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Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP
family. As a primitive gene regulating cell growth, development and transformation, SFRP1
is widely expressed in human cells, including various cancer cells and fibroblast-like
synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves
epigenetic and other mechanisms, and participates in biological behaviors such as cell
proliferation, migration and cell pyroptosis, which leads to disease progression and poor
prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and
summarize different experimental platforms and recent research results. These are helpful
for understanding the biological characteristics of SFRP1 in RA, especially the mechanism
by which SFRP1 regulates RA-FLS pyroptosis throughWnt/b-catenin and Notch signaling
pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which
may be considered as a promising biomarker and therapeutic target of RA.

Keywords: Secreted frizzled-related protein 1, rheumatoid arthritis, Wnt/b-catenin signaling pathway, Notch
signaling pathway, pyroptosis, epigenetic
Abbreviations: RA, rheumatoid arthritis; SFRP1, Secreted frizzled-related protein 1; FLS, fibroblast-like synoviocytes; FZD,
Frizzled; ADAM10, recombinant A Disintegrin AndMetalloprotease 10; Axin, axon protein; TCF, T cell factor; LEF, lymphoid
enhancer factor; LRP, low density lipoprotein receptor related protein; Treg, regulatory T cells; DSL, Diselenide–Selenoester
Ligation; CSL, Calpastatin domain L; JAG1, Jagged1; NICD, notch intracellular domain; NF-kB, nuclear factor kappa-B; TGF-
b, transforming growth factor-b; TNF-a, tumor necrosis factor-a; IL, interleukin; VEGF, vascular endothelial growth factor;
GSK-3b, Glycogen synthase kinase-3b; HSC, hematopoietic stem cell; LPS, lipopolysaccharide; NLRP3, NOD-like receptor
thermal protein domain associated protein 3; ASC, apoptosis-associated speck-like protein containing a C-terminal caspase
activation and recruitment domain; GSDM, Gasdermin; CIA, collagen inducedarthritis; MMP-1, matrix metalloproteinase 1;
CRD, cysteine-rich domain; c-JNK, c-Jun N-terminal kinase; OA, Osteoarthritis
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INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune-mediated chronic
progressive disease and the synovium is the main target tissue.
The main pathological features are persistent synovial
hyperplasia and inflammation, which eventually lead to joint
injury, cartilage destruction, and bone erosion (1, 2). Fibroblast-
like synoviocytes (FLS) is a special group of cells in the synovial
tissue. During the pathogenesis of RA, FLS show high
proliferation, high invasiveness, and tumor-like changes,
which play an important role in the development of RA (3, 4).
Previous studies have shown that apoptosis and autophagy in
FLS are closely related to the development of RA (5, 6). Unlike
apoptosis, pyroptosis is a newly discovered form of programmed
cell death that releases powerful immune cytokines such as IL-
1b and IL-18 (7). In RA pathogenesis, the activation of
inflammatory bodies, protease processing, and the release of
inflammatory factors are related to abnormal synovium
proliferation and bone destruction (8). Research on FLS
pyroptosis may provide a new understanding of the
pathogenesis of RA. The regulation of pyroptosis process can
become a new treatment strategy for RA.

The Notch and Wnt/b-catenin signaling pathways are two
highly conserved and functionally closely related pathways that
coordinate and regulate cell growth, differentiation, and
proliferation in various tissues and are involved in the
development of various diseases (9). Secreted frizzled-related
protein 1 (SFRP1) is a soluble protein that is highly restricted in
tissue distribution. Part of its structure is highly homologous to
the Frizzled (FZD) receptor of the Wnt/b-catenin signaling
pathway; hence, it has the ability to bind to the Wnt protein
and FZD receptor (10). Therefore, SFRP1 is considered a Wnt
signaling pathway antagonist, which in turn interfere with Wnt
signaling transduction and plays an important role in
determining cell fate by regulating cell proliferation,
differentiation, apoptosis, and pyroptosis (11). This regulation
has also been studied in RA-FLS (12). In addition, some studies
have found that SFRP1 can bind to recombinant A disintegrin
and metalloproteinase 10 (ADAM10) protein and downregulate
its activity in the Notch signaling transduction pathway, thus
blocking the activation of Notch signaling (13).

