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Abstract

A new disease, the severe acute respiratory distress syndrome (SARS), caused by the SARS coronavirus (SARS-CoV), emerged at the
beginning of 2003 and rapidly spread throughout the world. Although the disease had disappeared in June 2003 its re-emergence cannot be
excluded. The development of vaccines against SARS-CoV may take years. Therefore, the availability of effective antiviral drugs against SARS-
CoV may be crucial for the control of future SARS outbreaks. In this review, experimental and clinical data about potential anti-SARS drugs is
summarised and discussed. Animal model studies will be needed to help to determine which interventions warrant controlled clinical testing.
© 2005 Elsevier B.V. All rights reserved.
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newly identified coronavirus, the SARS coronavirus (SARS- Due to the sudden and explosive emergence of the dis-
CoV) (Drosten et al., 2003; Ksiazek et al., 2003; Peiris et al., ease, empirical strategies were been used to treat the pa-
2003h. Since the first reported outbreak of atypical pneumo- tients Peiris et al., 2004; Fujii et al., 2004; Hui and Wong,
nia in Guandong Province in China in late 2002, successive 2004. These included various antibiotics, antiviral agents
similar outbreaks were widely reported from March 2003 on- (ribavirin, oseltamivir, HIV-1 protease inhibitors), corticos-
ward in 29 countries and territories affecting more than 8096 teroids, interferons, and normal human immunoglobulin
patients and causing at least 774 deaBerder et al., 2004;  preparations. Neutralising antibodies, fusion inhibitors, si-
Stadler et al., 2003; Peiris et al., 2008pdated information  lencing of SARS-CoV genes by RNA interference, and nat-
can be found atttp://www.who.int/csr/sars/@nAbout 20% ural products such as glycyrrhizin (a component of liquorice
of patients may progress to acute respiratory distress syn-routs) represent other therapeutic possibilities for SARS
drome requiring mechanical ventilatory support. The overall treatment. New insights into the field of SARS pathogene-
mortality rate is about 10% but the mortality varies with age. sis and SARS-CoV genome structure revealed novel poten-
SARS affected relatively few children and generally appeared tial therapeutic targets for antiviral therapy. Different animal

to be milder in the paediatric age group. In contrast, the mor- models have now been established to enable the examination
tality rate in the elderly was as high as 50%. of potential anti-SARS-CoV drugs in vivo. In this article, we

Much scientific effort has been focused on the develop- review and discuss the possible antiviral agents which may
ment of a vaccine to protect against future SARS outbreaks. be effective in the treatment of this devastating infection.
However, the chances to rapidly develop an effective vac-
cine are difficult to judge at the moment. An animal coro-
navirus vaccine was reported to exacerbate the disease ir2. Ribavirin
vaccinated animal€Javanagh, 200&nd immunisation with
a modified vaccinia virus Ankara-based recombinant vaccine  Ribavirin (1{3-p-ribofuranosyl-1,2,4-triazole-3-carboxa-
against SARS was associated with enhanced hepatitis in ferimide) is a purine nucleoside analogue that was discovered
rets Veingartl et al., 200¢ Therefore, certain precautions by ICN Pharmaceuticals in 1970, with a broad spectrum an-
have to be considered for the development of SARS-CoV tiviral activity (Sidwell et al., 1972 Ribavirin is licensed
vaccines due to potential detrimental effed#afshall and in most countries for the treatment of respiratory syncytial
Enserink, 2001 and due to this, the development of an effec- virus (RSV) infections in infants and in combination with
tive and safe vaccine for SARS-CoV could take years. More- interferona for chronic hepatitis C virus infection. It pre-
over, itis not clear whether the disease will re-emerge in the vents the replication of a large number of different RNA and
near future and it is unlikely that future outbreaks will reach DNA viruses in vitro, including myxo-, paramyxo-, arena-
global proportion Peiris et al., 2004 Taken together, these , bunya-, herpes-, adeno-, pox-, and retroviruses. In patients
facts limit the commercial interest in a SARS-CoV vaccine, with Lassa fever, ribavirin significantly reduces mortality, es-
which may further prolong vaccine development. Therefore, pecially, when therapy is initiated during the first 6 days of ill-
the search for effective antiviral agents against SARS-CoV ness [cCormick et al., 1985 Ribavirin can be given orally
has to be continued in order to be prepared as well as possiblgwith an absolute bioavailability of 40-50%), intravenously
for future SARS outbreaks. or as aerosol.

The clinical course of SARS appears to follow a typical Different mechanisms may be responsible for the antiviral
pattern Peiris et al., 2003a Initial clinical signs are fever, effects of ribavirin. Ribavirin prevents replication of viruses
myalgia, and other systemic symptoms that generally im- by inhibiting the enzyme inosine monophosphate dehydroge-
prove after a few days. During the initial phase, the viral load nase, which is required for the synthesis of guanosine triphos-
increases. Higher initial viral loads are associated with worse phate Cameron and Castro, 2001; Leyssen et al., 2005
prognosis Chu et al., 2004gand continued viral replication ~ Moreover, inhibition of viral polymerase activity by thé&5
is associated with poor clinical outcomdung et al., 2004;  triphosphate metabolite of ribavirin, inhibition of viral cap-
Chu et al., 2004r After the initial viral replication phase, ping, and lethal mutagenesis of the RNA genome may con-
the next phase of SARS is characterised by recurrence oftribute to the antiviral effects of ribaviritd{ong and Cameron,
fever, hypoxaemia, and radiological progression of pneumo- 2002. In vitro inhibition of RSV, influenza, and parainfluenza
nia, although the viral load may declirféeiris et al. (2003a)  viruses is achieved at concentrations of 3gfjiml. Animal
showed a progressive decrease of viral shedding from na-studies showed that ribavirin is effective in the treatment of
sopharynx, stool, and urine from day 10 to day 21 after onset mouse coronavirus hepatitiSifiwell et al., 1977; Ning et al.,
of symptoms in 20 patients followed up by serial RT-PCR 1998. Although ribavirin had little inhibitory effect on coron-
measurements. Thus, immune-mediated lung injury causedavirus replication, it can decrease the release of proinflamma-
by an over-exuberant host response may contribute to clinicaltory cytokines, e.g. IL-1 and TNE-from the macrophages
worsening during the second phase in addition to higher viral of mice (Ning et al., 1998 In addition, ribavirin switches
loads in the lungs, which were significantly associated with the Th-2 response to Th-1 responséng et al., 1998 In
a shorter duration from onset of iliness to dediagzulli dendritic cells, ribavirin markedly suppressed the produc-
etal., 2004ap tion of TNF-, IL-10 and IL-12 without effecting dendritic
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cell maturationBarnes et al., 2004In RSV-infected epithe-
lial cells, ribavirin increased virus-induced IFN-stimulated
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in this study, it indicated the inability of ribavirin to clear
SARS-CoV from the SARS patients. Moreover, a Canadian

response element (ISRE) signalling, thereby, enhancing thestudy found SARS-CoV RNA in multiple lung lobes, of-
expression of antiviral IFN-stimulated response genes (ISGs)ten in high copy number, at the time of death in ribavirin

