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Application of Machine-Learning 
Models to Predict Tacrolimus Stable 
Dose in Renal Transplant Recipients
Jie Tang1,2,*, Rong Liu1,2,*, Yue-Li Zhang1,2, Mou-Ze Liu1,2, Yong-Fang Hu3, Ming-Jie Shao4,  
Li-Jun Zhu4, Hua-Wen Xin5, Gui-Wen Feng6, Wen-Jun Shang6, Xiang-Guang Meng7,  
Li-Rong Zhang7, Ying-Zi Ming4 & Wei Zhang1,2

Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to 
compare the performance of multiple linear regression (MLR) and eight machine learning techniques in 
pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. 
A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the 
“derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the 
“validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression 
tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support 
vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive 
regression trees (BART) were applied and their performances were compared in this work. Among all 
the machine learning models, RT performed best in both derivation [0.71 (0.67–0.76)] and validation 
cohorts [0.73 (0.63–0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our 
knowledge, this is the first study to use machine learning models to predict TSD, which will further 
facilitate personalized medicine in tacrolimus administration in the future.

Tacrolimus is one of the most widely used immunosuppressive agents to prevent acute rejection following solid 
organ transplantation. More than 70% of renal transplant patients received this effective agent in 20041. However, 
the use of tacrolimus has to be cautious due to its narrow therapeutic index and remarkable variability of inter- 
and intra-individual bioavailabilities2. Insufficient dosing of tacrolimus is associated with an increased risk for 
acute rejection3, while overexposure with higher rate of drug-related toxicities, such as nephrotoxicity, neurotox-
icity, and new-onset diabetes4,5. Daily monitoring and maintaining target concentration is important to decrease 
allograft rejection and toxicity6. Therefore, there is an increasing need to develop improved strategies for deter-
mining the appropriate dose in clinic.

Many factors affecting the pharmacokinetics of tacrolimus have been identified, including clinical factors 
such as ethnicity, age, gender, concomitant medication, hepatic and renal dysfunction, and genetic factors such as 
CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms (SNPs)7,8. Among these factors, CYP3A5 geno-
type is associated with a remarkable impact on the tacrolimus pharmacokinetics, while the effects of other genetic 
polymorphisms are rather limited or conflicting9–11. A number of algorithms containing clinical and/or pharma-
cogenomic factors have been constructed to predict tacrolimus dose; meanwhile, retrospective and prospective 
trials have been conducted to verify these algorithms9,12–19. Thervet et al. demonstrated that CYP3A5 genotype 
guided tacrolimus dosing enabled more renal recipients to achieve target tacrolimus trough (C0) levels after three 
days of tacrolimus treatment. In addition, these patients took less time to reach their target concentration with 
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fewer dose modifications12. A more recent trial indicated that CYP3A4 activity and CYP3A5 genotype can explain 
56–59% variability in tacrolimus dose and clearance9. These successes in clinic revealed the possibility to improve 
clinical outcomes of tacrolimus therapy by taking pharmacogenomic factors into account.

However, most of the algorithms for predicting tacrolimus dose were based on relatively small clinical pop-
ulation, and the predictive accuracy was usually uncertain. Moreover, proposed algorithms are mostly based on 
multiple linear regression (MLR) methods, which have some well-known limitations that may impair prediction 
accuracy. For example, MLR model assumes independence between variants, and the relationship between the 
dependent and independent variables is always complex and non-linear20. Therefore, MLR may not be the most 
applicable model for accurate prediction of drug outcomes.

Machine learning techniques, compared with traditional statistical models, have many advantages including 
high power and accuracy, ability to model non-linear effects, interpretation of large genomic data sets, robust-
ness to parameter assumptions and dispense with normal distribution test21. Recently it has been widely used 
in predicting warfarin dose22. For example, Random Forest Regression (RFR), Boosted Regression Tree (BRT) 
and Support Vector Regression (SVR) models were utilized to predict warfarin maintenance dose in African 
Americans, with much higher accuracies than previous models21. Artificial neural networks (ANNs) algorithm 
reached high accuracy in predicting warfarin maintenance dose, more than 70% of patients in the low (≤​21 mg/) 
and median dose (21–49 mg) subgroups have been correctly identified23. In our previous work, eight machine 
learning algorithms were compared with MLR in predicting warfarin dosing, results showing Bayesian additive 
regression trees (BART), multivariate adaptive regression splines (MARS) and SVR significantly outperformed 
other models; machine learning methods also performed better than MLR in the low- and high- dose ranges20.

