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Abstract

Motivation: Cancer survival prediction can greatly assist clinicians in planning patient treatments and improving
their life quality. Recent evidence suggests the fusion of multimodal data, such as genomic data and pathological
images, is crucial for understanding cancer heterogeneity and enhancing survival prediction. As a powerful multi-
modal fusion technique, Kronecker product has shown its superiority in predicting survival. However, this technique
introduces a large number of parameters that may lead to high computational cost and a risk of overfitting, thus lim-
iting its applicability and improvement in performance. Another limitation of existing approaches using Kronecker
product is that they only mine relations for one single time to learn multimodal representation and therefore face
significant challenges in deeply mining rich information from multimodal data for accurate survival prediction.

Results: To address the above limitations, we present a novel hierarchical multimodal fusion approach named
HFBSurv by employing factorized bilinear model to fuse genomic and image features step by step. Specifically, with
a multiple fusion strategy HFBSurv decomposes the fusion problem into different levels and each of them integrates
and passes information progressively from the low level to the high level, thus leading to the more specialized fu-
sion procedure and expressive multimodal representation. In this hierarchical framework, both modality-specific
and cross-modality attentional factorized bilinear modules are designed to not only capture and quantify complex
relations from multimodal data, but also dramatically reduce computational complexity. Extensive experiments
demonstrate that our method performs an effective hierarchical fusion of multimodal data and achieves consistently
better performance than other methods for survival prediction.

Availability and implementation: HFBSurv is freely available at https://github.com/Liruiqing-ustc/HFBSurv.

Contact: mhwang@ustc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As an aggressive disease, cancer has become the leading cause of
death in the world. According to the latest global cancer report, the
cancer burden is estimated 19.3 million new cases and almost 10.0
million deaths worldwide in 2020, among which breast cancer has
become the most common cancer type (Sung et al., 2021). Given the
fact that cancer is a complex and intrinsically heterogeneous disease,
dramatic discrepancy in molecular and clinical characteristics can be
observed across patients with the same cancer type (Beck, 2015),
which in consequence significantly affects the clinical outcome and
prognosis. Therefore, an urgent need exists for the development of
efficient methods to accurately predict the survival of cancer
patients, which can greatly assist clinicians in planning patient treat-
ments and improving their life quality (Huang et al., 2020).

From a computational perspective, survival prediction is usually
modeled to regress patients’ survival time (Ching et al., 2018). One
standard method for survival prediction is the Cox proportional

hazards (CoxPH) model, in which a linear combination of covariates
contributes to the log-partial hazard of a patient. Furthermore, vari-
ous extensions to CoxPH model, such as LASSO regularization
(Tibshirani, 1997) and deep neural network supervised by Cox partial
likelihood loss (Ching et al., 2018; Mobadersany et al., 2018), have
been successfully proposed and demonstrate promising performance.
Prior works (Chaudhary et al., 2018; Gevaert et al., 2006; Katzman
et al., 2018) have tried to solve the problem of survival prediction
based on genomic data obtained from high-throughput platforms. For
example, gene expression data of breast cancer demonstrates great po-
tential for identifying prognostic factors and brings good performance
in predicting survival (Xu et al., 2012). In addition, copy number al-
teration (CNA) represents an important component of genetic vari-
ation and is also found to be useful for predicting survival (Shao et al.,
2020; Sun et al., 2018; Wang et al., 2020). Although molecular data
can reveal information valuable for survival of cancer patients, there
is still scope for improving survival prediction performance by consid-
ering more cancer-related data.
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Besides genomic data, pathological image can provide insight
into morphological attributes of cells that are closely associated
with the survival of cancer patients (Shao et al., 2020). With the
emergence of digital whole-slide images, computing methods for
analyzing pathological images have demonstrated promising cap-
ability to improve efficiency, accuracy and consistency (Cheng et al.,
2017). Accordingly, several image-based methods (Cheng et al.,
2018; Xu et al., 2016; Yu et al., 2016) have been developed for pre-
dicting survival. In this way, a number of features can be extracted
from pathological images to characterize the size, shape, distribution
and texture of nuclei. These predictive features have been reported
to have a strong association with cancer patients’ survival, thus pro-
viding exciting opportunities for further study.

