the
activation or inactivation curves can be modified by the peptide of Navβ4, which we added during the
genesis of resurgent current. Both activation and inactivation curves of the WT Nav1.4 channel are
evidently hyperpolarized shift on the membrane potential axis with the presence of 0.1 mM Navβ4
peptides in comparison those without the peptides (Supplementary data Figure S1). However, the
slope of the curves is unchanged. The window current remains unchanged either in the presence or
absence of Navβ4 peptide.
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Figure 4. Smaller resurgent Na+ currents in the WT channel than that in the p.V445M mutant channel
in the CHO-K1 cells (A) The protocol to generate resurgent Na+ currents is as follows: the patched
cells were held at −120 mV, and the resurgent Na+ currents of the WT channel were evoked by pulses
following a depolarization prepulse of +40 mV for ~10 ms in the presence the Navβ4 peptide (upper
panel). Sample sweeps for the WT channel show the occurrence of resurgent Na+ currents at ~4 ms
post repolarization in the presence of 100 µM Navβ4 peptide (lower panel). (B) Sample sweeps for the
p.V445M mutant channel in the presence 0.1-mM Navβ4 peptide following the same protocol as in part
A. (C) The ratio between resurgent and peak transient currents is significantly smaller in the WT than
in the p.V445M mutant channel between −70 and −10 mV. (*, p < 0.05).

2.4. Evidence of Two Open States for Transient and Resurgent Na+ Currents in the WT Nav1.4 Channel

We observed the changes of resurgent Na+ currents with a trend of escalating depolarization
prepulses between −60 and +180 mV. Depolarization via prepulses within 10 ms could produce a
similar activation curve of resurgent Na+ currents in both the WT and p.V445M mutant channels
(Figure 5A,B). The 10 ms of depolarization induced resurgent Na+ currents, indicating that an open
(activation) state of the Nav1.4 channel can be obtained. The activation curves of the transient Na+

currents and those of the resurgent Na+ currents of the WT and mutant channels were replotted. The
activation curve of the transient sodium current showed a hyperpolarizing shift in the mutant channel
(Figure 5C), which is in line with our previous study (Figure 2B). However, the activation curve of the
resurgent Na+ currents moved to a more depolarized membrane voltage range in the mutant channel
compared with the WT channel (Figure 5C). After fitting with Boltzmann functions, the activation
curves of the resurgent Na+ currents from the WT channel showed that the cumulative results were
+33.64 ± 1.7 mV for Vh and 30.45 ± 1.45 for k, while for the p.V445M mutant channel, the results were
54.04 ± 1.43 mV for Vh (n = 6; p < 0.05) and 33.84 ± 1.12 for k (n = 6; p < 0.05) (Figure 5C). In both the
WT and p.V445M mutant channels, the activation curve for the transient Na+ current was in a much
lower range of membrane potential than that of the resurgent Na+ currents (Figure 5C). The slope of
the activation curve of the resurgent Na+ current was much less steep. These findings suggest that
there may be two open states (O1 and O2) for the channel during activation (refer to Discussion).
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Figure 5. Activation curve of resurgent Na+ currents in the CHO-K1 cells (A) The protocol to generate
resurgent Na+ currents are as follows: the cell was held at −120 mV for ~30 ms, and then stepped
to various depolarization between −60 and +180 mV for 5 ms in 10 mV increments. Resurgent Na+

currents were then evoked by a pulse of −60 mV for 150 ms (upper panel). Sample sweeps were
obtained in the presence of 0.1 mM Navβ4 peptide for the WT channel (lower panel). (B) Sample sweeps
for the p.V445M mutant channel in the presence 0.1 mM Navβ4 peptide. (C) The activation curves
of transient and resurgent Na+ currents for the WT and p.V445M mutant channels are replotted for
comparison. The activation curve of resurgent Na+ currents of the WT channel (the block point fitting
line) for each cell are obtained by fittings with Boltzmann functions, and the cumulative results for Vh

are +33.64 ± 1.7 mV and k are 30.45 ± 1.45 for ~10 ms prepulses, respectively (n = 8). The resurgent
activation curve of the p.V445M mutant channel (the red-point-fitting line) for each cell are also obtained
by fitting Boltzmann functions and the cumulative results for Vh and k are +54.04 ± 1.43 mV (n = 6)
and 33.84 ± 1.12 (n = 6), respectively .