To our knowledge, the development and application of machine learning algorithms to predict tacrolimus 
dose has not been reported. We therefore conducted this research to investigate the clinical and genetic factors 
significantly associated with tacrolimus stable dose as well as to identify the most feasible algorithm for prediction 
of the dose requirement of Chinese renal transplantation recipients.

Results
Basic Characteristics of the Study Cohorts.  In total, 1,045 renal transplant recipients were enrolled in the 
trial, whose basic characteristics are shown in Table 1. Continuous variables are shown as mean ±​ standard devia-
tion, and categorical variables are shown as number (%). No significant difference was found in the demographic, 
clinical and genetic data between the derivation cohort (n =​ 838) and the validation cohort (n =​ 207). All the 
tested SNPs were in Hardy–Weinberg equilibrium except ABCB1129TC and ABCB12677GTA, and the genotype 
frequencies were in accordance with previously reported data of Chinese population (Supplementary Table S1).

In the derivation cohort, the mean TSD among these patients was 3.48 ±​ 1.28 mg/day. Patients had an average 
age of 36.19 ±​ 10.62 years old, and 71.2% were males. The most common complication was hypertension with 561 
patients (66.9%), while 19 patients were diagnosed diabetes (2.3%). The most common combined medication was 
calcium channel blocker (544 patients, 64.9%), in addition, 377 patients were given metoprolol (45.0%), and 246 
were given omeprazole (29.4%). Among all these patients, 50.6% were carriers of CYP3A5*3 GG genotype, 9.2% 
were carriers of AA genotype, and 16 unknown (1.9%). The detected results of other genotypes are illustrated in 
Supplementary Table S1.

Patients in the validating cohort exhibited similar results in the TSD (3.50 ±​ 1.32 mg/day), age (35.82 ±​ 10.34) 
and sex (71.5% were males). Comparably, 134 (64.7%) patients had hypertension, and 127 (61.4%) patients were 
given calcium channel blocker. Genotyping data showed that 46.9% of patients were carriers of CYP3A5*3 GG 
genotype, 7.2% were AA genotype, with 8 (3.8%) unknown genotype (Table 1).

Identification of Clinical and Genetic Factors Significantly Associated with TSD.  In order to 
construct a predictive model that only contains important factors, we have first investigated the relationship 
between each factor and the STD of patients. Univariate analysis was used to test all the clinical and genetic fac-
tors, resulted in four factors that were significantly associated with TSD: whether has hypertension, whether has 
diabetes, whether taking omeprazole and CYP3A5 genotype. Among them, CYP3A56986AG is the most signifi-
cant influencing factor, with a P value of 2.2*10−16 in the F-test (Supplementary Table S2).

Tacrolimus stable dose was also compared among patients with different ABCB1 genotypes. The comparison 
was carried out for the three polymorphisms (1236 C/T, 2677 G/A/T and 3435 C/T) most studied in the literature. 
No statistically significant difference was found (data not shown).

Next, multivariable regression model was used to test the above four variates. It was shown that diabetes 
was not a significant factor in the model and thereafter excluded. The remaining three factors (hypertension, 
use of omeprazole and CYP3A5 genotype) were used to construct the MLR and 8 machine learning models. 
(Supplementary Table S3).

Overall Comparison of Predictive Algorithms.  In order to determine the overall predictive accuracy, 
approaches including MAE and ideal rate (predictive dose fell within 20% of the actual dose) were applied. 
Among all the machine learning models, RT performed best in both derivation [0.71 (0.67–0.76)] and validation 
cohorts [0.73 (0.63–0.82)] (not statistically significant) (Fig. 1). Although MLR had similar MAE with RT, the 
ideal rate of RT was 4% higher than that of MLR. On the other hand, the lowest MAE was also seen using RFR 
model. However, as RT is a simpler and more easily understood model that fits clinical use, it was chosen for this 
study. The developed RT model is shown as Fig. 2.