With the impact of genomic data or histopathological images in
cancer study, the integration of above data types, in essence multi-
modal data, is crucial for our understanding of cancer heterogeneity
and complexity. Accordingly, the rapid development of survival pre-
diction models (Cheng et al., 2017; Ning et al., 2020; Yuan et al.,
2012) using multimodal data suggests the effectiveness of fusing
complementary information from different modalities to enhance
predictive performance. Over the past years, multimodal fusion via
deep learning has been emerged as an interdisciplinary field for solv-
ing challenging prediction tasks (Guo et al., 2019). Accordingly, sev-
eral deep learning-based fusion methods for multimodal data are
successfully proposed for cancer survival prediction (Cheerla and
Gevaert, 2019; Mobadersany et al., 2018; Wang et al., 2020), which
are highly flexible and can combine disparate heterogeneous data
modalities in a non-linear manner.

In addition to the aforementioned multimodal fusion methods, the
technique using Kronecker product shows its superiority in cancer sur-
vival prediction. Specifically, Kronecker product considers pairwise
interactions of two input feature vectors by producing a high-
dimensional feature of quadratic expansion (Kim et al., 2017). For ex-
ample, as a pioneered work, Chen et al. (2020) present deep-learning-
based framework named Pathomic Fusion for predicting survival out-
come by fusing histology and genomic multimodal data, in which
Kronecker product is taken to model pairwise feature interactions
across modalities. To integrate gene expression data and pathological
image, we previously propose a method named GPDBN (Wang et al.,
2021) that adopts Kronecker product to model inter-modality and
intra-modality relations for cancer prognosis prediction. Despite of
promising results, using Kronecker product in multimodal fusion may
introduce a large number of parameters that may lead to high compu-
tational cost and a risk of overfitting (Kim et al., 2017; Liu et al.,
2018), thus limiting its applicability and improvement in perform-
ance. Another limitation of above approaches is that they only mine
relations for one single time (i.e. single fusion) to learn multimodal
representation. However, due to the complexity of multimodal data,
such single fusion strategy still faces significant challenges in deeply
mining the rich information from genomic data and pathological
images for accurate survival prediction.

Considering the limitations mentioned above, in this work, we
present a novel multimodal approach named hierarchical factorized
bilinear fusion for cancer survival prediction (HFBSurv), which
employs factorized bilinear models (Kim et al., 2017; Yu et al.,
2017) to fuse genomic and image features step by step. Specifically,
with a multiple fusion strategy HFBSurv decomposes the fusion
problem into different levels and each of them integrates and passes
the fused information progressively from the low level to the high
level. In low-level fusion, instead of directly applying Kronecker
product, we introduce a modality-specific attentional factorized
bilinear module (MAFB) with significantly reduced training parame-
ters and computational complexity to capture modality-specific rela-
tions and quantify their importance. In addition, we leverage a
cross-modality attentional factorized bilinear module (CAFB) for
high-level fusion, which allows relations across modality to be fully
explored and enables different importance for them. We argue the
proposed approach can capture diverse modality-specific and cross-
modality relations among different modalities and fuse the features
extracted from multiple modalities in a specialized, effective way.
For verifying the effectiveness of our proposed approach,

experiments are conducted on the breast cancer dataset from the
Cancer Genome Atlas (TCGA) and the results demonstrate that
HFBsurv achieves consistently better performance than other meth-
ods for survival prediction.

2 Materials and methods

2.1 Data preprocessing
In this work, the proposed method is tested on the breast invasive car-
cinoma cohort obtained from TCGA (Zhu et al., 2014). In detail, only
patient samples with matched multimodal data including H&E-stained
whole-slide images, gene expression, CNA and clinical information are
selected for further study. In addition, by following previous study
(Cheng et al., 2017) we exclude patients with missing or excessively
short follow-up (i.e. shorter than 30 days). Finally, 1015 patients with
the corresponding survival status and survival time are enrolled in this
study. To comprehensively evaluate our survival prediction method,
we adopt repeated holdout cross-validation by following Ching et al.
(2018). In particular, the dataset is randomly partitioned into 80%
training set and 20% testing set. To ensure the robustness of our
results, the random partitioning process is repeated 10 times to gener-
ate 10 training/testing set pairs. After that, we train a prediction model
using each training set and evaluate C-index and AUC of these models
on the paired testing sets. Finally, we report the mean value and stand-
ard deviation of these 10 performance measurements.