2.5. Changes of the Decay Rate and Time to Peak of Resurgent Na+ Currents in Mutant Channels

In addition to measuring the magnitude of the resurgent Na+ currents, we also examined the
kinetic changes in the resurgent Na+ currents induced by the p.V445M mutation. As shown in
Figure 6A, the decay kinetics of the resurgent Na+ currents were not significantly changed in the
p.V445M mutant channel within a wide range of depolarizing prepulses (from +40 to +180 mV).
However, the time to peak of the resurgent Na+ currents during repolarization was significantly longer
in the mutant channel than in the WT channel (Figure 6B). The changes of these parameters under
a series of repolarizing potentials from −70 up to −20 mV were also evaluated. Compared with the
WT channel, the time to peak was significantly slower in the mutant channel during repolarization
(Figure 7A). Moreover, the decay kinetics (1/tau) of the p.V445M mutant channel matched those
of the WT channel without an obvious change (1/tau(V) = 0.22 × exp(−0.64V/25) ms−1 for the WT
channel and 1/tau(V) = 0.18 × exp(−0.69V/25) ms−1 for the p.V445M mutant channel; Figure 7B). These
findings suggest that two different individual open (activation) states are responsible for the transient
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and resurgent Na+ currents. The decay rate from the open (activation) state of the resurgent Na+

currents in the p.V445M mutant channel was the same as that observed in the WT channel. However,
compared with those in the WT channel, the resurgent Na+ currents in the p.V445M mutant channel
were conspicuously slow, indicating that the mutation results in a protracted period of open state of the
Nav1.4 channel, either after strong depolarizing prepulses or under different repolarization potentials.

Figure 6. Accelerated decay of resurgent Na+ currents by hyperpolarization between the WT and
p.V445M mutant channels in the CHO-K1 cells (A) The inverses of decay time constants (1/tau) of the
resurgent Na+ currents are obtained at −60 mV after the depolarizing prepulses between +40 and
+180 mV in 20 mV increments for ~10 ms in the WT and p.V445M mutant channels (n = 8). (B) The
time to peak of resurgent Na+ currents in the WT channel is always faster than that in the p.V445M
mutant channel at the prepulse voltages tested (n = 8 *; p < 0.05).

Figure 7. Slower time to peak of the resurgent Na+ currents in the p.V445M mutant channel in the
CHO-K1 cells (A) The time to the resurgent current peak was measured with the same protocol in
Figure 4 (n = 6). The time to the resurgent Na+ current peak is significantly shortened in the WT
than in the p.V445M mutant channel between −20 and −70 mV (*; p < 0.05). (B) The reciprocal of
the time constants (1/tau) for the decay phase of resurgent Na+ currents was plotted against the
voltage in semi-logarithmic scales for the WT and p.V445M mutant channels (n = 8). The lines are
linear regression fits of the form: 1/tau(V) = 0.22 × exp(−0.64V/25) ms−1 for the WT channel and
0.18 × exp(−0.69V/25) ms−1 for the p.V445M mutant channel, respectively.
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3. Discussion

In summary, we identified the missense mutation p.V445M of the SCN4A gene from two patients
with SCM who were recruited from two individual families. To determine the electrophysiological
function of this mutation, a transfected CHO-K1 cell model was employed for the whole-cell patch-clamp
recording. Evaluation of the transient Na+ current showed a hyperpolarizing shift in both the activation
and inactivation curves of the mutant channel as compared with the WT channel. The window and
sustained Na+ currents of the mutant channel were larger than those of the WT. Upon transfection of
both Nav1.4 and a Navβ4 peptide, resurgent Na+ currents could be obtained 3~5 ms after a prepulse of
depolarization. Compared with that of the WT channel, the magnitude of the resurgent Na+ currents
were conspicuously larger in the mutant channel. Moreover, the time to peak of the resurgent Na+

currents in the mutant channel was slower than that of the WT channel, although no difference was
found between them in the decay kinetics.