(Zhang et al., 2003aRibavirin may therefore serve as anim-
munomodulator, irrespective of its antiviral role.
Investigations initially carried out by our laboratory
demonstrated that ribavirin did not inhibit SARS-CoV repli-
cation in Vero (African green monkey kidney) cells at ther-
apeutically achievable concentratioi@Gr{atl et al., 2003p

treated patientsMazzulli et al., 2004p Early onset of hy-
drocortisone therapy for ribavirin-treated patients resulted in
increased plasma SARS-CoV RNA concentrations in the sec-
ond and third week of iliness compared to those who received
placebo instead of hydrocortisorieeg et al., 2004 This en-
hancement of SARS-CoV mRNA in hydrocortisone treated

These results were confirmed by other investigators using thepatients is probably not due to its direct effects on virus repli-

E6 subclone of Vero cellsStroher et al., 2004; Chen et al.,
20044a; Tan et al., 200%aHowever, these results were most
probably caused by insufficient phosphorylation of ribavirin
to its active triphosphorylated form in Vero cells. More recent
studies showed that ribavirin inhibits SARS-CoV replication
in foetal rhesus kidney cells (fRHK-4) in concentrations of
about 5Qug/ml which is still above mean plasma levels in
treated individuals, being in the range of 2¢/ml after i.v.
administration of 1000 mg ribavirin or 1,&3/ml after an oral
dose of 600 mg in adultKpren et al., 2008 We investi-
gated the effect of ribavirin on SARS-CoV replication in a
panel of SARS-CoV permissive animal and human cell lines
(Morgenstern et al., 2005Ribavirin inhibited SARS-CoV
replication (strains FFM-1 and 6109) in embryonal African
green monkey kidney cells (MA-104), pig kidney cell line
(PK-15), human colon carcinoma cell lines (Caco2 and CL-
14), and primary epithelial human kidney cells (HPEK) at

cation since hydrocortisone does not influence SARS-CoV
replication in cultured cellsCinatl et al., 200h

Although most clinical trials do not support the use of rib-
avirin in SARS, this does not necessarily mean that ribavirin
is without effect on virus replication in treated patients. Pos-
sibly, antiviral effects of ribavirin are too weak to improve
clinical symptoms. A most recently published uncontrolled
study reported that ribavirin reduced viral load in five of eight
patients Wang et al., 20049aMoreover, this study suggested
that the peak inflammatory cytokine (IL-6 and IL-8) levels
concurred with or after peak viral load and preceded or con-
curred with the maximum pulmonary infiltrates. Therefore,
reduction of viral load during the early phase of SARS may
reduce the activation of proinflammatory cytokines and sub-
sequently result in a milder course of disease. These clinical
findings together with the observation of antiviral activity
of ribavirin in different SARS-CoV-infected cell lines show

concentrations below 40g/ml. These findings suggest that that ribavirin should be critically investigated in SARS ani-
multiple cell culture systems should be used to evaluate themal models to allow a more detailed appraisal of its activity.
activity of antiviral agents against emerging viruses such as  Ribavirin may be used in combination with other antivi-
SARS-CoV. ral drugs such as interferons or HIV-1 protease inhibitors
So et al. (2003proposed a treatment protocol for SARS (see below). In addition, ribavirin analogues previously de-
with the emphasis on the combination of ribavirin, and veloped for the treatment of HCV or other viral diseases
methylprednisolone. The published reports of clinical effec- are potential drugs for the treatment of SARS. Several rib-
tiveness of ribavirin were mostly retrospective case series avirin analogues have a stronger antiviral activity compared
with intrinsic methodological problems and it is difficult to  to ribavirin (De Clercq et al., 1991 The most potent con-
draw firm conclusionsAvendano et al., 20038ooth et al., ger of the group, 5-ethynyl-B-ribofuranosylimidazole-4-
2003; Dwosh et al., 2003; Hsu et al., 2003; Tsang et al., carboxamide (EICAR), showed antiviral potency against dif-
2003; Peiris et al., 2003a; Zhao et al., 2R0Bhe only ran- ferent RNA viruses about 10-fold to 100-fold greater than
domised trial concluded that ribavirin was not efficacious that of ribavirin. Other analogues such as viramidine and lev-
(zhao et al., 2008 Therefore, the clinical value of ribavirin  ovirine were specifically developed for the treatment of pa-
for the treatment of SARS patients is regarded with scepti- tients with hepatitis CRoster, 2001 Recently, viramidine, a
cism, especially since ribavirin treatment is associated with liver-targeting prodrug of ribavirin, was presented suggesting
severe adverse effects. The major side effect of ribavirin is that organ targeting of ribavirin may be areasonable therapeu-
anaemia which occurs in 27-59% of SARS patieBtsdth et tic approachl(in et al., 2003b; Wu et al., 20030Viramidine
al., 2003; Sung et al., 20Dp4Anaemia reduces oxygen trans- is activated by deamination in the liver by the enzyme adeno-
port and potentiates the existing problem of oxygenation and sine deaminase. Both experimental and clinical data show an
tissue hypoxia. Other significant side effects included raised improved viramidine distribution in the liver and in red blood
transaminases and bradycardda¢th et al., 2008 as well as cells compared to ribavirirL{n et al., 2004a,h The devel-
hypocalcaemia, hypomagnesaemia, and risk of teratogenic-opment of ribavrin analogues targeted to other organs such
ity (Knowles et al., 2008 In a detailed study on the clinical  as lung or intestine may be more relevant for treatment of
course and viral loadReiris et al. (2003a)eported that 14  SARS. Levovirin, i.e. the-isomer of ribavirin, is associated
patients given a standard regimen of ribavirin and steroids with a lesser degree of haemolytic anaemia. It appears safe
showed a peak viral load at day 10 after onset of illness. Al- in animal studies and has been well tolerated in phase | stud-
though only a small number of subjects had been included ies in healthy volunteerdHugle and Cerny, 2003; Lin et al.,
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20033. In contrast to ribavirin, levovirin has no direct antivi-
ral activity while it retains the immunomodulatory activities
of ribavirin.

3. Interferons

Virus infection of permissive cells prompts the innate im-
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may be an effective prophylactic treatment of coronavirus
infection in humans. Similarly, intranasal IFN sprays given
1 day before and for 3 days after virus challenge protected
human volunteers from infection with coronavirugy«ell,
1986.

In numerous in vitro studies, effects of IFNs on SARS-
CoV replication had been observegifatl et al., 2004p The
first published in vitro study that compared effects of differ-

mune system to establish a first line of defence. Interferonsent classes of IFNs on SARS-CoV replication demonstrated
(IFNs) play a key role in these events, since they activate IFN-B to be the most effective in inhibiting SARS-CoV repli-
the innate immune system and help to shape immunity. IFNs cation Cinatl et al., 2003p Effects of recombinant IFN-

consist of the multiple type | species (IFN-IFN-B, IFN-
w, and IFN<), and the one type |l species (IFN; both of
which have antiviral activity$en, 2001; Katze et al., 2002;
Urosevic, 2008 Type | IFNs have functional, but no struc-
tural similarity with IFN-y.