In our study, the processing procedure of genomic data including
gene expression and CNA is as follows. First, similar to prior works
(Dhillon and Singh, 2020; Ding et al., 2016), for each data type the
missing values over 10% of the patients are removed, and the other
missing values are estimated by the weighted nearest neighbors algo-
rithm. Second, according to previous study (Gevaert et al., 2006),
we normalize the gene expression data and discretize them to three
categories: overexpressed (1), baseline (0) and underexpressed (-1).
Meanwhile the linear copy number values are normalized using z-
score. After that, the gene expression and CNA data consists of
19 006 and 24 776 genes, respectively. Finally, a commonly used R
package randomForestSRC (Yu et al., 2019) for survival analysis is
adopted to select features, by which the top 80 gene expression and
CNA features are chosen respectively for further study. It is of note
that we only apply feature selection to the training set and a predic-
tion model is built on the selected features to rigorously evaluate
performance with the untouched paired testing set.

For pathological images, we extract quantitative image features
by following previous study (Yu et al., 2016). Specifically, all images
captured at 40� magnification are first divided into tiles of 1000 by
1000 pixels with bftools in an open microscopy environment. Next,
we select 10 tiles with the highest image density defined as the sum-
mation of red, green and blue values (Sun et al., 2018). Then, a total
of 2343 quantitative features are extracted from pathological images
using CellProfiler (Carpenter et al., 2006), including the shape, size,
texture as well as pixel intensity distribution of cells and nuclei.
Finally, the feature selection procedure described above is performed
to yield pathological image features with the same dimensionality as
genomic features.

2.2 HFBSurv
2.2.1 Model architecture

The hierarchical architecture of our proposed HFBSurv is presented
in Figure 1, where three modalities are included as input: patho-
logical image p 2 Rdp , CNA c 2 Rdc and gene expression g 2 Rdg ,
with dp being the dimensionality of p and so on. For pre-processed
feature from each modality, a fully connected (FC) embedding layer
is adopted to map feature into similar embedding space for alleviat-
ing the statistical property differences between modalities (Gu et al.,
2017). Specifically, each embedding layer has 80 and 50 neurons re-
spectively and encodes the embedding as fm; m � p; c; gf g. After
that, embedding of each modality is first used as input of MAFB
(details are described in Section 2.2.2) to generate modality-specific
representation f̂ m capturing correlations and dependencies within
each modality, as well as the weight am representing the
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corresponding modality-specific importance. Then the feature vector
of low-level fusion flow is calculated as the weighted average of all
modality-specific representations and is formulated as
flow ¼

P
m amf̂ m; m � p; c; gf g. Intuitively, flow can efficiently focus

on modality-specific fusion by taking into account intrinsic relations
within each modality.

Moreover, the low level also delivers representations of all
modalities to the high level where the information is further fused to
form representations between different modalities. We hypothesize
that compared with the direct use of fm that may be noisy, using ef-
fective f̂ m derived from the low level is more appropriate in generat-
ing useful cross-modality representations in the high level. In detail,
modality-specific representations are fused two in two by CAFB (as
revealed in the Section 2.2.3) to yield cross-modality representations
f̂ m1m2

; m1m2 � p; c; gf g and m1 6¼ m2, as well as the weight am1m2

representing the corresponding cross-modality importance. Note
that f̂ m1m2

can provide sufficient information regarding to the com-
plex relations between modalities. Afterwards, the feature vector of
high-level fusion fhigh is calculated as fhigh ¼P

am1m2
f̂ m1m2

;m1m2 � p; c; gf g and m1 6¼ m2, which could fully
learn relations across modalities owing to the effectiveness of cross-
modality representations f̂ m1m2

.
Finally, we are therefore able to obtain two kinds of feature vec-

tors i.e. flow and fhigh respectively. To make full use of them,
HFBSurv concatenates flow and fhigh to obtain the final comprehen-
sive multimodal representation fM by leveraging the complementary
information from these intermediate feature vectors. To make sur-
vival prediction, fM is passed through a prediction module including
two tanh activated FC layers containing 256 and 64 nodes, respect-
ively, each followed by dropout layer with rate 0.25 to prevent over-
fitting. Then a final Cox layer is adopted to make survival
prediction by performing Cox proportional hazards regression (Hao
et al., 2018; Huang et al., 2019).