One gene may act on different signaling pathways, and the
regulatory role of SFRP1 in Wnt/b-catenin and Notch
signaling pathways may be related to the pathological
mechanisms of different diseases and may be associated with
the process of pyroptosis. Functional connections among
genes, signaling pathways, and pyroptosis may also exist in
RA-FLS, and the crosstalk between different pathways may
play an important role in the pathology and development of
RA. In this review, we have added a new section on the
pathological mechanisms of RA. This manuscript focuses on
the relationship between SFRP1, Wnt/b-catenin signaling
pathway, Notch signaling pathway, and pyroptosis, and their
involvement in the pathogenesis of RA-FLS. The epigenetic
regulation of SFRP1 could be a promising RA biomarker and a
therapeutic target.
Frontiers in Immunology | www.frontiersin.org 2
WNT/Β-CATENIN SIGNALING PATHWAY
REGULATES RA-FLS

The Wnt signaling pathway is a complex signal transduction
network that plays an important role in maintaining a balance
between human growth and development (14). The Wnt/b-
catenin signaling pathway belongs to the classical Wnt signaling
pathway and is one of the most important and well-studied
signaling pathways (15). The main components involved in this
pathway include b-catenin, axon protein (Axin), transmembrane
receptors (LRP5/6 and FZD), and T cell factor/lymphoid enhancer
factor (TCF/LEF) (16) (Figure 1 and Table 1). The classical Wnt
signaling pathway mainly regulates the stability and accumulation
of b-catenin in cells. The important effect of the Wnt/b-catenin
signaling pathway on RA is reflected in the regulation of FLS
activation and bone metabolism (20, 21). In RA patients, the FLS
division rate is faster than that in normal people, and
hyperproliferative FLS is a key indicator in joint synovitis.
Activated FLS can produce pro-inflammatory factors and matrix
metalloproteinases, cause inflammatory cell infiltration and
pannus formation, and lead to the persistent destruction of
cartilage and bone (22, 23). Recent studies have shown that the
an increased expression of proteins such as Wnt3a, Wnt5a, and
Wnt10a in RA-FLS (Table 1), activates theWnt signaling pathway
and downstream genes, and increases the expression of
fibronectin, thereby promoting cell proliferation, migration, and
survival, and promotes RA synovial tissue proliferation in the
absence of pro-inflammatory factors (24, 25). In addition, the
Wnt/b-catenin signaling pathway regulates immune system
homeostasis. In normal circumstances, b-catenin can improve
the survival rate of regulatory T cells (Tregs), while activating the
Wnt canonical pathway under inflammatory conditions may
inhibit Treg function, leading to an autoimmune response (26).
In conclusion, regulation of the Wnt/b-catenin signaling pathway
in the pathogenesis of RA is multi-level and multi-faceted.
NOTCH SIGNALING PATHWAY
REGULATES RA-FLS