IFNs can induce several parallel antiviral pathways in
cells, including four major factors?%'-oligoadenylate syn-
thetase (OAS) protein family/ribonuclease L (RNase L),

(Intron A [IFN-a-2b], Essex Pharma, Munich, Germany),
IFN-B (Betaferon [IFNB-1b], Schering, Berlin, Germany),
and IFN+<y (Imukin [IFN-y-1b], Boehringer Ingelheim, In-
gelheim, Germany) on two different virus strains (FFM-1,
6109) were compared in two different cell lines (African
green monkey kidney cell line Vero, human colorectal adeno-
carcinoma cell line Caco2). After pre-treatment,sg@on-
centration of the compound needed to inhibit the cytopathic

dsRNA-dependent protein kinase (PKR), Mx proteins, and effect to 50% of the control value) of IFR-for SARS-CoV

adenosine deaminase RNA-specific (ADARYef, 2001

FFM-1 in Vero cells was 50-fold and 25-fold lower than that

Some of theses pathways are more specific for a particularof IFN-a and IFN+<y, respectively. Similar results were ob-
group of viruses, although more than one pathway may con-tained for the comparison of anti-SARS-CoV effects of IFN-

trol infection with a single virus. A common feature among
these antiviral pathways, excluding Mx protein, is the re-

o with IFN-B using SARS-CoV strain 6109 in Vero cells and
for both strains in Caco2 cells. By contrast, IRNdid not

guirement for dsSRNA as common activator or substrate to inhibit SARS-CoV replication in Caco2-cells. When added
IFN-induced protein factors. While OAS and PKR enzymes after virus infection, IFN8 was the only IFN that showed

require non-specific association with dsRNA for their activa-

anti-SARS-CoV activity. Although IFN8-1b was shown to

tion and antiviral effects, ADAR1 uses dsRNA as substrate inhibit SARS-CoV replication more effectively compared to

for deamination of adenosines and their conversion into in-

IFN-a-2b in our experimentsQinatl et al., 2003y several

osines. The existence of considerable residual effects of typeother laboratories reported different IrdNsubtypes and hu-

I IFNs against encephalomyocarditis virus (EMCV) in mice

man leukocyte IFNx to be highly effective against SARS-

lacking functional RNase L, PKR, and Mx suggests the pres- CoV replication Chen et al., 2004a,b; Hensley et al., 2004;

ence of additional pathwayZltou et al., 1999
The sensitivity of coronaviruses including avian infectious
bronchitis virus, murine hepatitis virus (MHV), transmissi-

Sainz et al., 2004; Spiegel et al., 2004; Stroher et al., 2004,
Tan et al., 2004a; Zheng et al., 2Q04 contrast to the initial
study Cinatl et al., 2003) these investigations were exclu-

ble gastroenteritis virus (TGEV), and human coronaviruses sively performed in monkey kidney cell lines including Vero

to IFNs was demonstrated in vitro and in viv®perber and
Hayden, 1989; Pei et al., 2001; Minigawa et al., 1987;
Lucchiari et al., 1991; Weingartl and Derbshire, 1RAl-

or fRhK4 cells. In permissive human intestinal epithelial cell
lines infected with different SARS-CoV strains, analysis of
cellular gene expression by high-density oligonucleotide ar-

though both types of IFNs were effective against coronavirus rays revealed up-regulation of numerous IFN-induced genes
infection, some studies suggested that type | IFNs may beincluding OAS2 and MxA Cinatl et al., 2004n Progressive

more potent than IFNk In one study, IFNy even stimulated
100-fold the production of infectious virions of human coro-
navirus strain OC43 in human neuronal cet®(lins, 1995.
IFN-a was more potent against MHV compared to IFNR

virus replication despite expression of these genes suggests
that they do not play a significant role in the control of SARS-
CoV replication in vitro. In fact, SARS-CoV replication was
observed in Vero cells stably expressing Mx@pfegel et al.,

a mouse model. Combined treatment with both interferons 2004. These results suggest that other IFN-induced proteins

showed synergistic antiviral effects|{chizaki et al., 2003
There are few clinical experiences with IFN treatment of

must be responsible for the inhibitory effects of type I-IFNs
on SARS-CoV replication. Moreover, the SARS-CoV devel-

coronavirus infections. In an experimental setting, 55 healthy oped the ability to evade the IFN system by inhibition of
volunteers were treated with intranasal recombinant IFN the induction of endogenous IFBlby prevention of activa-

(rIFNa-2b; 2x 10P 1U/day) or placebo for 15 days and were

tion of the transcription factor interferon regulatory factor 3

exposed to coronavirus by direct intranasal inoculation on (IRF-3), thatis essential for IFI8-promoter activity Epiegel