2.2.2 MAFB in low-level fusion

The exploitation of relations within each modality has been success-
fully introduced in cancer prognosis via bilinear model (Wang et al.,

2021) or graph-based model (Subramanian et al., 2021). In this
study, we focus on bilinear model since it can provide rich represen-
tations by exploiting the relations within each modality.
Specifically, given l-dimensional input vectors x 2 R

l derived from
a single modality such as gene expression, a full bilinear model is
defined by:

zi ¼ xTWix (1)

where Wi 2 Rl�l represents a projection matrix and zi 2 R
1 denotes

the output of the bilinear model. In practice, a bilinear model in
Equation (1) can be implemented using Kronecker product followed
by a linear mapping to project the representations into a h-dimen-
sional output bilinear vector z 2 R

h. Although the full bilinear
model is valuable in capturing pairwise feature interactions, it also
introduces a large number of parameters potentially leading to high
computational cost and the overfitting risk (Liu et al., 2018; Mai
et al., 2020a)

Motivated by recent advance in factorized bilinear model (Kim
et al., 2017; Yu et al., 2017), in this study we develop MAFB to cap-
ture relations within each modality with the aim of facilitating low-
level fusion in HFBSurv, which enjoy the dual benefits of much
fewer parameters and robust expressive capacity of full bilinear
model. As shown in Figure 1, MAFB takes the embedding of each
modality fm as input and factorizes the projection matrix Wi in
Equation (1) into two low-rank matrices according to matrix
factorization:

zm;i ¼ f T
mWifm ¼

Xk

d¼1

f T
m um;dvT

m;dfm

¼ eTðUT
m;ifm8VT

m;ifmÞ;m 2 fp; c; gg
(2)

where k is the latent dimensionality of the factorized matrices
Um;i ¼ um;1; . . . ;um;k½ � 2 R

l�k and Vm;i ¼ vm;1; . . . ; vm;k½ � 2 R
l�k, 8 is

the Hadamard product of two feature vectors, and e 2 R
k is an all-

one vector. By this means, the computational burden for learning a
bilinear model will be dramatically reduced. For the purpose of
obtaining output feature zm by Equation (2), the weights Um ¼

Fig. 1. Illustration of the proposed HFBSurv architecture
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Um;1; . . . ;Um;h

� �
2 R

l�k�h and Vm ¼ Vm;1; . . . ;Vm;h

� �
2 R

l�k�h to
be learned are two three-order tensors. According to Yu et al.
(2017), Equation (2) can be rewritten as follows:

zm ¼ SumPoolingð ~U
T

mfm8 ~V
T

mfm;kÞ;m 2 fp; c; gg (3)

where Sum Pooling x; kð Þ function performs sum pooling over x by
using a 1-D non-overlapped window with the size k, ~Um 2 R

l�kh

and ~Vm 2 R
l�kh are 2-D matrices reshaped from Um and Vm, re-

spectively. Finally, the modality-specific representation f̂ m 2 R
lþh is

obtained as shown below:

f̂ m ¼ fm VC zm;m 2 fp; c; gg (4)

where VC denotes vector concatenation.
To obtain more discriminative features for multimodal represen-

tation and benefit downstream fusion, in MAFB we also introduce
an unimodal attention to adaptively assign the weight for each

modality-specific representation to quantify its importance. In de-
tail, a sigmoid activated FC layer is adopted to process each
modality-specific representation and outputs the corresponding

importance am 2 R
1, as defined below:

am ¼ Sigmoidðwmf̂ m þ bmÞ;m 2 fp; c; gg (5)

where wm and bm refer to parameter matrix and bias item of FC

layer, respectively. By fully capturing intrinsic relations within each
modality, f̂ m provides a plausible way to generate appropriate

modality-specific importance. Therefore, the output of MAFB for
each modality is denoted as amf̂ m 2 R

lþh; m 2 p; c; gf g.

2.2.3 CAFB in high-level fusion

Performing fusion for mining complementary information across

modalities plays an important role in multimodal fusion. In
HFBSurv, CAFB is introduced to fuse diverse information of differ-
ent modalities for explicitly exploring complex relations across

modalities and assign different importance for them. Specifically,
after receiving the modality-specific representations f̂ m as well as

the corresponding importance am from the low level, the s-dimen-
sional cross-modality representation f̂ m1m2

2 R
s can be generated

similar to Equation (2):

f̂ m1m2 ;i
¼ eT

�
UT

m1 ;i
ðam1

f̂ m1Þ8VT
m2 ;i
ðam2

f̂ m2Þ
�
;

m1;m2 2 fp; c; gg;m1 6¼ m2

(6)

where factorized matrices Um1 ¼ Um1;1; . . . ;Um1;s½ � 2 R
ðlþhÞ�k�s

and Vm2 ¼ Vm2;1; . . . ;Vm2;s½ � 2 R
ðlþhÞ�k�s represent learnable

weights to obtain the output feature f̂ m1m2
. Equation (6) can be fur-

ther rewritten as follows:

f̂ m1;m2 ¼ SumPooling
�

~U
T

m1
ðam1

f̂ m1
Þ8 ~V

T

m2
ðam2

f̂ m2
Þ;k
�
;

m1;m2 2 fp; c; gg;m1 6¼ m2

(7)

where ~U
T

m1 2 R
lþhð Þ�ks and ~V

T

m2 2 R
lþhð Þ�ks are 2-D matrices

reshaped from Um1 and Vm2, respectively.
In addition, we specifically leverage a bimodal attention to iden-

tify the importance of the cross-modality representation. In detail,
the similarity Sm1m2