Clinical Relevance.  In general, RT algorithm provided more accurate prediction of TSD than other 8 algo-
rithms. The performance of the three dose ranges, low dose (≤​2.5 mg/day), intermediate dose (2.5–4 mg/day), 
and high dose (>​4 mg/day), were compared as shown in Tables 2 and 3. Patient doses in the intermediate range 
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were best predicted compared with the actual stable dose in both derivation and validation cohorts (MAE =​ 0.50 
and 0.48 mg/day, respectively) (Table 2). For patients who required 2.5 mg/day or less (24.4% of the total 693 
patients), 38.5% of the predicted dosage fell into ideal dose range (20% of the actual dose). While for the patients 
who required 4 mg/day or more (20.8% of the total patients), 44.4% of the prediction dropped into ideal dose.

Discussion
Compared with traditional dosing strategies in clinic, the current study was successful in providing a novel 
approach that can predict TSD more accurately and conveniently. In general, the performances of the 9 algo-
rithms were similar in predicting TSD. While the best performance was observed in RT model in this study, 
comprehensive evaluation of these algorithms in various studies is needed to come to a final conclusion. It should 
also be noted that the current study was performed in Chinese, studies in other ethnic groups may come to dif-
ferent results.

The most influential factor in this study was CYP3A5 genotype. The SNP 6986 A >​ G on the CYP3A5 gene 
results in absence of function protein. Carriers of homozygous 6986 G allele (designated as CYP3A5*3) have 
no CYP3A5 activity, which impair the whole-blood concentration of tacrolimus24 and subsequently the time 
required to reach target concentration3. None of the included ABCB1 SNPs were found any significant impact on 
the algorithm. In fact, previous researches checking the association between ABCB1 genotypes and tacrolimus 
dosage have come to conflicting results24–26.

Our results indicated that the intermediate dose range exhibited better accuracy (lower MAE and higher ideal 
rate) than that in the high- and low- dose ranges. Nevertheless, patients in this dose range are less likely to benefit 
from statistical models based on pharmacogenomics. In practice, patients who require extreme dose administra-
tions (or whom grouped in the high- and low- dose ranges) are more likely to face overdose or underdose and 
hence suffer from adverse clinical consequence22. Therefore, better prediction of extreme dose ranges are needed 
to present real help to those patients.

Whilst machine learning techniques demonstrated their capability in solving inferential problems by 
self-adjust their structure when encounter errors, as well as dealing with numerous variables simultaneously20, 
we should be noted that they are still far from omnipotent in clinical use. The relationship between dependent 
variables and independent variables are very complicated in all these statistical algorithms, and the existence of 

Variable
The Derivation 

Cohort (N = 838)
The Validating 

Cohort (N = 207)

Continuous variable mean (sd)

  Tacrolimus stable dose −​ mg/day 3.48 (1.28) 3.50 (1.32)

  Age (year) 36.19 (10.62) 35.82 (10.34)

  Height−​ cm 165.36 (7.84) 166.14 (7.53)

  Weight −​ kg 58.43 (11.01) 58.39 (9.81)

  Hemoglobin −​ g/dl 118.29 (26.63) 121.69 (26.06)

  Leukocyte 7.63 (2.66) 7.64 (2.87)

  Serum creatinine 422.07 (463.78) 429.15 (524.21)

  Total bilirubin 11.42 (6.68) 11.28 (4.41)

  Albumin −​ g/l 43.35 (5.47) 44.76 (4.68)

Categorical variable n. (%)

  Male 597 (71.2) 148 (71.5)

  Diabetes 19 (2.3) 3 (1.4)

  Hypertension 561 (66.9) 134 (64.7)

  Living donor 420 (50.1) 107 (51.7)

  Anemia 409 (48.8) 94 (45.4)

  Cardiac insufficiency 33 (3.9) 11 (5.3)

  Use of Calcium channel blocker 544 (64.9) 127 (61.4)

  Use of Metoprolol 377 (45.0) 84 (40.6)

  Use of Omeprazole 246 (29.4) 59 (28.5)

  Use of Furosemide 420 (50.1) 107 (51.7)

  ACEI/ARA* 185 (22.1) 43 (20.8)

  Cephalosporin 513 (61.2) 126 (60.9)