the eighth day of treatmentrner et al., 1986 Therapy

with IFN shortened the duration and reduced the severity of

coronavirus cold symptoms suggesting that intranasalalFN

et al., 2005%.
Although IFN-<y had been shown to have little antiviral ef-
fects on SARS-CoV replication in vitr@jnatl et al., 2003b;
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Tan et al., 2004a,b; Spiegel et al., 2004; Zheng et al., 2004 combination of IFNB with ribavirin resulted in synergisti-
two recent observations suggested that simultaneous incu-<ally increased SARS-CoV replication inhibition in different
bation of Vero cells with IFN8 and IFN<y may act syner-  human cell linesNlorgenstern et al., 2005Similar results
gistically against SARS-CoV infectiorBg@inz et al., 2004;  had been found bZhen et al. (2004a)n contrast to this,
Scagnolari et al., 2004 Tan et al. (2004ayid not find synergistic effects between
Activity of type | IFNs against SARS-CoV was confirmed type | interferons and ribavirin. Testing of the combination
by animal studies. Treatment of cynomolgous macaques withof ribavirin and interferon in animal models of SARS will be
pegylated recombinant IFN-2b (PEG-IFNe-2b, PEG- necessary to judge in vivo activity.
Intron) prior to SARS-CoV-infection substantially protected
type 1 pneumocytes, the main target cells for SARS-CoV
infection in macaques, from SARS-CoV infection in vivo 4. HIV-1 protease inhibitors
(Haagmans et al., 2004Jse of pegylated IFNe 1 day post-
exposure protected type 1 pneumocytes less effectively. Al-  In contrast to the SARS-CoV protease, which is a cystein
though in vitro data suggested direct influence of pegylated protease Kan et al., 2004 the HIV-1 protease belongs to
IFN-a on SARS-CoV replication, the authors did not deter- the aspartyl protease$ddd et al., 2000 The development
mine if in vivo protection by pegylated IFN-was caused  of HIV-1 protease inhibitors was based on the knowledge
by direct antiviral activity or by immunomodulatory effects of the HIV-1 gag-pol polypeptide precursor cleavage sites
(Haagmans et al., 20D4Taken together, experimental data recognised by the HIV-1 enzyme. This approach led to the
strongly encourage further testing of type | IFNs for the treat- development of highly potent and selective inhibitors of HIV-
ment of SARS. 1. Anti-SARS-CoV activity of HIV-1 protease inhibitors was
There is only limited experience with IFN treatment identified during screening of compounds including antiviral
of SARS patients resulting from two clinical studies. The drugs already in human clinical use; however, the results have
first study described treatment of 190 SARS-patients from been inconsistent across laboratories, and no animal model
Guangzhou, the capital of Guangdonthéo et al., 2008 data have been published to document in vivo antiviral activ-
The authors concluded that the best outcome was achievedty against SARS-CoV. The first in vitro data were presented
by the combination of high-dose steroids with quinolone plus by Yuen (2003)at the 2003 Prevention and Cure of SARS
azithromycin. In the authors’ opinion, the use of IleN\did seminar held in Guangzhou in September. At this confer-
not result in an obvious beneficial effect. In the second study, ence, Yuen mentioned that they found a suppressing effect of
IFN alfacon-1, (Infergen, Intermune, Brisbane, California, lopinavir and ritonaviron SARS-CoV replication. The antivi-
USA), a non-naturally occurring synthetic recombinant type ral effects were observed for both single drugs and synergis-
I IFN-« that contains in each amino acid position the most tically increased by the use of their combination. Hong Kong
commonly observed amino acid from 13 IFNRon-allelic group reported later on the antiviral activity of lopinavir at a
subtypes, was usedidutfy et al., 2003. Thirteen patients  concentration of fug/ml (Chu et al., 2004bwhich is close
who received single treatment by corticosteroids were com- to peak (9.6.g/ml) and trough (5.5.g/ml) lopinavir plasma
pared to nine patients who additionally received IFN alfacon- levels in HIV-1 treated patientdH{rst and Faulds, 2000
1 (Loutfy et al., 2003. The use of IFN alfacon-1 resulted in  Yamamoto et al. (2004Jemonstrated that nelfinavir inhibits
more rapid resolution of radiographic lung abnormalities and the replication of SARS-CoV in Vero E6 cells at nanomolar
better oxygen saturation levels. Moreover, IFN alfacon-1 pa- concentration which are easily achievable in plasma of treated
tients showed less increase in creatine kinase levels and gatients. In contrast, this study failed to demonstrate antiviral
more rapid return of lactate dehydrogenase to normal levels.activity for other HIV-1 protease inhibitors (including riton-
Elevated lactate dehydrogenase and creatine kinase levels aravir and lopinavir) at concentrations up to M. Similarly,
assumed to indicate lung parenchymal damage and are assoFan et al. (2004adlid not observe any anti-SARS-CoV ac-
ciated with poor prognosid ¢utfy et al., 2003. In addition, tivity of indinavir, nelfinavir or saquinavir at therapeutically
treatment with IFN alfacon-1 decreased the median durationachievable concentrations.
of peak lung involvement and IFN alfacon-1 treated patients  First clinical results on treatment of SARS patients with
needed supplemental oxygen for shorter periods. However, inHIV-1 protease inhibitors were reported by a research group
late-stage disease, four of six critically ill patients in this co- from Hong Kong Chan etal., 20031n that study, 75 patients
hort died despite combination therapy, raising the possibility with SARS were treated with a formulation of lopinavir and
that early treatment is important. The experience with drug low-dose ritonavir (Kaletra; Abbott) in addition to a stan-
treatments during the first SARS outbreak has led the Na- dard treatment protocol including antibiotics, ribavirin, and
tional Institute of Allergy and Infectious Diseases’ sponsored corticosteroids adopted by the hospital authority. These pa-
collaborative Anti-viral Study Group to develop a placebo- tients were matched with control subjects retrieved from the
controlled clinical treatment protocol of IFN-alfacon-1in pa- hospital authority’s SARS central database. The matching
tients with early SARSL(evy et al., 200} was done with respect to age, sex, the presence of comor-
One possible strategy to improve direct antiviral effects bidities, lactate dehydrogenase level, and the use of steroid
of IFNs may be the combination with other antivirals. The therapy. The 75 patients treated with lopinavir/ritonavir were
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further divided into two subgroups for analysis: those who 5. Nitric oxide
received lopinavir/ritonavir as initial treatment (44 patients),
and those who received lopinavir/ritonavir as salvage therapy  Nitric oxide (NO) is an important signalling molecule be-
(31 patients). These groups were compared with matched cotween cells and is involved in a wide range of biological pro-
horts of 634 and 343 patients, respectively. The Hong Kong cesses ranging from vasodilatation and blood-pressure con-
research group found that the use of lopinavir/ritonavir as ini- trol to neurotransmission. NO is also involved in non-specific
tial treatment was associated with a lower overall mortality (innate) host defence, and participates in the complex mech-
rate (2.3%) and intubation rate (0%), compared with matched anism of tissue injury, acting as a major mediator of inflam-
cohort of subjects who did not receive lopinavir/ritonavir matory processes and apoptosggarro, 2000.
(15.6 and 11%, respectively;<.05). However, the subgroup NO plays a key part in host defence against bacteria, pro-
of patients who received lopinavir/ritonavir as salvage ther- tozoa, and tumour cells. Anti-viral activity of NO has been
apy showed no difference in the overall mortality rate or in described for different viruses including DNA viruses, such
rates of oxygen desaturation and intubation compared with as murine poxvirus, herpes simplex virus, and Epstein—Barr
the matched cohort, suggesting that only early use of lipon- virus, and some RNA viruses such as poliovirus, coxsack-
avir/ritonavir is effective in the treatment of SARS. Other ievirus, Japanese encephalitis virus, and murine coronavirus
beneficial effects of early use of liponavir/ritonavir included (Lane et al., 1997; Pope et al., 1998; Reiss and Komatsu,
a reduction in corticosteroid use, fewer nosocomial infec- 1998 Torre et al., 2008
tions, decreasing viral loads and rising peripheral lympho- The NO donor 2,2(hydroxynitrosihydrazino)bis-
cyte counts Chu et al., 2004%h The possible clinical util- ethamine (DETA NONOate) had been early found to
ity of protease inhibitors was also suggested by observa-inhibit SARS-CoV in Vero cells Cinatl et al., 2003a In
tions performed on patients hospitalised in Guangztihea addition, DETA NONOate inhibits SARS-CoV replication
etal., 2003; Chen and Cao, 2Q@h patients hospitalised in  in the intestinal Caco2 cell line at non-toxic concentrations
Guangzhou. They reported that none of the 19 patients with (50-500uM) in a dose dependent mannddderr et al.,
HIV-1/AIDS who were hospitalised together with 95 patients 2003. Recently, two in vitro studies demonstrated an
who had SARS on the same hospital floor became infectedinhibitory effect of NO on SARS-CoV replication in Vero
with the SARS-CoV. Most of the patients with HIV-1/AIDS  EG6 cells.Keyaerts et al. (2004ested two NO donor com-
were receiving HAART during hospitalisation. On the other pounds includingS-nitrosoN-acetylpenicillamine (SNAP)
hand, 6 of 28 members of the medical staff who directly and sodium nitroprusside (SNP). Anti-viral activity was
served on this floor contracted SARS. However, these find- estimated by the inhibition of the SARS-CoV cytopathic
ings should be interpreted carefully since the exposure riskseffect. The survival rate of SARS-CoV-infected cells was
are clearly higher for the medical staff than for patients on greatly increased by the treatment with SNAP but not with
the same floor. SNP.Akerstrom et al. (2005)eported that SNAP inhibited
Although the improved clinical outcome in patients that the replication cycle of SARS-CoV in a dose-dependent
received liponavir/ritonavir as part of the initial therapy may manner. Treatment with 4QOM SNAP resulted in more
be due to the fact that serum concentrations could inhibit the than 3-log reduction in the yield of progeny virus. It was also
virus, no data from animal experiments exists, and possible demonstrated that anti-SARS-CoV activity of IFfNmay
mechanisms remain obscure. HIV-1 protease inhibitors may be at least in part due to its stimulatory effects on inducible
bind to the active site of SARS-CoV main proteinagkdng nitric oxide synthase (iNOS) expression as demonstrated by
and Yap, 200% However, at least in the case of nelfinavir, experiments using iINOS inhibitorékerstrom et al., 2006
inhibition of the main SARS-CoV proteinase was not a ma- Although its antiviral mechanism was not elucidated, NO
jor mechanism of SARS-CoV inhibitionv@mamoto et al., seems to inhibit an early stage of SARS-CoV replication
2004). HIV-1 protease inhibitors also influence some cellu- (Akerstrom et al., 2006 A rescue clinical trial in Beijing
lar enzymes involved in apoptosi€fjibelli et al., 2003 or suggested that inhalation of NO may be of benefit to SARS
antigen processing and presentatidndre et al., 1998and patients Chen et al., 2004b In six patients, inhalation of
block proinflammatory cytokine production through inhibi- NO improved arterial oxygenation and enabled the reduction
tion of cellular transcription factors such as NB-(Piccinini of inspired oxygen therapy and airway pressure support.
etal., 2002; Equils et al., 20p4Therefore, it is possible that  Chest radiography showed decreased spread or density of