The Notch signaling pathway is a conserved and important signal
transduction pathway that affects cell fate. It is widely expressed in
many species including vertebrates and invertebrates. It is highly
evolutionarily conserved and influences the proliferation and
differentiation of almost all cell types (27, 28). The classical
Notch signaling pathway is mainly composed of Notch, Notch
ligand (DSL protein or Jagged1), and CSL (DNA-binding protein).
Through protease hydrolysis, Notch protein fragments (NICD or
ICN) with transcriptional regulatory activity are released and then
bind to the transcription factor CSL to regulate downstream gene
expression (29) (Figure 2). The atypical Notch signaling pathway
induces the expression of different genes through crosstalk with
signaling pathways, such as NF-kB, Wnt, and TGF-b (30, 31).
Neighboring cells can transmit signals through the binding of
Notch receptors to ligands, thereby expanding and stabilizing
June 2022 | Volume 13 | Article 903475
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molecular differences between cells, ultimately determining cell
fate and affecting tissue and organ formation (32). Notch signaling
is an important pathway for communication between adjacent
cells, regulates cell development (33, 34), and plays an important
role in the pathogenesis of RA. Previous studies have focused on
Notch1 signaling pathway activation and downstream target gene
regulation, which affect cell proliferation, migration, and other
processes in RA-FLS (Table 1), and interfere with Notch1 via
siRNA to exert therapeutic effects (35–37). A recent single-cell
RNA-sequencing study of synovial tissue found (38) that the
expression of Notch3 and its downstream target genes was
significantly upregulated in RA-FLS (Table 1). Notch3 signaling
can drive both transcriptional and spatial gradients in FLS,
contributing to the differentiation of FLS subtypes, and blocking
this pathway helps attenuate arthritis development. In a mouse
Frontiers in Immunology | www.frontiersin.org 3
model, deletion of Notch3 or blockade of Notch3 signaling has
also been shown to prevent joint damage in inflammatory
arthritis. It is noteworthy that the ADAM10 protein, which is an
important regulator of the Notch pathway, is involved in a variety
of biological functions, including inflammation, apoptosis, cancer
development, and autoimmunity (39). In the process of Notch
signal transduction, binding of Notch with Notch ligands initiates
proteolysis of the extracellular domainmediated by ADAM10, and
induces the transcription of Notch target genes through a series of
complex biological reactions, thus regulating the process of growth
and development (40, 41). Comparing 292 osteoarthritis (OA)
patients with healthy individuals, recent study has shown that the
expression of ADAM10 in endothelial cells and FLS in RA biopsies
is upregulated, suggesting that ADAM10 may be involved in the
pathological development of RA (42). In vitro experiments showed
FIGURE 1 | Effect of SFRP1 on Wnt/b-catenin signaling pathway. Wnt proteins (Wnt3a and Wnt10a) bind to FZD proteins located on the cell membrane to form a
Wnt-FZD complex, which further binds to low-density lipoprotein receptor-related protein (LRP) 5/6 co-receptors, resulting in its cytoplasmic tail phosphorylation.
When the pathway is not activated, b-catenin binds to the “destruction complex” composed of APC, GSK-3b, CK1a and Axin to promote its ubiquitin degradation.
Once this pathway is activated, Axin dissociates from the destruction complex and binds to the phosphorylation site in the cytoplasmic tail of LRP. With the
repositioning of Axin on LRP, the b-catenin released by the destruction complex is transported to the nucleus in the form of phosphorylation and binds to
transcription factors, especially TCF and LEF, thereby regulating gene transcription and expression of related target genes. SFRP1 binds Wnt ligands through its
CRD, thus preventing it from binding to FZD receptors, eliminating the accumulation of b-catenin and blocking the expression of downstream genes.
June 2022 | Volume 13 | Article 903475
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that lowering the expression of ADAM10 by siRNA could inhibit
the release of the proinflammatory cytokines TNF-a, IL-6, and IL-
8 (43), improve the symptoms of arthritis, and reduce the level of
vascular endothelial growth factor (VEGF) (42, 44). These findings
suggest that inhibition of ADAM10 may effectively treat RA by
inhibiting pro-inflammatory signal transduction and pannus
4

formation in FLS. In addition to the importance of ADAM10 in
Notch signaling, some substrates are related to ADAM10, such as
Jagged1/2 (45). These results provide a molecular basis for targeted
therapy of RA by regulating the Notch signaling pathway (46).
WNT/Β-CATENIN AND NOTCH SIGNALING
PATHWAY CROSSTALK

Wnt/b-catenin and Notch signaling pathways have been
independently shown to play a key role in regulating cell fate
(47, 48). More evidence showed that there was a complex
functional relationship between Wnt/b-catenin and Notch
signaling (49). For example, GSK-3b kinase is responsible for
the phosphorylation and inactivation of b-catenin in Wnt
signaling pathway and can inhibit the transcription of Notch
target genes by phosphorylating Notch2 (50, 51). Crosstalk
between Wnt/b-catenin and Notch signaling can be observed
in many different systems. In hematopoietic stem cell (HSC)
formation, recent evidence suggests that Wnt signaling is helpful
for Notch activity and formation by regulating the transcription
of pre-embryonic Notch ligands, and the stability of
undifferentiated HSC mediated by Wnt requires complete
Notch signaling (52). In epidermal cells, b-catenin stimulates
Notch signaling by inducing Jagged1 transcription, suggesting
that the Notch signaling pathway plays a role downstream of the
Wnt/b-catenin signaling pathway and determines the
transformation of epidermal cells (53). In addition, many
FIGURE 2 | Notch signaling pathway. The Notch signaling pathway consists of Notch, Notch ligand (DSL or Jagged1/2) and CSL (a class of DNA-binding proteins,
include RBPJ). Notch signaling is generated by the interaction of Notch ligands of neighboring cells with the receptor, initiating ADAM10-mediated proteolysis of the
extracellular domain. After three times of cleavage, Notch protein is released into the cytoplasm from the NICD and enters the nucleus to bind to the transcription
factor CSL to form the NICD/CSL transcriptional activation complex, which activates the target genes of the transcriptional inhibitory factor family such as Hes and
Hey, and plays a biological role.
TABLE 1 | Differentially expressed genes involved in Wnt/b-catenin, Notch
signaling pathway and pyroptosis in RA-FLS (P<0.05).