2 R
1 of am1

f̂ m1
and am2

f̂ m2
is first estimated as

follows:

Sm1 ;m2
¼
Xlþh

i¼1

eam1
f̂ m1 ;i

Plþh
j¼1 eam1

f̂ m1 ;j

0
@

1
A eam2

f̂ m2 ;i

Plþh
j¼1 eam2

f̂ m2 ;j

0
@

1
A (8)

where the computed similarity is in the range of 0 to 1. We argue
that using the weighted modality-specific representation in Equation
(8) rather than the original embeddings as adopted in previous study

(Mai et al., 2020b) renders a better indication of the degree of simi-
larity between the two modalities. Then, the cross-modality import-
ance am1m2

is obtained by:

am1m2
¼ eâmimj

P
mi 6¼mj

eâmimj

; âm1m2
¼ am1

þ am2

Sm1m2
þ S0

(9)

where S0 represents a pre-defined term controlling the relative
contribution of similarity and modality-specific importance,
and here is set to 0.5. Therefore, the output of CAFB is the weighted
cross-modality representation am1m2

f̂ m1m2
; m1; m2 2 p; c; gð Þ and

m1 6¼ m2.

2.3 Training
In this study, we use the Cox partial likelihood loss (Cheerla and
Gevaert, 2019) with l1 regularization to train the model end-to-end
for survival prediction, which is defined as:

‘ðHÞ ¼ �
X

i:Ei¼1

�
ĥHðxiÞ � log

X
j:Ti>Tj

exp
�

ĥHðxjÞ
��
þ kðkHk1Þ (10)

where the values Ei, Ti and xi for each patient represent the survival
status, the survival time and the data, respectively, and ĥH is the
neural network model trained for predicting the risk of survival, k is
a regularization hyperparameter to avoid overfitting.

HFBSurv follows a modern deep learning design and is imple-
mented by PyTorch platform. In this study, l, h and s, i.e. the dimen-
sionality of fm, zm and f̂ m1m2

, are set to 50, 20 and 20, respectively.
And the latent dimensionality k of the factorized matrices is set to
20. The learning rate and the k are tunable hyper-parameters in our
model. We train the model with Adam optimizer that is a widely
used stochastic gradient descent algorithm. For each training/testing
set pair, we first empirically preset learning rate to 1.2e-4 as a start-
ing point for a grid search during training. After that, by following
Ching et al. (2018), an optimal learning rate is determined through
5-fold cross-validation on the training set, using C-index as the per-
formance metric. Finally, the model is trained on all of the training
set using the optimal learning rate and then evaluated on the testing
set. To determine an optimal value for k, we check a few of different
values via a simple grid search and settle on 3e-3 throughout the
experiments. The server used for training is equipped with Intel
Xeon 4110 @ 2.10 GHz CPU and NVIDIA GeForce RTX 2080Ti
GPU.

2.4 Evaluation metrics
In this study, the Concordance Index (i.e. C-index) and AUC are
served as our evaluation metrics by following previous study (Shao
et al., 2020). Here, the C-index is calculated for quantifying the
quality of the ranking at the patient level as below:

C� index ¼ 1

n

X
i2f1...Ng

X
yj>yi

I
�

ĥHðxiÞ > ĥHðxjÞ
�

(11)

where n represents number of comparable pairs of patients, yi

denotes the ith patient’s actually observed survival and I �ð Þ refers to
the function of the indicator. The AUC measures the ranking quality
at event-time level and can be computed as follows:

AUC ¼ 1

num

X
t2T

X
yi < t

X
yj>t

I
�

ĥHðxiÞ > ĥHðxjÞ
�

(12)

where num and t refer to the cumulative number of comparable
pairs computed across all event times and the set of all possible event
times in the dataset, respectively. With values of C-index and AUC
ranging from 0 to 1, a higher value of C-index and AUC indicates
better model prediction performance and vice versa.