in addition to viral targets some cellular proteins may be in-
fluenced by HIV-1 protease inhibitors. This may contribute to
their clinical anti-SARS activity. It should be also noted that
SARS patients treated with lopinavir/ritonavir also received
ribavirin as initial antiviral therapyGhan et al., 2003; Chu
et al., 2004p. It is, therefore, possible that the combination
of ribavirin with HIV-1 protease inhibitors led to synergistic

antiviral effects as demonstrated in experiments with SARS-

CoV-infected cultured cellsqhu et al., 20045

lung infiltrates. Moreover, the positive effects remained
after the termination of NO inhalation. It is possible that in
addition to its vasododilatory effects, inhaled NO exerted
antiviral activity. On the other hand, the harmful role of NO
in many systems including development of inflammatory
lung disease should be noted. NO seems to play a part in
the development of pneumonia caused by influenza virus
or herpes simplex virus type 1 in animal modefskdike

et al., 1996; Adler et al., 1997However, the peak of NO
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in humans experimentally infected with influenza virus was 7. Glycyrrhizin and derivatives
late and not associated with clinical symptonmu(phy
et al., 1998 suggesting that in contrast to mouse model  The triterpene glycoside glycyrrhizic acid (glycyrrhizin,
NO may exert antiviral activity without harmful effects in  GL) and its aglycone 1B-glycyrrhetinic acid (GLA) are the
humans. However, similar studies have not been reported inmostintensively investigated bioactive compounds of licorice
natural influenza or influenza viral pneumonia in humans. root (Glycyrrhiza Radix) Baltina, 2003. Both compounds
are reported to have anti-tumoural, anti-inflammatory and an-
tiviral properties Ehibata, 2000 GL is active against a broad
6. Calpain inhibitors spectrum of viruses, including herpes virus@srfipei et al.,
1979; Lin, 2003c; Lampi et al., 20pflaviviruses Crance
Calpains are the most abundant intracellular calcium- et al., 2003, and human immunodeficiency viruSgsaki
dependent cystein proteases in mammalian tissBegif etal., 2003.
and Huttenlocher, 2002 The enzymatic activities of cal- GL was one of the first compounds found to be active
pains are regulated by intracellular calcium ions and the against SARS-CoV in vitroGinatl et al., 2003a GL in-
specific endogenous calpain inhibitor calpasta®er(in and  hibited SARS-CoV replication with an &g of 365uM in
Huttenlocher, 2002Vang, 200). This suggests that, likethe  Vero cells.Chen et al. (2004agonfirmed these results us-
proteasome, calpains are part of a regulatory proteolytic sys-ing Vero-E6 cell line (EGo = 100..M). However, they found
tem. Calpain plays physiologic regulatory roles in membrane GL ineffective in fRHK-4 cells. Disregarding the differences
and cytoskeletal remodelling, including mitosis and apopto- between the different cell lines, g5 suggest that antiviral
sis regulationileumar et al., 2003 active concentrations will be difficult to achieve after admin-
Several studies suggested that calpains may be involvedistration to patients.
in the regulation of virus replication and virus-induced cyto- ~ The mechanism of glycyrrhizin’s activity against SARS-
pathic effects. In monocytes/macrophages calpain mediatedCoV is unclear. GL affects many cellular signalling pathways
HIV-1 activation induced by calcium signalling. Moreover, such as protein kinase ©{Brian et al., 199), casein ki-
calpain inhibitors were shown to inhibit the activation of HIV- nase Il Harada et al., 1996and transcription factors such

1 in latently infected cellsTeranishi et al., 2003Reovirus- as c-Fos, c-Rel, and nuclear factd (Cherng et al., 2004
induced apoptosis was preceded by increased cellular cal-GL was also shown to activate AP-1 by the Ras-Raf-MAPK
pain activity and was blocked by calpain inhibitoBeBiasi pathway and to increase intracellular cAMP levels by cAMP-

et al., 1999, 20011 In a mouse model of reovirus-induced response element binding (CREB) phosphorylatiose( et
myocarditis, specific calpain inhibitors only slightly inhibited  al., 2009. Furthermore, GL may influence virus replication
virus replication but protected the mice against myocardial by up-regulation of expression of inducible nitric oxide syn-

injury (DeBiasi et al., 2001 thase and production of nitric oxide (NOYi(et al., 1996.
Barnard et al. (2004)lemonstrated that two calpain in- NO exerts antiviral activity against SARS-CoV (see above).
hibitors including Val-Leu-CHO (calpain inhibitor VI) and Z- A preparation of GL combined with-cysteine and glycine

Val-Phe-Ala-CHO (calpain inhibitor I1l) are potent inhibitors ~ (Stronger Neo-Minophagen C, SNMC) has been a registered
of SARS-CoV replication. By virus yield reduction assay, cal- in Japan and other countries. SNMC is administered intra-
pain inhibitor VI had a 90% effective concentration (G venously, and has been used with apparent success for the
of 3uM and calpain inhibitor Il had an Egg of 15uM. In- treatment of chronic viral hepatitidjyake et al., 200pand
terestingly, we observed that SARS-CoV is able to induce upper respiratory tract infection¥gnagawa et al., 2004
calpain activity in infected Vero cells (unpublished results). Haiying et al. (2003)eported at the “Annual Meeting of the

It is conceivable that in addition to their antiviral effects, Society of Infectious and Parasitic Diseases, Chinese Medical
calpain inhibitors also prevent cellular lysis by inhibition of Association” on the use of intravenous SNMC for the treat-
apoptosis which may be induced by SARS-CoV in infected ment of 37 SARS patients compared to 36 patients solely
cells (Yan et al., 2004; Tan et al., 200nterestingly, HIV- treated with corticosteroids. SNMC doses were in the range
1 proteases such as ritonavir and indinavir are able to in- of those used for treatment of hepatitis C. After intravenous
hibit calpain-induced apoptosisvan and DePetrillo, 2002;  administration of glycyrrhizin, serum levels of glycyrrhizin
Ghibelli et al., 2003 Therefore, it is possible that HIV-  ranged from 40 to 10@g/ml (van Rossumetal., 1999reat-

1 protease inhibitors protect infected cells against SARS- ment with SNMC reduced the maximal used corticosteroid
CoV induced lysis by calpain inhibitiorCpu et al., 2004b;  doses and the duration of admission. However, antiviral ef-
Yamamoto et al., 2004Numerous calpain inhibitors which ~ fects were not assessed.

