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a b s t r a c t

Cell sheet engineering allows investigators/clinicians to prepare cell-dense three-dimensional (3-D)
tissues, and various clinical trials with these fabricated tissues have already been performed for
regenerating damaged tissues. Cell sheets are easily manipulated and 3-D tissues can be rapidly
fabricated by layering the cell sheets. This study used optical coherence tomography (OCT) to
noninvasively analyze the following processes: (1) adhesions between layered cell sheets, and (2) the
beating and functional interaction of cardiac cell sheet-tissues for fabricating functional thicker 3-D
tissues. The tight adhesions and functional couplings between layered cell sheets could be observed
cross-sectionally and in real time. Importantly, the noninvasive and cross-sectional analyses of OCT make
possible to fabricate 3-D tissues by confirming the adherence and functional couplings between layered
cell sheets. OCT technology would contribute to cell sheet engineering and regenerative medicine.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Damaged tissues have already been clinically treated with a
variety of regenerative therapies using functional cells and bioengi-
neered tissues [1,2]. We have proposed scaffold-free tissue engineer-
ing, called “cell sheet engineering”, utilizing temperature-responsive
culture dishes, which possess reversible hydrophilic/hydrophobic
properties that are simply controlled by culture temperature [3]. Cell
sheets are comprised of only cells and a biological extracellular
matrix (ECM), which means that cell-dense three-dimensional (3-D)
tissue can be fabricated by simply layering cell sheets without any
need for scaffolds [4–7]. Three-dimensional cell sheet-tissues have
been applied to regenerate damaged tissues, and cell sheet-therapy
has already been used clinically in six different fields [8–17]. The
presence of ECM is thought to promote the tight, rapid attachment
between individual layered cell sheets [9,18]. There have been very
few studies that could observe cross-sections of cell sheet-tissues
noninvasively to analyze adhesion and functional communications
due to the technical difficulty [19,20].

Three-dimensional tissues and their microstructures can be
observed in cross-section by optical coherence tomography (OCT)

in real time [21]. The technology has been applied in several
clinical fields, where the safety, non-invasiveness and feasibility
have been confirmed; at present, OCT had become an important
method in clinical examination [22–28].

Recently, we have developed an OCT system, which can observe
living cell sheets in cross-section [29]. In this study, the in-vitro
fabrication of 3-D tissues with cell sheet engineering, as well as
the beating and functional coupling of 3-D cardiac tissues were
analyzed noninvasively by OCT. This technology could be an
invaluable method in the fields of cell sheet engineering, tissue
engineering, and regenerative medicine.

2. Materials and methods

All animal experiments were performed in accordance with the
experimental procedures approved by the Committee for Animal
Research of Tokyo Women's Medical University.

2.1. Cell culture and cell sheet preparation

C2C12 murine skeletal myoblast lines (Sumitomo Dainippon
Pharma, Osaka, Japan) and NIH3T3 murine embryonic skin fibroblast
lines (ATCCs CRL-1658™) [30] were used in this study. After C2C12 or
NIH3T3 cells were mixed with a medium [Dulbecco's modified
Eagle's medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented
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with 10% fetal bovine serum (Japan Bio Serum, Nagoya, Japan) and 1%
penicillin-streptomycin (Invitrogen Life Technologies, CA, USA)],
6.0�105 cells were seeded onto a 35-mm temperature-responsive
culture dish (UpCells dish) (CellSeed, Tokyo, Japan) and then
cultured for 3 days at 37 1C. Rat neonatal cardiac cell sheets were
fabricated using UpCells dishes according to a previous report [7]. To
harvest these cell sheets, the culture dishes were placed in a separate
CO2 incubator set at 20 1C. To fabricate 3-D tissues, cell sheets were
layered on a 35 mm polystyrene culture dish (Corning, NY, USA) by
pipetting as described in previous reports [6,7].

2.2. Optical coherence tomography (OCT)

Recently, an OCT system to analyze cell sheets has been estab-
lished [29]. The adhesions between a cell sheet and a polystyrene
culture dish, and between layered cell sheets, were observed at 37 1C.
The location of spaces, which was characterized by the intensity of
the OCT signal, between (1) a cell sheet and the dish, or (2) layered
cell sheets is displayed as red in the image. The vertical resolution of
the OCT was approximately 9 μm, and the horizontal resolution was
approximately 20 μm. The beatings of cardiac cell sheets were
observed and analyzed at 32 fps (frames per second). Within cardiac
cell sheets, areas determined as beating within the cell sheet were
those places where the correlation of OCT signals at intervals of
90 ms was lower than a predetermined level. The beating areas were
marked with green colored markers.

3. Results and discussion

3.1. Observation of C2C12 and NIH3T3 cell sheets by OCT

A cell sheet with culture medium was transferred onto a
polystyrene culture surface as described in previous reports [4–7].
After cell sheets were transferred onto the culture dish, medium
was removed to facilitate spreading of the cell sheet. After a short-
term cultivation of less than 30 min, the spaces were found to
decrease rapidly, and when no spaces were observed, the trans-
ferred cell sheet was found to be in a smooth plane form (Fig. 1B).
The rapid time-course decrease in spaces between the cell sheet
and the dish was clearly recorded (Video 1). When new medium
was added to the cell sheet to prevent drying out, the cell sheet

continued to adhere onto the dish (Video 1), showing a tight
attachment between the cell sheet and the dish. Similar adhesion
processes were also observed in C2C12 cell sheets onto the dish
using OCT, and tight attachment between the cell sheet and the dish
was confirmed (data not shown). We have been attempting to
develop a cell culture surface with higher functionality that is able
to precisely control the attachment/detachment of cells by mod-
ulating the chemical structure of the surface; for example, hydro-
philically modified cell culture surfaces can accelerate cell sheet
detachment [31–33]. At present, surfaces that have been developed
are mainly evaluated by top-view photography. Because OCT allows
us to analyze the attachment/detachment of cell sheets cross-
sectionally and noninvasively, the technology will use as an optimal
system to assess and quantify cell culture surfaces that accelerate
the attachment/detachment of cell sheets.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.bbrep.2015.05.001.