Myotonia results from an involuntary muscle contraction that persists for several seconds after
the cessation of voluntary effect [22]. The hyperexcitability of muscles with a burst of muscle action
potentials leads to an after-contraction that can last for several seconds. The spontaneous, painless
discharges show a waxing and waning pattern upon EMG study. A sustained burst of discharges
can be elicited by a brief voluntary contraction, and the firing frequency is usually 20~80 Hz, which
means the interval of the depolarizing potentials is between 12.5 and 50 ms [23]. The repetitive,
high-frequency discharges in myotonia suggest that resurgent Na+ currents may be a critical factor
involving the phenotype. Channels are usually refractory to be activated after inactivation until
the membrane potential has been sufficiently hyperpolarized. Nevertheless, channels can reopen,
allowing a surge of inward current during repolarization, i.e., resurgent Na+ currents. Raman and
Bean first described resurgent Na+ currents in cerebellar Purkinje neurons [16]. In the cerebellum,
the resurgent Na+ currents following relief of an ultra-fast open-channel block by an endogenous
blocking particle, probably the C-terminal portion of the Navβ4 subunit [24], may contribute to
high-frequency firing [16,25]. The Nav1.6 channel is the major carrier of resurgent Na+ currents in
cerebellar [26] and DRG [27] neurons. In the whole-cell configuration of transfected CHO-K1 cells
expressing the Nav1.7 channel, resurgent Na+ currents after a long depolarizing prepulse have also
been identified [13]. Resurgent Na+ currents from the mutant Nav1.7 channel may play an important
role in the episodic attacks of severe neuropathic pain found in both erythromelalgia and paroxysmal
extreme pain disorders [28]. Enhancement of resurgent Na+ currents has even been proposed to be
highly correlated with the severity of neuropathic pain [28]. In the present study, a hyperpolarizing
shift was found in both activation and inactivation curves between the mutant and WT channels.
Although the window currents increased in the mutant channel, the hyperexcitability with repetitive
recurrent discharges could not be fully explained by the changes in the transient Na+ current alone.
Here, we described the resurgent Na+ currents in the Nav1.4 channel. Compared with the WT channel,
the larger magnitude and slowing of the time to peak of the resurgent Na+ currents in the mutant
channel may be one of the crucial factors of the functional disturbances of SCM. It has been proposed
that impaired inactivation is a major determinant of resurgent Na+ currents in Nav1.7 channels [28].
Future research should investigate whether mediation of the inactivation process governs the functional
consequences resulting from a mutation in the Nav1.4 channel, although prolonged recovery of slow
inactivation has been observed in the p.V445M mutant channel [20].

In our study, resurgent currents of Nav1.4 channel are discernible only in the presence of the Navβ4
peptides (Figure S1). According to the prevailing model, this is ascribable to the competition between
the Navβ4 peptides and the inactivating peptide for the open channel pore [14–17]. However, quite
other biophysical characteristics, including (1) the concomitant increase of resurgent and sustained
currents with the p.V445M mutant channels (Figure 3A–C and Figure 4), (2) the very much different
activation curves for the transient and resurgent currents (Figure 5C) all strongly argue against that the
Navβ4 peptide competes with the inactivating molecule for the same single open state, (3) the slower
time to peak but unchanged decay kinetics of the resurgent currents with p.V445M mutant channels
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also contradicts that Navβ4 peptide competes with the inactivating molecule for the same single open
state to generate the resurgent currents. We therefore propose that there may be two distinct open
states (with two corresponding inactivated states) of the Nav1.4 channel (Figure 5), each responsible
for the transient (O1) and resurgent (O2) currents, respectively. Significant occupancy of O2 is possible
only in the presence of the Navβ4 peptides, which is thus chiefly a gating modifier inducing new
gating conformations rather than a pore blocker competing with the inactivating peptides.