3 Results

3.1 Evaluation of HFBSurv
In this study, extensive experiments are conducted to evaluate the
performance of HFBSurv in repeated holdout cross-validation. To
demonstrate that the hierarchical fusion strategy is indeed effective,
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we introduce four typical single-fusion methods to compare with
HFBSurv: (i) Direct combination: concatenation from multimodal
embeddings; (ii) Element-wise addition: element-wise addition from
multimodal embeddings; (iii) Decision fusion: decision voting on the
output of single modality network; (iv) Tensor fusion: Kronecker
product from multimodal embeddings. For fair comparison, survival
prediction using aforementioned fusion methods is performed by the
same prediction module as described in Section 2.2.1.

Table 1 shows the C-index and AUC values of different methods,
and some important observations are made as follows. We can see
that HFBSurv achieves the best performance and shows remarkable
improvement over single-fusion methods. Specifically, HFBSurv out-
performs the Direct combination, Element-wise addition, Decision
fusion and Tensor fusion by about 9.3%, 9.0%, 9.9% and 8.5%, re-
spectively. These results suggest that by adopting multiple fusion
strategy in a hierarchical way, the proposed HFBSurv can effectively
capture diverse relations within and across modalities. Moreover, it
is of note that compared with other single-fusion methods, Tensor
fusion shows relatively higher C-index value, but the improvement
in performance is limited probably due to the large number of
parameters introduced by Kronecker product. Meanwhile, we can
also infer from Table 1 that HFBSurv brings significant improve-
ment on AUC compared to single fusion methods, demonstrating its
superiority in generating more comprehensive multimodal represen-
tation for predicting patient survival.

Furthermore, we adopt four different configurations of
HFBSurv to evaluate each component of the proposed method: (i)

Low: only low-level fusion by incorporating MAFB without uni-
modal attention; (ii) LowAtt: only low-level fusion by incorporat-
ing full MAFB (i.e. with unimodal attention); (iii) High*:
hierarchical (both low- and high-level) fusion by incorporating full
MAFB and CAFB without bimodal attention; (iv) HFBSurv: our
proposed hierarchical (both low- and high-level) fusion by incor-
porating full MAFB and full CAFB (i.e. with bimodal attention).
Also, to compare fairly the same prediction module is adopted to
predict survival.

As shown in Table 1, we can find that both Low and LowAtt

achieve better performance than single fusion methods, which
demonstrates the power of MAFB in capturing intrinsic relations
within each modality. More importantly, High* and HFBSurv
consistently yield remarkable improvements on C-index and AUC.
For example, HFBSurv outperforms Low and LowAtt with 6.4%
and 4.7% improvements on C-index, respectively. These results
clearly highlight the benefit of conducting hierarchical fusion and
the effectiveness of CAFB by exploring relations across modalities.
In addition, we find the attention mechanism is a good technical
choice for multimodal fusion in predicting survival. For example,
after adding unimodal and bimodal attention, LowAtt and
HFBSurv successfully improve the C-index by 1.7% and 1.8%, re-
spectively. To conclude from the aforementioned analysis, the
hierarchical fusion strategy and attentional factorized bilinear
model are two crucial factors leading to the remarkable improve-
ment of HFBSurv.

To further understand the improvement made by HFBSurv,
Kaplan-Meier curves of the above approaches are plotted and dis-
played in Figure 2. In practice, we concatenate predicted risks
from all of the test sets in the repeated holdout cross-validation
and plot them against their survival time by following Chen et al.
(2020). We can observe that HFBSurv enables easy separation of
patients into low and high risk groups with remarkably better
stratification (P-value ¼ 2.7014e-27) in comparison to the best
single fusion method Tensor fusion (P-value ¼ 5.2203e-15). In
addition, it is noteworthy that the HFBSurv can also provide
a more favorable prognostic prediction as compared with High*
(P-value ¼ 2.0820e-23), LowAtt (P-value ¼ 1.7035e-20) and Low
(P-value ¼ 1.0069e-19). All of these results clearly demonstrate
the superiority of our method for multimodal fusion in survival
prediction.

Table 1. Evaluation of HFBSurv using C-index and AUC values

Fusion strategy Method C-index AUC

Single Direct combination 0.67360.039 0.70660.041

Element-wise addition 0.67660.040 0.71160.048

Decision fusion 0.66760.083 0.70760.087

Tensor fusion 0.68160.042 0.72760.050

Hierarchical Low 0.70260.026 0.73460.033

LowAtt 0.71960.024 0.75660.028

High* 0.74860.029 0.78860.033

HFBSurv 0.76660.024 0.80660.025

Fig. 2. Performance evaluation of HFBSurv using Kaplan–Meier curve

HFBSurv: hierarchical factorized bilinear fusion for cancer survival prediction 2591