Name Gene Beta Reference

Wnt/b-catenin signling
pathway

SFRP1 ↓ GSE55457 (17)
GSE55584 (17)
GSE55235 (17)
GSE89408 (18, 19

FZD1 ↑
FZD2 ↑
FZD6 ↑
WNT5A ↑
TCF7 ↑
LEF1 ↑
MYC ↓
MAPK8 ↓
BCL9 ↑

Notch signalling pathway NOTCH1 ↑
RBPJ ↑
HDAC1 ↑
ADAM10 ↑

Pyroptosis NLRP3 ↑
CASP1 ↑
CASP4 ↑
CASP5 ↑
GSDMD ↑
IL18 ↑
Beta↑ means high expression in RA-FLS, if beta↓, the gene is down-regulated in RA-FLS
June 2022 | Volume 13 | Article 903475
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studies have elucidated the functional link between Wnt/b-
catenin and Notch (53–57), however, this aspect has not been
studied in details. At present, the interaction between the Wnt
and Notch signaling pathways and its effect on the development
of RA-FLS has not been documented. Whether there are
biological mechanisms, such as the regulation of Notch2 by
GSK-3b phosphorylation described earlier in RA-FLS, requires
further research (13). SFRP1 can bind to ADAM10 metal protein
in the Notch signaling pathway and downregulate its activity,
thus blocking the activation of Notch signaling. Moreover,
SFRP1 is also a suppressor gene of the Wnt/b-catenin
pathway, which indicates that SFRP1 can inhibit both the
Wnt/b-catenin and Notch signaling pathways. Can SFRP1
target RA through double inhibition? This was the direction of
our team’s follow-up research.
PYROPTOSIS MECHANISM OF RA-FLS

Pyroptosis, also known as the inflammatory necrosis of cells, is a
type of programmed cell death. The process depends on the
caspase, NOD-like receptor (NLR), and Gasdermins (GSDMs)
protein families, accompanied by the release of a large number of
pro-inflammatory factors, such as IL-1b and IL-18 (58).
Pyroptosis is mainly characterized by the continuous
expansion of cells until cell membrane ruptures, resulting in
the release of cell contents and activation of a strong
inflammatory response. The activation patterns include
classical pathways mediated by activated inflammasomes, such
as the NLRP3, and caspase-1, and non-classical pathways
mediated by bacterial lipopolysaccharide (LPS) and caspase-4/
5/11. In the classical pathway, activated inflammasomes can
promote the self-cleavage of procaspase-1 into active caspase-1,
which can cause the release of proinflammatory factors, such as
IL-1b and IL-18, and cause GSDMD protein cleavage and
pyroptosis. In the non-classical pathway, caspase-4/5/11 can
directly recognize the oligomerization of bacterial LPS, thus
causing pyroptosis by the cleavage of GSDMD (59–61)
(Figure 3 and Table 1). Studies have shown that excessive
proliferation and pyroptosis of FLS play a key role in joint
destruction and persistent inflammation in RA, and this
pathological process is closely related to the participation of
abnormal NLRP3 inflammasomes (NLRP3, ASC, and caspase-1
complex) (62). Increased levels of inflammatory cytokines such
as IL-1b, TNF, IL-18, and IL6 in the serum and synovial fluid of
patients with active RA were obtained and positively correlated
with the level of NLRP3 (63, 64) (Table 1). In the CIA animal
model, it was also found that the expression of the NLRP3
inflammasome was upregulated in synovial FLS, accompanied by
a significant increase in MMP-1 levels in the supernatant.
Upregulated NLRP3 can also promote the maturation and
increase secretion of IL-1b and IL-18 through the cleavage of
caspase-1 (65, 66) (Figure 3). In addition, IL-18 can induce FLS
to secrete osteoclast cytokines, which play a role in bone
resorpt ion (67) . These s tud ie s c l ea r ly show that
inflammasomes and their downstream cytokines, IL-1b and IL-
Frontiers in Immunology | www.frontiersin.org 5
18, are involved in the pathogenesis of RA-FLS. Therefore, it is
possible to block the activity of the NLRP3 inflammasome by
blocking NLRP3, thus inhibiting pyroptosis of FLS, which will be
discussed below.
SFRP1 REGULATES DUAL SIGNALING
PATHWAYS TO MEDIATE
RA-FLS PYROPTOSIS