The activation curves of the resurgent Na+ currents in both the WT and p.V445M mutant channels
markedly moved to a more positive voltage range, with a much less steep slope than those of the
transient currents (Figure 5C). We proposed that there may be two open states of the channel and
that the gating modification illustrates the electrophysiological changes of the genesis of resurgent
Na+ currents [13]. This study showed that either after a depolarizing prepulse (Figure 6B) or under
a variable extent of repolarization (Figure 7A), the time to peak of the resurgent Na+ currents in the
mutant channel was extended significantly compared with that in the WT channel; however, the decay
kinetics (1/tau) remained similar between the channels. The p.V445M mutation significantly accelerated
the entry and protracted the duration of the new open (activation) state, leading to an increase in the
magnitude of the resurgent Na+ currents. The reopening of the fast inactivated channels was probably
accompanied by conformational changes of the domain I/S6 (DI/S6), where V445M is located.

The computer homology model of the WT Nav1.4 channel evaluated the topological structure
change caused by the p.V445M mutation (Figure 8A,B). The model estimated that the change of Val445
to Met may increase the distance between V445 and the residues at the S4–S5 linker (DI/S4-5 linker)
(e.g., L248, L249 and S251; Figure 8). While the S4–S5 linker plays an imperative role in governing the
activation/inactivation of resurgent Na+ currents [13], such a distance change could contribute to the
attenuation of inactivation and uncoupling between activation and inactivation. In the previous study,
genesis of resurgent Na+ currents in the Nav1.7 channel was found to be possibly due to the existence
of two open states in activation [13]. Through modulating the transitional kinetics between these
two states, the S4–S5 linker in Domain III seems to play an important role in activation–inactivation
coupling. Mutations involving the linker and relevant nearby regions may, therefore, enhance the
sustained and resurgent Na+ currents, leading to marked hyperexcitability and repetitive firing in
the corresponding tissues. Herein, we postulated that the change of distance between V445 and the
residues of the S4–S5 linker may be one of the critical factors for the coupling effect. Aberrations
in modulation of the coupling facilitate the generation of resurgent Na+ currents and increase both
the magnitude and time to peak, augmenting the repetitive firing. The mutation causes slowing of
the time to peak of the resurgent Na+ currents elicited in the Nav1.4 channel, which increases the
firing frequency of the muscle membrane. The action potential propagates to the T-tubule, which
induces the opening of the voltage-gated calcium channel from the sarcoplasmic reticulum. The
released calcium ion binds to troponin C, which induces the cross bridge to contract. The resurgent
Na+ currents introduce repetitive high-frequency firing, facilitating the binding leading to muscle
stiffness. The essential tremors and chronic seizures found in the family members with a p.G1537S
mutation in the SCN4A gene [29] may also have been attributable to the disturbance of the resurgent
Na+ currents in the Nav1.4 channel.
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Figure 8. Homology modeling of the WT and mutant human Nav1.4 channels. (A) Side view of the
homology model shows the transmembrane helixes of the four domains. The four domains I, II, III
and IV are colored red, white, blue and green. The side chain of V445 in the S6 linker of Domain I
(DI) is indicated in the CPK model. (B) A closer view of the WT Nav1.4 channel from the external
side of the pore. (C) A diagram of Domain I of the homology model of the WT Nav1.4 and p.V445M
mutant channels is shown in the schematic presentation. The side chains of V445 in the S6 segment and
L248, L249 and S251 in the S4–5 linker of Domain I are shown with sticks of various colors. A closer
view of the area is shown in the panel, demonstrating inter-residue distances of ~8.3196, ~12.24 and
~6.348 Å between V445 and L248, V445M and L249 and V445 and S251, respectively, in the WT Nav1.4
channel, while the distances between p.V445M and L248, p.V445M and S249 and p.V445M and S251 are
~7.54, ~13.438 and ~10.551 Å, respectively, in the p.V445M mutant channel. (D) The relative distances
between the residue V445 and L248, L249 and S251 in the homology modeling is shown. Note the
conspicuously decreased distances in all cases in the WT channel compared with those in the p.V445M
mutant channel.