3.2 Performance comparison with existing methods
HFBSurv is further assessed by comparing the performance with re-
cent deep learning-based survival prediction methods MDNNMD
(Sun et al., 2019), DeepSurv (Katzman et al., 2018), GPDBN(Wang
et al., 2021) and Pathomic Fusion (Chen et al., 2020), as well as
traditional methods RSF (Ishwaran et al., 2008), En-Cox (Yang and
Zou, 2013) and LASSO-Cox (Tibshirani, 1997). For fair compari-
son, all aforementioned prediction models use exactly same multi-
modal features for performance evaluation throughout the
experiment. From the experimental results listed in Table 2, it is ob-
vious that all these methods have satisfying performance by incorpo-
rating multimodal information. Meanwhile, deep learning-based
approaches generally exhibit better performance than traditional
methods. For example, compared with LASSO-Cox, Pathomic
Fusion boosts the C-index and AUC by 4.0% and 5.2%, respective-
ly. More importantly, our proposed HFBSurv reaches a superior C-
index of 0.766, which outperforms all other methods including
Kronecker product-based GPDBN and Pathomic Fusion by a large
margin. In addition to C-index, HFBSurv also achieves the best
AUC value of 0.806 and consistently surpasses other investigated
methods. These results suggest that our method performs an effect-
ive and specialized hierarchical fusion of multimodal data for sur-
vival prediction.

To further evaluate the performance of HFBSurv, we plot
Kaplan–Meier curves of all investigated methods in Figure 3. It
can be observed that for traditional methods, En-cox provides
slightly better prognostic prediction with a P-value of 1.4028e-

12 than RSF (P-value¼3.9875e-11) and LASSO-Cox (P-value ¼
2.9727e-12). Of all deep learning-based methods, GPDBN and
Pathomic Fusion show competitive P-value of 3.1066e-23 and
8.2939e-21, respectively by adopting Kronecker product to cap-
ture pairwise feature interactions. In comparison, HFBSurv
gives the most significant P-value of 2.7014e-27, which again
confirms the effectiveness of the proposed method in predicting
survival.

In addition, as a general framework HFBSurv can be applied to
different cancer types. To validate our method on other cancers, we
download and process 10 more publicly available cancer datasets
from TCGA including brain lower grade glioma (LGG), lung adeno-
carcinoma (LUAD), liver hepatocellular carcinoma (LIHC), colon
adenocarcinoma (COAD), lung squamous cell carcinoma (LUSC),
uterine corpus endometrial carcinoma (UCEC), bladder urothelial
carcinoma (BLCA), glioblastoma multiforme (GBM), kidney renal
clear cell carcinoma (KIRC) and kidney renal papillary cell carcin-
oma (KIRP). After that, we perform more comprehensive experi-
ments to further investigate the performance improvements of our
proposed method over other approaches. As can be seen from
Figure 4 and Supplementary Table S1–S10, our method compares
favorably against other existing methods in terms of both C-index
and AUC. Taken together, these results clearly demonstrate the ad-
vantage of HFBSurv as a general framework for predicting survival
of different cancer patients.

3.3 Complexity comparison
One significant concern with deep learning is the computational
cost of training and testing models. In this experiment, we compare
HFBSurv with Pathomic Fusion and GPDBN since they have similar
consideration to our method. Specifically, all models with original
implementation are run in the equivalent environment as described
in Section 2.4 and GPDPN is extended to handle the case of more
than two modalities. We use the amount of trainable parameters as
a proxy for the space complexity. As illustrated in Table 3, HFBSurv
has 0.150M trainable parameters, which is approximately 12.5%
and 13.2% of the number of parameters of Pathomic Fusion and
GPDBN, respectively. To assess the time complexity of HFBSurv
and the competitive methods, we calculate floating-point operations
per second (FLOPS) of each method in testing. The results in
Table 3 show that HFBSurv needs 0.206G FLOPS during testing,
compared with 1.201G and 1.114G FLOPS in Pathomic Fusion and

Table 2. Performance comparison of HFBSurv and other methods

using C-index and AUC values

Method C-index AUC

Traditional RSF 0.66360.051 0.70060.058

En-Cox 0.68260.040 0.71160.043

LASSO-Cox 0.67360.045 0.70360.051

Deep-learning DeepSurv 0.70560.051 0.74560.060

MDNNMD 0.70860.050 0.74760.064

GPDBN 0.72160.063 0.76360.067

Pathomic fusion 0.71360.035 0.75560.042

HFBSurv 0.76660.024 0.80660.025

Fig.3. Performance comparison of HFBSurv and other methods using Kaplan–Meier curve
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GPDBN, respectively. The main reason for fewer trainable parame-
ters and number of FLOPS lies in that HFBSurv performs multi-
modal fusion using factorized bilinear model, and can significantly
reduce the computational complexity and meanwhile obtain more
favorable performance.