  Infected 190 (22.7) 44 (21.2)

CYP3A5 *3

  A/A 77 (9.2) 15 (7.2)

  A/G 321 (38.3) 87 (42.0)

  G/G 424 (50.6) 97 (46.9)

  Unknown 16 (1.9) 8 (3.8)

Table 1.   Basic characteristic of the patients. *ACEI/ARA: Angiotensin converting enzyme inhibition, 
Angiotensin II receptor antagonist.
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gene-gene and gene-environment interactions bring more challenge to the researchers27–29. Inclusion of larger 
number of genotypic variables in a predictive model may be helpful to obtain a better performance, but this may 
lead to addition of redundant data and may hinder its application in clinical practice21. The complicated situa-
tion of real patients should be well considered, as additional comorbidity and interacting drugs are always the 
case, which may not be completely included in the models30. Therefore, even the statistical models are utilized 
to increase the predictive accuracy of TSD, continuous monitoring of drug concentration is still needed at the 
moment.

There are some limitations in this study, no other potentially important factors were included, such as smok-
ing, alcohol consumption and other genetic factors; secondly, data regarding tacrolimus initial doses or adverse 
reactions were not gathered in the study, only data about stable therapeutic doses were considered; in addition, 
using of p-value threshold to select significant SNPs may be not enough to generate most complementary SNP 
set21.

Methods
Patients.  Stable tacrolimus-treated renal recipients at The Third Xiangya Hospital of Central South University 
and Peking University Health Science Center between Oct 2012 and Sep 2014 were considered for enrollment. 
All patients were Chinese with a minimum age of 18 years old. The clinical research admission was approved by 
Chinese Clinical Trial Registry (registration number: ChiCTR-RNC-12002894). The study protocol was approved 
by the Ethics Committee of Institute of Clinical Pharmacology, Central South University (CTXY-120030-2), all 
methods were performed in accordance with the relevant guidelines and regulations, and written informed con-
sent was obtained from all patients.

The demographic and clinical information of the subjects were obtained from their clinical records as well 
as clinical and telephone follow-ups. Information of combined diseases such as hypertension and diabetes and 
concomitant medications such as omeprazole, metoprolol and calcium channel blockers were collected. All the 

Figure 1.  Ideal rate and mean absolute error in train and test partitions for nine techniques averaged over 
100 round of resampling process results for different models fitted. Predicted dose within 20% of the actual 
dose in the train (A) and test (B) set of the derivation cohort. Mean absolute error between the predicted and 
actual dose in the train (C) and test (D) set. The vertical bars represent the 95% CIs of MAE. MLR: multiple 
linear regression; SVR: support vector regression; ANN: artificial neural network; RT: regression tree; RFR: 
random forest regression; BRT: boosted regression tree; MARS: multivariate adaptive regression splines; LAR: 
lasoo regression; BART: Bayesian additive regression trees.
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patients received tacrolimus, together with mycophenolate and glucocorticoid after transplantation. Tacrolimus 
was initiated at 0.05 mg/Kg every 12 h then dose adjusted to target trough concentration of 6–10 ng/ml for the 
first month, and then 6–8 ng/ml afterwards. Tacrolimus concentration was monitored daily during the hospital 
stay and in the follow-up visits. Doses were adjusted by 25% each time when it was out of the above target range. 
Tacrolimus stable dose (TSD) was defined as the total daily dose after 3 months of transplantation, and at least 
three consecutive blood concentrations were within target range and within 20% of each other19.

Figure 2.  Predicted tacrolimus doses according to the regression tree algorithm. N and dose represent the 
sample size and predicted tacrolimus dose, respectively.

Cohort

Mean Absolute Error (95% CI) mg/day

Derivation cohort Validation cohort

Overall 0.71 (0.66–0.75) 0.73 (0.63–0.84)

  ≤​2.5 mg/day 1.31 (1.20–1.42) 1.33 (1.13–1.53)

  >​2.5 mg/day to <​4 mg/day 0.50 (0.46–0.54) 0.48 (0.39–0.58)

  ≥​4 mg/day 1.07 (0.96–1.18) 1.14 (0.92–1.37)

Table 2.   Predicted tacrolimus stable doses with the regression tree algorithm compared with the actual 
stable dose in the derivation and validation cohorts.