were recently developed for treatment of different pathophys- ~ Apart from its antiviral activity GL exerts diverse im-
iological conditions such as cataract, spinal cord injury, or munomodulatory activities which may be protective for
multiple organ failure are awaiting clinical trial€(¢zzocrea  virus-infected animals/humanBgltina, 2003. GL reduced

et al., 2002; Ray et al., 2003; Biswas et al., 20Gurther mortality and morbidity of mice infected with lethal doses
investigation of the role of calpains in SARS-CoV infection of influenza virus, although it did not inhibit influenza virus
in animal models is warranted. replication Utsunomiya et al., 1997Therefore, it cannot be
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concluded if beneficial effects for SARS patients may result centration of 1.5@.M i.e. at least 100-fold below cytotoxic
from antiviral and/or other pharmacological activities such as concentrationsWu et al., 2004a

immunomodulation. In a most recent report, GL was shown

to inhibit accumulation of platelets in the lungs of mice in re-

sponse to lipopolysaccharide (LPS) thereby inhibiting LPS-

induced mortality Yu et al., 200%. This result suggests that

Screening of >10,000 agents led to the identification of
a peptidic anti-HIV-1 agent that targets 3CLpi/{ et al.,
20049. The agent designed as a transition state analogue
inhibitor of the HIV protease inhibited 3CLpro with a Ki

GL should be considered as drug for the treatment of the of 0.6.M. Modelling studies indicated that this compound
acute respiratory distress syndrome and further supports thebinds specifically to the active site of the SARS protease.
idea that GL may be a useful drug for SARS due to beneficial CMK, another peptidic inhibitor, binds irreversibly to the en-

effects on the SARS-associated lung pathology.
Wu etal. (2004c3creened >10,000 commercialy available
small molecules for their anti-SARS-CoV activity. Two of the

zyme'’s active siteYang et al., 200Bwhereas a bifunctional
aryl boronic acid compound reversibly inhibits 3CLpro and
appears to target a cluster of serine residues close to the en-

substances that were active against SARS-CoV in concentrazyme’s site Bacha et al., 2004 Jain et al. (2004)leveloped

tions of 10uM, were shown to share more than 80% similar-

several electrophilic keto-glutamine analogues with a phthal-

ity to GL using the International Species Information System hydrazido group at the-position as reversible inhibitors
(ISIS) database. Elongation of the GL carbohydrate chain or of the SARS 3CLproLiu et al. (2005)found several non-

introduction of amino acids or heterocyclic fragments signif-
icantly affect the bioactivity of glycosideBéltina, 2003.

covalent inhibitors of SARS 3CLpro using virtual screen by
molecular docking of chemical databases. One of the most

Therefore, we tested the anti-SARS-CoV activity of several potent inhibitors was calmidazolium, a well known antag-

GL-derivatives to find more potent compoun#iogéver et al.,
2009H. GLA did not inhibit SARS-CoV replication, demon-

onist of calmodulin. The antiviral activities of these com-
pounds against SARS-CoV in vitro and in vivo remain to be

strating the sugar moiety to be essential for anti-SARS-CoV elucidated.

effects. The introduction df-acetylgycosamine into the gly-

coside chain of GL increased the anti-SARS-CoV activity by

10-fold compared to GL resulting in andgof 40+ 13uM
(Hoever et al., 2006 These findings show that chemical
modification may lead to GL derivatives with increased anti-
SARS-CoV activity.

8. SARS-CoV main proteinase inhibitors

9. SARS-CoV entry inhibitors

The entry process of enveloped viruses including coron-
aviruses usually involves three steps including attachment,
receptor binding and virus-cell fusion which are mediated
by viral envelope proteingXallagher and Buchmeier, 2001
The spike (S)-protein of SARS-CoV, a type | membrane-
bound protein, is essential for the viral attachment to the host

The cleavage process of the SARS-CoV polyproteins by cell receptor and cell fusion. Its precursor proS is divided

a special proteinase, the so-called SARS-CoV 3C-like pro-

teinase (CoV Mpro or 3CLpro), is a key step for the replica-
tion of SARS-CoV making it an attractive target for the devel-
opment of novel drugs against SARSaf et al., 2004 Ho-
mology modelling for the 3CLpro was performed by various
groups Anand etal., 2003; Xiong et al., 200&nd the confor-
mational flexibility of the substrate binding site was studied
(Liu et al., 2009. 3CLpro is a very specific cyctein protease,
which has an overall backbone fold similar to trypsine-like

into S1 and S2 subunits. The interaction of S1 subunit with
the angiotensin-converting enzyme 2 (ACE2), a functional
receptor for SARS-CoV, is required for receptor binding to
permissive cellsl(i et al., 2003. S2, the transmembrane sub-
unit of S, plays a crucial role in the virus-cell fusion process
(Kliger and Levanon, 2003; Spiga et al., 2003

Human monoclonal antibodies against the S1 proteins
(see below) block the association of SARS-CoV with ACE2,
indicating that the ACE2-binding site of S1 could be a target

serine proteases, and is responsible primarily for the catalyticfor drug developmenSuietal., 2004 (S9-2-[1-carboxy-2-

cleavage of glutamine—glycine (serine) peptide bonds.

(3-(3,5-dichloro-benzyl)-3H-imidazol-4-yl)-ethylamino]-4-

Both screening of currently available drugs and chemical methyl-pentanoic acid (MLN-4760) is the first small-

libraries led to the identification of novel 3CLpro inhibitors.
The identification of currently available drugs provides the

molecular-weight inhibitor that was found to interact with
the ACE?2 active catalytic siteTowler et al., 200 whether

advantage that they can be used immediately for the treatmentMLN-4760 inhibits SARS-CoV infection remains to be

of SARS patients. Binding pockets and affinities to 3CLpro
were predicted for clinically used anti-HIV (lopinavir and ri-

elucidatedHuentelman et al. (2004creened approximately
140,000 small molecules by in silico molecular docking

tonavir), anti-psychotic (promazine), and anti-parasitic drugs approach. This approach identified-(2-aminoethyl)-1

(niclosamide) Zhang and Yap, 2004 As discussed above
some HIV protease inhibitors may provide effective treat-
ment for patients with SARS. Niclosamidé &-dichloro-4-
nitrosalicylanilide), an antihelminthic drug, totally abolished
SARS-CoV antigen production in Vero E6 cells at a con-

aziridine-ethamine (NAAE) as a novel ACE2 inhibitor
that also is effective in blocking the SARS-CoV spike
protein-mediated cell fusion. The development of ACE2
inhibitors as antiviral drugs may be limited by the fact that
SARS-CoV uses different alternative cellular receptors.
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For example, in addition to ACE2 a cellular glycoprotein In addition to the substances discussed above (e.g. gly-
CD209L (also called L-SIGN, DC-SIGNR, or DC-SIGN2) cyrrhizin, luteolin, TGG), numerous small molecules of

was identified as receptor for SARS-CoVeffers et al., herbal origin were shown to have some activity against
2004). SARS-CoV. Especially, some components of traditional Chi-