SFRP is a protein that can be folded into two independent
domains, the N-terminal and C-terminal domains. The N-
terminal cysteine-rich domain region (CRD) can bind to FZD
receptors through disulfide bonds; therefore, SFRP1 can act as a
regulator of the Wnt/b-catenin signaling pathway (68, 69). Given
the critical role of the Wnt/b-catenin signaling pathway in the
development of RA pathology, it is possible to block Wnt
signaling pathway molecules to reduce the expression of
inflammatory factors in RA synovial cells, including some
secreted SFRP proteins which may inhibit inflammation by
competitively binding to Wnt protein and down-regulating c-
Jun N-terminal kinase (c-JNK) (70). In the SFRP family, SFRP1
has been widely studied in RA patients. SFRP1 negatively
regulates the Wnt/b-catenin signal transduction pathway (71).
SFRP1 interacts with Wnt protein or FZD receptor to eliminate
the accumulation of b-catenin and block the expression of
downstream genes by isolating Wnt, which is useful in
inhibiting many biological processes, such as proliferation and
apoptosis of RA-FLS (72, 73) (Figure 1). In addition, in the
review by Claudel et al., researchers introduced in detail the role
of sFRPs family members in cancer, bone and joint diseases, and
summarized the different roles of each SFRP in pathophysiology,
which have different effects on Wnt signaling pathway and
different inflammation-related signals. Especially in the control
of inflammatory response of RA, reducing the level of sFRP1 is a
promising way to control the differentiation of Th17, especially
when biological agents are ineffective. At the same time, it is also
described that the expression of sFRPs in inflammatory
synovium is regulated by epigenetics, and any decrease in
sFRPs level may lead to self-persistence of joint inflammation
(74). A similar inhibition was also observed in the Notch
signaling pathway (13). In RA-FLS, SFRP1 can bind to the
ADAM10 metal protein of the Notch signaling pathway and
downregulate its activity, thus blocking the activation of Notch
signaling. Of course, among the targets of Notch signaling
pathway, the down-regulation of ADAM10 is not the only
mechanism to interfere with Notch signaling pathway. It is
possible that SFRP1 interacts with other targets to interfere
with the Notch pathway, so the down-regulation of ADAM10
is one of the possibilities, and more findings need to be further
studied. In addition, RNA-sequence was detected in synovial
tissues of patients with RA and OA. The results of multiple
studies showed that SFRP1 was expressed at low levels in RA
(Table 1). Therefore, blocking downstream signaling pathways
and genes by upregulating the expression of SFRP1 in RA-FLS
would be helpful in the treatment of RA.
June 2022 | Volume 13 | Article 903475
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There is also a relationship between the Wnt/b-catenin and
Notch signaling pathways and cell pyroptosis. Studies have
shown that b-catenin interacts with NLRP3 and promotes its
binding and that of ASC, thus activating the NLRP3
inflammasome and initiating the subsequent process of cell
pyroptosis. When siRNA was used to inhibit b-catenin
expression, activation of the NLRP3 inflammasome was also
observed (75). This reveals a new role of b-catenin in the
Frontiers in Immunology | www.frontiersin.org 6
activation of the NLRP3 inflammasome and suggests that there
is endogenous signaling crosstalk between the Wnt/b-catenin
signaling pathway and NLRP3 inflammasome. Similarly, the
relationship between the activation of Notch1 and NLRP3 was
confirmed in the Notch signaling pathway. The expression levels
of Notch1, NLRP3, and pro-inflammatory cytokines were
detected in skin scar fibroblasts when compared to normal
counterparts. The results showed that the expression levels of
FIGURE 3 | Cells pyroptosis mechanism. In the classical pathway, under the stimulation of bacteria, viruses and other signals, intracellular NLRs act as sensors to
recognize these cognate ligand signals, and combine with the precursor of caspase1 through the adaptor protein ASC to form a multi-protein complex and activate
caspase-1. Activated caspase-1 cleaves GSDMD to form a peptide segment containing the nitrogen-terminal active domain of GSDMD, which induces cell
membrane perforation, cell rupture, release of contents, and inflammatory response. Moreover, activated caspase-1 also cleaves the precursors of IL-1b and IL-18 to
form an active structure, which is released outside the cell, recruiting inflammatory cells to gather, expanding the inflammatory response and mediating cell
pyroptosis. In the non-classical pathway, human caspase-4,5 and mouse caspase-11 can be directly activated by contact with bacterial LPS, then cleave GSDMD,
and indirectly activate caspase-1, causing pyroptosis.
June 2022 | Volume 13 | Article 903475
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Notch1 and NLRP3 were higher in skin scar fibroblasts than in
normal fibroblasts. Inhibition of Notch1 expression by siRNA
transfection significantly inhibited the expression of NLRP3
inflammasome and related pro-inflammatory factors (76).
These results confirm that Notch1 is a novel factor that
activates the NLRP3 inflammasome. Inhibition of Notch1 can
downregulate the activation of NLRP3, slow down chronic tissue
injury and fibroblast differentiation in skin scars, and regulate the
innate immune response.