Actual Dose Required N/o. of Patients (%) Ideal Dose* (%) Underestimation& Overestimation$ (%)

Validation cohort only 126 54.8 19.8 25.4

  ≤​2.5 mg/day 32 31.2 0 68.8

  >​2.5 mg/day to ≤​4 mg/day 69 72.5 14.5 13.0

  >​4 mg/day 25 36.0 60.0 4.0

Derivation-plus-validation cohort 693 57.3 19.2 23.4

  ≤​2.5 mg/day 169 38.5 0 61.5

  >​2.5 mg/day to ≤​4 mg/day 380 70.5 14.4 15.0

  >​4 mg/day 144 44.4 54.9 0.7

Table 3.   Percentage of patients in the validation cohort and in the derivation-plus-validation cohort with 
an ideal, underestimated, or overestimated dose of tacrolimus in renal transplant patients requiring low, 
intermediate, or high actual doses of tacrolimus. *The ideal dose was defined as a predicted dose that was 
within 20% of the actual stable therapeutic dose of tacrolimus. &We defined underestimation as a predicted dose 
that was at least 20% lower than the actual stable dose. $We defined overestimation as a predicted dose that was 
at least 20% higher than the actual stable dose.
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Genotyping.  MassARRAY (Sequenom Inc., CA, USA) was used for genotyping. Detected genes included 
CYP3A5 (coding for tacrolimus metabolizing enzymes) and ABCB1 (coding for the drug transporter 
p-glycoprotein). Polymorphisms in the CYP3A5 (6986 A/G) and ABCB1 (3435 C/T, 129 T/C, 1236 C/T and 
2677 G/T/A) were genotyped. The genotyping was verified by repeating 20 random samples by MassARRAY and 
direct sequencing of 10 random samples with Beckman Coulter CEQ800.

Model Building and Statistical Analyses.  The overall modeling process is illustrated as Fig. 3. Generally, 
80% (838 patients) of the eligible patients were randomly selected as the “derivation cohort” to develop 
dose-prediction algorithm. The remaining 20% of the patients (207 patients) constituted the “validation cohort”, 
which was used to test the final selected algorithm. Meanwhile, to obtain robust results, 100 times of resampling were 
run to minimize the overfitting problem. Next, univariate and stepwise multivariate linear regression (MLR) was 
used to select covariates related to tacrolimus stable dose. Covariates with statistical significance (CYP3A5 genotype, 
hypertension and use of omeprazole) were used to develop algorithms within derivation cohort (train set). The 
performances of the algorithms were evaluated and compared using the mean absolute error (MAE) and the mean 
percentage of patients whose predicted dose fell within 20% of the actual dose (ideal rate) in the remaining 20% of 
patients (test set). The MAE is defined as the average of the absolute value of actual dose minus predicted dose, while 
the percentage of patients within 20% of the actual dose was selected by us since this definition has been widely 
applied22. Descriptive statistics was utilized to determine means and standard deviations, frequency and percentage 
distributions. Chi-square test was used to assess deviations of allele frequencies from Hardy-Weinberg equilibrium.

MLR and eight machine learning techniques, namely, support vector regression (SVR), artificial neural net-
work (ANN), regression tree (RT), random forest regression (RFR), boosted regression tree (BRT), multivariate 
adaptive regression splines (MARS), lasoo regression (LAR), Bayesian additive regression trees (BART) were 
applied in tacrolimus dose prediction. All analyses in this study were implemented using R (Version 3.2.2)31 
with related packages or our custom written functions. We used the RSNNS package for ANN32, rpart package 
for RT33, gbm package for BRT34, e1071 package for SVR35, randomForest package for RFR36, earth package 
for MARS37, glmnet package for LAR38 and bartMachine package for BART39. Default parameters were used 
(Supplementary Table S4).

In the validation cohort, the MAE and ideal rate of the pharmacogenomic algorithm were calculated overall, 
also in terms of tacrolimus dose range, which was divided into three categories based on the 25% and 75% quar-
tiles of TSD: low dose (≤​2.5 mg/day), intermediate dose (2.5–4 mg/day), and high dose (>​4 mg/day).
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