SARS-CoV S-protein pseudotype virus vectors were pre- nese medicine (TCM) were found to be effective inhibitors
pared for functional studies of the SARS-CoV cellular of SARS-CoV replication in vitro. This may explain some
tropism and entry into permissive cel(Sioglou et al., 2004; beneficial effects of TCM observed in patients with SARS
Yietal., 2004. Yi et al. (2004)used an HIV-luc/SARS-CoV  (Zhang etal., 20044a; Liu et al., 2004&or example, baicalin
pseudotype virus in a two-step screening method consist-(flavonoid derived fromScutellaria baicalens)sinhibited
ing of frontal affinity chromatography—mass spectrometry SARS-CoV replication in Vero cells at concentrations which
coupled with a viral infection assay for the identifcation of may be achievable in vivo after intravenous administra-
SARS-CoV entry inhibitors. The Chinese herbal medicine- tion (Chen et al., 2004aOther herbal constituents such as
based approach identified two small molecules tetra-O- ginsenoside-Rb1 (one of the pharmacologically active com-
galloyl-B-p-glucose (TGG) and luteolin as potent SARS- ponents of TCM hertPanax ginseng aescin (the major ac-
CoV inhibitors. TGG exhibited prominent anti-SARS-CoV tive principle from the horse chestnut tree) or reserpine (a
activity (ICso=2.86,M) and a selectivity index of 240. Lu-  naturally occurring alkaloid produced by several members
teolin exerted a selectivity index of 14.6. Quercetin, which is of the genufRauwolfig inhibited SARS-CoV replication at
structurally related to luteolin showed also inhibitory activity non-toxic concentrationdNu et al., 2004
on the cellular entry of SARS-CoV. Quercetin is approved as  Inhibitory effects on SARS-CoV replication with rela-
ingredient of antioxidant and antiallergic medicine in many tively high selectivity indices were reported for different
countries. Thus, it offers great promise as a potential drug substances. Geldanamycin, a ligand of heat shock protein
for the clinical treatment of SARS. Since TGG and luteolin 90 (Hsp90) inhibited SARS-CoV replication with a selectiv-
were identified through analysis of their binding to the S2 pro- ity index of >300 (EGo=0.91uM) (Li et al., 2004. Gel-
tein of SARS-CoV, these small molecules most likely work danamycin is a product d8. Hygroscopicusinterference
through their ability to block virus entry by interfering with  with a cellular chaperone Hsp90 seems to be the major mech-
the fusion processy{ et al., 2004. anism of its cytotoxic and antiviral actiolorkman, 2004;

Further, important targets for antiviral drugs that interfere Li et al., 2004. The geldanamycin analogue 17AAG (17-
with the fusion process are heptad repeat regions (HRs) lo-allylamino, 17-demethoxygeldanamycin) which had been
cated in the S2 proteiBpsch et al., 2004 At least two HRs developed for the treatment of malignant diseases is well tol-
(HR1, HR3) are acommon feature of type | membrane glyco- erated by patients in clinical trial$orkman, 2003 Chloro-
proteins of enveloped viruses such as coronavirus S-protein,quine showed anti-SARS-CoV activity in Vero E6 cellswith a
influenzavirus hemaglutinin, the HIVehy and the paramyx-  selectivity index of about 30 (Efg=8.8.M) (Keyaerts etal.,
ovirus F protein [Cescar et al., 2001 After virus binding to 2004). The EGpof chloroquine in cell culture is below (1000-
the receptor or because of protonation during endocytosis,fold) the concentrations of chloroquine that are reached in hu-
class | fusion proteins proceed through a series of confor- man plasma, following treatment for acute malaria at a dose
mational changes to mediate membrane fusion with the hostof 25 mg/kg for 3 days@harmot and Coulaud, 1990
cell. Peptides derived from the HR2 of the S2 protein were  Other promising anti-SARS-CoV agents include aglycon
shown to inhibit SARS-CoV infection, albeit at much higher derivatives of the antibiotics vancomycin, eremomycin, and
concentrations than similar inhibitors needed to prevent HIV teicoplanin Balzarini et al., 2004a mannose-specific plant
entry Bosch et al., 2004; Liu et al., 200%b lectins derived fronGalanthus nivaligsnowdrop) andHip-

peastrumhybrid (amaryllis) Balzarini et al., 2004)or Al-
lium porrum(leek) (Vijgen et al., 2003 Aurintricarboxylic
10. Other anti-SARS-CoV compounds acid inhibited SARS-CoV replication in Vero cells with a se-
lectivity index of >100 (EGp =200ng/ml) (He et al., 2005
Many nucleoside analogues were tested with the aim to Low toxicity in vitro and in vivo justifies further investiga-

inhibit SARS-CoV RNA polymerasexu et al., 2003. How- tion to show whether these substances may have a potential
ever, onlyB-p-N*-hydroxycytidine showed activity against as anti-SARS-CoV medicinég Clercq, 2004

SARS-CoV replication in cell culture at a low level (B& Short interfering RNAs (siRNAs) that inhibit the expres-
of 10M; selectivity index> 10) (Barnard et al., 2004 Two sion specific viral genes also seem to be effective in decreas-

nucleoside analogues 6-azauridine and pyrazofurine, that areng SARS-CoV replication in cell lineZhang et al., 2003b,
inhibitors of orotidine monophosphate decarboxylase, inhib- 2004b; He et al., 2003; Wang et al., 2004b; Wu et al., 2005
ited replication of SARS-CoV in Vero cells at hon-toxic doses Recent observation in the mouse model demonstrated that
with selectivity indices of 5 and 12, respectiveGifatl et al., diseases of the airways caused by influenza virus, respiratory
20033. Although these drugs are probably too toxic for treat- syncytial virus and/or parainfluenza virus infection can be
ment of SARS patients they may represent lead compoundsspecifically prevented by siRNAs, instilled intranasally with
for the development of more potent anti-SARS-CoV agents. or without transfection reagent&¢ et al., 2004; Tompkins