In addition to SCM, mutations in Nav1.4 are also responsible for PMC. Clinically, mutations
involving the Arg1448 of the SCN4A gene are frequently found in patients with PMC [30]. The
resurgent Na+ currents in the Nav1.4 channel were first described using rat DRG neurons transfected
with Nav1.4r-R1448P. Jarecki et al. reported that the resurgent Na+ currents could be obtained
and that the average relative amplitude was 4.8± 0.7% [18], much lower than our findings (~10%
in the WT and approximately 15–20% in mutant channels, Figure 4C). Furthermore, the Arg1448
locates at DIV/S4, which is the outermost extracellular charged residue in the sodium channel voltage
sensor that modulates the activation/inactivation coupling of the channel. The study showed that the
Nav1.4r-R1448P channels slow the inactivation and generate resurgent Na+ currents, suggesting that
the mutation slows the rate of open-channel fast inactivation and may be able to induce resurgent Na+

currents. In another study, large resurgent Na+ currents could be observed in nearly 62% of Nav1.8-null
DRG neurons using Biolistic transfected with Nav1.6r during the repolarization stage; however, no
resurgent Na+ currents were identified in neurons transfected with a TTX-R version of the rat skeletal
muscle sodium channel Nav1.4, although they generated a larger peak sodium current amplitude than
the Nav1.6 channels [27]. The discrepancy may have been due to the different expression systems and
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the modification of the channel to become TTX-resistant since resurgent Na+ currents are difficult to
obtain using DRG neurons or WT skeletal muscles [27]. In a recent report, a p.G1306E mutation of
SCN4A gene caused NDM and Brugada syndrome after treated with flecainide. The different isoforms
of Nav1.4 expressed in the skeletal and cardiac muscles may result in such a rare phenotype [31].

In conclusion, mutations in SCN4A are responsible for SCM. The hyperpolarizing shifting of
the activation and inactivation curves, which results in an increase of window and sustained Na+

currents, may contribute to the hyperexcitability of neural-muscle tissues. The Nav1.4 channel can
generate resurgent Na+ currents, which may further increase repetitive firing of the action potential in
skeletal muscle, one of the hallmarks of SCM in EMG. In addition to myotonia, patients with SCM
frequently experience episodes of muscle weakness. Overall, SCN4A mutations resulting in defects of
slow inactivation and delay of time to peak in resurgent Na+ currents are likely factors contributing to
constant myotonia and weakness in SCM patients.

4. Materials and Methods

4.1. Genetic Analysis of Two Families with Non-Dystrophic Myotonia (NDM)

Two probands with NDM from two individual Taiwanese–Chinese families visited the neurology
clinic of the National Taiwan University Hospital, Taipei, Taiwan. Leukocyte DNA from the probands
and their relatives was collected for genetic diagnosis. The genetic studies were approved by the
Institutional Review Board (NTUH-REC No.: 201802049RINB) and written inform consent was
obtained. Genetic analysis of two families with non-dystrophic myotonia (NDM). All methods and
procedures were performed in accordance with the guideline and regulations.

4.2. Preparation for DNA Constructs

The cDNA of the wild-type (WT) human Nav1.4 channel (SCN4A) was purchased from OriGene
Technologies Company (Cat. No. RC218290; Rockville, MD, USA). For mutagenesis, p.V445M
mutant channel cDNA was created using the QuikChange Site-Directed Mutagenesis System Kit
(Stratagene, La Jolla, CA, USA), and a c.1333G>A sequence variant was introduced. The cDNA
sequence was confirmed by automatic DNA sequencing (3730xl DNA Analyzer; Applied Biosystems,
Foster, CA, USA).