3.4 Univariate and multivariate Cox proportional

hazards analysis
With the aim of evaluating the independent prognostic power of
risk predicted by HFBSurv, we perform univariate and multivari-
ate Cox proportional hazards analysis of HFBSurv risk and other
standard clinicopathologic variables in breast cancer prognosis
(Yu et al., 2019), including age at diagnosis, histologic grade,
tumor size (T stage), lymph node invasion (N stage) and metastatic
spread (M stage). As presented in Table 4, HFBSurv risk is signifi-
cantly associated with survival by univariate Cox proportional
hazards analysis (P-value¼2.84e-14). Moreover, multivariate
Cox proportional hazards analysis identifies HFBSurv risk as a
major prognostic factor when correcting for other clinicopatho-
logic variables. At the same time, it is observed that age is also

marginally significant in multivariate Cox proportional hazards
analysis, but other clinicopathologic variables are not. Taken to-
gether, the above analysis demonstrates that our method shows
substantial predictive power and HFBSurv risk is an independent
prognostic factor (P-value ¼ 2.71e-13, Hazard ratio ¼5.125, 95%
CI, 2.98–6.96).

4 Discussion

In this study, we propose a novel cancer survival prediction method
HFBSurv via hierarchical factorized bilinear fusion. To obtain com-
prehensive multimodal representation for predicting survival of can-
cer patients, HFBSurv is carefully developed to deeply mine the rich
information from multimodal data by conducting low- and high-
level fusion step by step, which is distinct from the commonly
adopted single fusion strategy. In this hierarchical fusion frame-
work, MAFB and CAFB with much fewer training parameters are
designed to capture complex modality-specific and cross-modality
relations, respectively. The experiment results demonstrate that
HFBSurv achieves remarkable improvement in performance over
existing methods with dramatically reduced computational com-
plexity. Furthermore, analysis of Kaplan–Meier curves and Cox pro-
portional hazards are conducted to confirm the effectiveness of
HFBSurv in cancer survival prediction.

Although HFBSurv has obtained promising predictive perform-
ance, there is still large room for improvement. Firstly, the per-
formance of our method is still limited by available multimodal
cancer data, which can be improved by expanding our study to in-
clude more patients. Meanwhile, despite that the performance
advantage of HFBSurv over other existing methods is generally

Fig.4. Performance comparison of different methods on other TCGA datasets

Table 3. Comparison of model complexity

Methods Number of parameters FLOPS

Pathomic Fusion 1.201M 1.219G

GPDBN 1.114M 1.130G

HFBSurv 0.150M 0.206G

Table 4. Hazard ratios for univariate and multivariate Cox proportional hazards analysis

Univariate Multivariate

Variable C-index Hazard ratio 95% CI P value Hazard ratio 95% CI P value

HFBSurv 0.766 5.396 3.50–8.33 2.84e–14 5.125 2.98–6.96 2.71e–13

Age 0.631 1.626 1.10–2.41 0.015 1.510 1.01–2.25 0.043

Grade 0.649 2.373 1.67–3.38 2.00e–6 1.625 0.85–3.12 0.145

T stage 0.580 1.578 1.06–2.34 0.024 0.999 0.60–1.67 0.998

N stage 0.599 2.309 1.56–3.42 3.00e–5 1.442 0.78–2.66 0.241

M stage 0.538 1.812 1.14–2.89 0.013 1.487 0.91–2.43 0.112
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robust to smaller dataset size, it is worth noting that for GBM
multimodal dataset with only 145 patients, Lasso-cox shows
slightly better results than HFBSurv and meanwhile largely outper-
forms other deep learning-based methods, highlighting the poten-
tial usefulness of conventional methods on extremely small cancer
datasets. Secondly, given that other genomic data (e.g. gene methy-
lation, miRNA expression) are also valuable for cancer survival
prediction, our method can be further enhanced by incorporating
these different data types. Finally, we intend to explore a deep
learning-based survival prediction method with improved inter-
pretability in future work. In conclusion, we present a novel hier-
archical multimodal fusion method for cancer survival prediction,
which could be useful in a number of prediction tasks by integrat-
ing multimodal data and serve as a reliable and helpful tool for
further studies.
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