90 J. Cinatl Jr. et al. / Antiviral Research 66 (2005) 81-97

et al., 2004; Bitko et al., 2005; Zhang et al., 2D0bhese using the ferret model of SARS-CoV infectiotef Meulen
findings suggest that if properly designed, low dosages of in- et al., 2004. A dose of 10 mg/kg of CR3014, injected in-
haled siRNAs might offer a specific, fast, potent, and easily traperitoneally, significantly reduced SARS-CoV replication
applicable antiviral regimen against respiratory viral diseasesin the animals’ lungs, prevented the development of macro-
in humans. scopically visible SARS-CoV lung lesions, and viral shed-
ding from the pharynx.
Thus, human monoclonal SARS-CoV-neutralising anti-
11. Antiviral antibodies bodies may potentially be used to prevent infection in indi-
viduals exposed to SARS-CoV, and might also be useful for
Different groups in Hong Kong and other localities used the early treatment of SARS patients to reduce the severity
plasma donated by patients who had recovered from SARSof illness and the likelihood of SARS-CoV transmission to
(Soo et al., 2004; Wong et al., 2003Vhen administered to  others. However, dose-response and safety studies still need
SARS patients, human convalescent plasma apparently had o be conducted. Moreover, studies addressing the efficacy
beneficial effectif used relatively early in the course of illness and safety of administering neutralising antibodies to pa-
(Cheng et al., 2005 Similar to all therapeutic SARS stud- tients with established infections are outstandifRgx{vell
ies, these observations suffer from a lack of randomisation and Cripps, 2004 Substantial functional changes were de-
and control, a problem that should be addressed in preparatected in spike glycoprotein of SARS-CoV isolates obtained
tion for future outbreaks of SARS and other novel infectious from a SARS case in late 2003 from Guangdong province
diseasesMuller et al., 2004. Nevertheless, based on these S(GD03T0013)and from two palm civets (S(SZ3), S(SZ16)).
preliminary positive findings, it was suggested that SARS S(GD03T0013) depends less on the ACE2 receptor and was
hyperimmune globulin containing high titres of SARS-CoV- markedly resistant to antibody inhibitiogng et al., 200p
neutralising antibodies should be produced and stored for theHuman antibodies that neutralised pseudotyped lentiviruses
use in possible future outbrealkBuyrnouf and Radosevich, expressing S glycoproteins derived from most human SARS-
2003; Ali, 2003. The rationale behind these suggestions was CoV isolates enhanced entry of two pseudoviruses derived
strengthened by prophylactic antibody use in miget{barao from the civet virus S glycoproteins. The mechanism of en-
etal., 2004 hancementinvolved the interaction of antibodies with confor-
Several groups have produced and characterised mono+mational epitopes in the ACE2 binding domain. These data
clonal SARS-CoV-neutralising antibodies, with the aim to show that the entry of SARS-CoVs can be enhanced by anti-
find an immunoprophylactic agent with immediate protec- bodies, and they underscore the need to address the evolving
tive and possibly therapeutic efficacy. diversity of this newly emerged virus for immune therapies
Traggiai et al. (2004analysed the memory repertoire of a (Yang et al., 200p It has to be borne in mind that in the case
patient who recovered from SARS. The patient’s B cells were of respiratory syncytial virus infection a clinically available
transformed and 35 different antibodies were isolated that humanised monoclonal antibody, palivizumab, has prophy-
neutralised SARS-CoV in concentrations ranging from®L0  lactic efficacy but has been disappointing as a treatment for
to 10-11 M by recognising different antigens. In addition, one established infectionsRpodriguez et al., 1997
antibody that binds to the SARS-CoV S-protein, inhibited
SARS-CoV infection in mice when applied prior to infection.
The 80R antibody described Byi et al. (2004heutralises 12. ldentification of drug candidates for clinical trials
SARS-CoV invitro. Itbinds the S1 domain of the SARS-CoV
spike protein, competing with the soluble ACE2 which is a Numerous substances were identified as promising anti-
SARS-CoV receptor. The authors therefore conclude that theSARS-CoV agents in in vitro-experiments. However, data
80R human monoclonal antibody may have clinical uses asabout anti-SARS-CoV activity strongly differs between dif-
a viral entry inhibitor. ferent laboratories. Therefore, agents found to inhibit SARS-
Greenough et al. (20085)emonstrated the protective ef- CoV replication by different independent laboratories should
ficacy of two monoclonal antibodies that were applied pro- be preferentially considered for clinical trials. Type | inter-
phylactically to mice. They are planning to conduct clinical ferons were consistently found to inhibit SARS-CoV repli-
trials using MAb 201, a human monoclonal antibody directed cation in vitro by many independent researcheténétl
against an epitope within the receptor-binding region. et al., 2003b; Hensley et al., 2004; Spiegel et al., 2004; Tan
Using antibody phage display technology and screening et al., 2004a,b; Chen et al., 2004a; Sainz et al., 2004;
a large naive antibody library for reactivity with whole inac- Scagnolari et al., 2004; Dahl et al.,, 2004 hose agents
tivated Sars-CoWan den Brink et al. (2005elected eight  should be further evaluated in predictive animal models.
human monoclonal antibodies of which three — all directed Established animal models include cynomolgous macaques
against epitopes located within the minimal ACE2 receptor- (Fouchier etal., 2003; Kuiken etal., 2003; Rowe et al., 2004
binding region of the S-protein — were able to neutralise ferrets Martina et al., 2008 domestic catsMartina et al.,
SARS-CoV in vitro. The antibody with the highest potency, 2003, mice (BALB/c) (Subbarao et al., 2004African green
CR3014, was assessed for its prophylactic efficacy in vivo monkeysBukreyev etal., 2004and Golden Syrian hamsters
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(Buchholz et al., 2004; Roberts et al., 200Bnimal mod- Andre, P., Groettrup, M., Klenerman, P., de Giuli, R., Booth Jr., B.L.,
els were already used to demonstrate the antiviral activity =~ Cerundolo, V., Bonneville, M., Jotereau, F., Zinkernagel, R.M., Lot-
of therapeutic antibodiesdr Meulen et al.. 2004: Traggiai teau, V., 1998. An inhibitor of HIV-1 protease modulates proteasome

activity, antigen presentation, and T cell responses. Proc. Natl. Acad.
et al., 2004. Cynomolgous macaques and ferrets developed o s A 95, 13120-13124.

lung pathology Eouchier et al., 2003; Kuiken et al., 2003;  avendano, M., Derkach, P., Swan, S., 2003. Clinical course and man-

Rowe et al., 2004; Martina et al., 2008vhereas no clinical agement of SARS in health care workers in Toronto: a case series.
disease was detected in African green monkeys or domes- CMAJ 168, 1649-1660. _ _
tic cats Martina et al., 2003; Bukreyev et al., ZQOszaII Bacha, U., Barrila, J., Velazquez-Campoy, A., Leavitt, S.A., Freire, E.,

nimal model r f ial interest for th valuation of 2004. Identification of novel inhibitors of the SARS coronavirus main
a al modaels are or specia erestio € evaluation o protease 3CLpro. Biochemistry 43, 4906—-4912.

antiviral drugs. SARS-CoV-infection of Golden Syrian ham-  pattina, L.A., 2003. Chemical modification of glycyrrhizic acid as a route
sters represents an auspicious small animal model for SARS. to new bioactive compounds for medicine. Curr. Med. Chem. 10,
In contrast to the mouse model, SARS-CoV replicates to a  155-171.

higher titre and for a longer duration in the respiratory tract of Balzarini, J., Keyaerts, E., Vijgen, L., De Clercq, E., Printsevskaya, S.S.,

hamsters and i mpanied by significant pathol Mor Preobrazhenskaya, M., Van Ranst, M., 2004a. Inhibitory activity of
amstersa Saccompanied by significant pathology. More- vancomycin, and teicoplanin aglycon derivatives against feline and

over, viraemia and extrapulmonary spread of SARS-CoV 10 hyman (i.e. SARS) coronaviruses. The 17th International Conference
liver and spleen are seen in hamsters but not in niRodérts on Antiviral Research. Antiviral Res. 62, A59.
et al., 2005. Balzarini, J., Vijgen, L., Keyaerts, E., Van Damme, E., Peumans, W.,,
De Clercq, E., Egberink, H., Van Ranst, M., 2004b. Mannose-specific
plant lectins are potent inhibitors of coronavirus infection including
. the virus causing SARS. The 17th International Conference on An-
13. Conclusion tiviral Research. Antiviral Res. 62, A76.
Barnard, D.L., Hubbard, V.D., Burton, J., Smee, D.F., Morrey, J.D.,
Currently, there is no antiviral therapy of proven value in Otto, M.J., Sidwell, R.W., 2004. Inhibition of severe acute respi-
SARS-CoV disease. A number of potential anti-SARS agents ratory syndrome-associated coronavirus (SARSCoV) by calpain in-

have been identified. Inconsistent results between different hibitors and beta-N4-hydroxycytidine. Antiviral Chem. Chemother.

. . . ) 15, 15-22.
groups 'n_VGS_“gatm_g the same co_m_p_ound S_hOW the need forBarnes, E., Salio, M., Cerundolo, V., Medlin, J., Murphy, S., Dusheiko, G.,
standardisation of in vitro susceptibility testing methods and  Kienerman, P., 2004. Impact of alpha interferon and ribavirin on the
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vivo antiviral activities. Therefore, one of the important fields 48, 3382-3389.
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