4.3. CHO-K1 Cell Cultures for WT and p.V445M Mutant cDNA Transfection

The Chinese hamster ovary (CHO-K1) cells used were approved by the Food Industry Research
and Development Institute, Hsinchu, Taiwan. The cells were maintained in F12-K medium (Thermo
Fisher Scientific, Waltham, MA, USA) under humidified conditions with 5% CO2|95% O2 at 37 ◦C.
The medium was supplemented with 10% fetal bovine serum (Thermo Fisher Scientific) and 0.5%
penicillin-streptomycin antibiotics (Thermo Fisher Scientific). A total of 1 × 106 CHO-K1 cells were
seeded into a 35-mm culture dish (Greenpia Technology, Seoul, Korea). Briefly, Lipofectamine™ 3000
(Thermo Fisher Scientific, USA) DNA mix with 5.0 µg WT or p.V445M SCN4A cDNA construct and
0.1 µg green fluorescent protein was added to CHO-K1 cells in the F12-K medium at 37 ◦C with
5% CO2|95% O2 for one to two days. For the whole-cell patch-clamp recording, 0.1 mg/mL trypsin
(Sigma-Aldrich, St. Louis, MO, USA) was added to the transfected cDNA CHO-K1 cells and let the
cells to be dissociated in F12–K medium with 10% FBS. Then, the cells were plated on coverslips under
37 ◦C for ~60 min. Usually the patch-clamp recordings were carried out within 2–3 days following
cDNA transfection, and the isolated single cells for electrophysiology recording were used within ~4 h
of preparation.
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4.4. Whole-cell Patch-Clamp Recordings of CHO-K1 Cells Expressing WT and p.V445M Mutant
SCN4A Constructs

Whole-cell patch-clamp recordings of CHO-K1 cells expressing WT and p.V445M mutant SCN4A
cDNA constructs were performed two to three days after the transfection. The recordings were carried
out using an Axopatch 700B amplifier (Axon Instruments, Sunnyvale, CA, USA) and the pClamp 9.2
acquisition software package (Molecular Devices, San Jose, CA, USA). The currents were digitized with
the Digidata-1322A interface (Axon Instruments, USA). A glass electrode pipette was fabricated with a
tip of approximate diameter 1.0 µm and fired to a resistance of 1.0–2.0 mΩ using the Sutter P-97 puller
(Sutter Instrument Company, USA). The glass electrode pipette was filled with an internal solution
containing 75 mM CsCl, 75 mM CsF, 5 mM HEPES, 2 mM CaCl2 and 2.5 mM EGTA (pH = 7.4 – 7.6).
The whole-cell configuration was immersed in an external solution of 145 mM NaCl, 10 mM HEPES,
2 mM CaCl2 and 2.5 mM MgCl2 (pH = 7.4 – 7.6). Then, the whole-cell configuration was moved in front
of square glass barrel micropipes (Drummond Scientific, Broomall, PA, USA) emitting the extracellular
solutions. A short intracellular Navβ4 peptide (KKLITFILKKTREK−OH, 0.1 mM) was also added to
the internal solution to generate resurgent Na+ currents. One micromolar of tetrodotoxin (TTX) (Tocris,
Bristol, UK) was used to block TTX-sensitive (TTX-s) Na+ channels. By subtracting the TTX-s currents,
the resurgent Na+ currents could be obtained. To estimate the conductance, the data were fitted into
the following Boltzmann sigmoid equation: Y = 1/1 + exp[(Vh − X)/k], where Y is the conductance, X is
the membrane potential, Vh is the membrane potential with half of the conductance, and k is the slope
of the curve.

4.5. Homology Modeling

The homology modeling procedure was performed using methods similar to those used in our
previous study [13,21]. A homology model of the WT Nav1.4 channel encoded by the SCN4A gene
was built from X-ray crystal structure data of the human voltage-gated Nav1.4 channel (human Nav1.4;
PDB code: 6AGF). The amino acid sequence of the WT Nav1.4 channel was obtained from the UniProt
database (P35499). Sequences of the three inter-domain linkers of the WT Nav1.4 channel (DI–DII
linker, A447-P578; DII–DIII linker, L798–W1032; and DIII–DIV linker, G1292-A1354) were inserted into
positions between the domains (DI–DIV) via homology modeling based on the WT human Nav1.4
channel. The aligned sequences were then processed using Discovery Studio 2018 (Dassault Systèmes,
Vélizy–Villacoublay, France) to assign the relative positions and generate the secondary structure of
the WT human Nav1.4 channel [13,21].

4.6. Data Analysis

All statistical data were described as mean ± standard error mean. Statistical significance was
assessed and analyzed using the Student’s independent t-test and accepted at p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/7/2593/s1.
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