In summary, although the regulation of NLRP3-mediated cell
pyroptosis by the Wnt/b-catenin and Notch signaling pathways
has not been carried out in RA-FLS, its key role is based on
observation in other diseases. We propose the following
hypothesis: in RA-FLS, SFRP1 participates in NLRP3-mediated
cell pyroptosis by regulating the Wnt/b-catenin and Notch
signaling pathways (Figure 4). Moreover, methylation
detection in synovial tissue from knee joint in patients with
RA and OA showed that several methylation sites of SFRP1 were
hypermethylated in the synovial tissue from RA patients (77, 78).
Therefore, the inhibition of hypermethylation of SFRP1 by
methylation inhibitors is helpful in upregulating the expression
of SFRP1, competitively inhibiting the signal transduction of
Frontiers in Immunology | www.frontiersin.org 7
Wnt/b-catenin and Notch, the release of downstream
inflammatory cytokines, and NLRP3-mediated cell pyroptosis,
thus playing a role in the treatment of RA.
DISCUSSION

FLS have always been considered an attractive therapeutic target
for RA. However, no treatment that directly targets FLS has been
approved. In this review, we systematically explain how SFRP1,
Wnt/b-catenin signaling, Notch signaling, and cell pyroptosis
independently affect the development of RA-FLS. Based on these
theories, we propose that in RA-FLS, SFRP1 participates in
NLRP3-mediated pyroptosis by regulating the Wnt/b-catenin
and Notch signaling pathways, thereby affecting the progression
of RA. Moreover, a preliminary study showed that SFRP1 was
hypermethylated in RA synovial tissues. Thus, SFRP1 may serve
as a potential target for RA treatment. Through the promotion of
SFRP1, it is highly expressed in RA-FLS, so as to observe whether
it can inhibit the activation of Wnt/b-catenin and Notch
signaling pathway and the occurrence of pyroptosis, whether it
FIGURE 4 | SFRP1 participate in NLRP3-mediated cell pyroptosis by regulating the dual signaling pathways of Wnt/b-catenin and Notch. By binding to Wnt protein
and ADAM10 protein, SFRP1 negatively regulates Wnt/b-catenin and Notch signaling, blocks the activation of downstream proteins and the release of inflammatory
factors, and reduces the inflammatory response of FLS and the destruction of articular cartilage. And indirectly inhibit the activation of NLRP3 inflammasome and
block the occurrence of cell pyroptosis. Methylation inhibitor of 5-Aza-dC could inhibit the expression of DNMT, release SFRP1 hypermethylation and up-regulate the
expression of SFRP1 in RA-FLS, thus negatively regulating Wnt/b-catenin and Notch signaling pathways.
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can improve the inflammatory microenvironment of joint
synovium and alleviate the symptoms of RA, which will be our
main research work. In addition, to verify this hypothesis, our
team is also planning to use traditional Chinese medicine,
Tripterygium wilfordii Hook F, or methylation inhibitors and
further develop drugs that potentially target SFRP1 to fill in the
gaps related to RA-FLS therapy.
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