For observing and analyzing the cross section and time course
of the adhesion between layered cell sheets, cell sheets were
layered. After the first C2C12 cell sheet was adhered onto a culture
surface, another C2C12 sheet was layered onto the first cell sheet,
and medium was removed to facilitate spreading the second cell
sheet. After layering, the time course showed a rapid decrease in
spaces between the two cell sheets was clearly observed within
30 min by OCT (Fig. 2 and Video 2). When new mediumwas added
to the cell sheet to prevent drying out, the two cell sheets
continued to adhere (Video 2), indicating that there was a tight
attachment between the cell sheets. These results show that OCT
can detect the adhesion between layered cell sheets, as well as
between a cell sheet and the culture surface. Therefore, OCT
technology will be also used in an assessment system to quantify
the search for culture methods, which accelerate the attachment
between multi-layered cell sheets biologically and physically.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.bbrep.2015.05.001.

C2C12 cell sheets were stacked to form a multi-cell layer tissue
while simultaneously observing their cross section by OCT. After
layering two C2C12 cell sheets, a third cell sheet was stacked onto
the double-layer cell sheet. Just after layering, spaces between the
third cell sheet and the double-layer cell sheet could be observed
clearly (Fig. 3A), then after a short incubation of less than 30 min,
complete attachment between the cell sheets was observed

Fig. 1. Observation of an NIH3T3 cell sheet onto a polystyrene culture dish by OCT. Upper and lower left pictures are the merged images of (1) the top-view observations of
an NIH3T3 cell sheet onto the dish at 0 (A) and 24 min (B) after transfer, respectively; and (2) the red-colored space images between the cell sheet and the dish, and the right
panels are cross-sectional observations of the cell sheet. Green lines in the left pictures show the cutting sites in the right panels.
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(Fig. 3B). Using a similar procedure, harvested cell sheets were
successfully stacked up into quintuple-layer tissue, and the same
adhesion processes between multi-layered cell sheets was clearly
detected (Fig. 3). Only a few spaces between the cell-sheet layers
were detected, showing tight adhesions between the multi-
layered cell sheet constructs. When cell sheets have been layered
to fabricate 3-D tissues, whether to adhere a cell sheet to the
culture surface, or between layered cell sheets, medium should be
removed, and after a suitable incubation time, new medium is
added to avoid the drying out [4–7]. This manipulation has been
performed experientially, and its feasibility and efficacy were
confirmed by OCT. In addition, the incubation time between
removing the medium and adding new medium is largely depen-
dent on the experience of the investigators. Importantly, OCT
allows investigators and clinicians to manipulate cell sheets while
confirming noninvasively the adhesion between a cell sheet and
the culture surface, or between layered cell sheets in a 3-D tissue-
fabrication. Furthermore, the thicknesses at arbitrary points in the
cell sheet-tissues could be easily measured, as shown in Fig. 3.

3.2. Observation of rat cardiac cell sheets by OCT

A rat cardiac cell sheet detaching from a temperature-responsive
culture dish was cross-sectionally analyzed. The cell sheet was
detached from both edges, and the detachment was recorded in
movie data by OCT (Video 3), which shows the detaching of a beating
cell sheet. The beating of a detached cardiac cell sheet was analyzed
by OCT. Within the cell sheet, beating areas were marked with green
colored markers, where the correlation of OCT signals for short
intervals (90 ms) was lower than the predetermined level. Fig. 4 and
Video 4 clearly show the transmission of green areas, namely, the
beating areas within the cell sheet, which indicate that the transmis-
sion of action potentials within a cardiac cell sheet could be
noninvasively detected in cross-section by OCT. Next, harvested
cardiac cell sheets then were layered to form a double-layer tissue
while observing it by OCT, which showed that the cell sheets seemed
to beat synchronously (Video 5). This data showed that the 3-D
transmission of beating cardiac cells within a multi-layered cell sheet
could be observed by OCT, and suggests a functional coupling
between layered cell sheets, confirming the previous observations
in our laboratory [4,7,19]. The noninvasive observation will also

contribute to the electrophysiology of cardiac tissues. At present,
we are preparing the investigation of the electrical and functional
coupling processes between layered cardiac cell sheets in detail using
the technique of the combination of OCT system and a multiple-
electrode extracellular recording system.

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.bbrep.2015.05.001.

Clinical trials of autologous skeletal myoblast-sheet transplan-
tation into heart disease patients are now underway. The first
patient, who suffered from a dilated cardiomyopathy has received
autologous cell sheet therapy, and is now in good clinical condition
[12]. In the first clinical therapy, quadruple-layered myoblast
sheets were used. It is generally accepted that enormous numbers
of cells (109 cell-level per patient) are necessary for treating
conditions such as cardiovascular disease and diabetes [34], and
layered cell sheets make it possible to transplant enormous
numbers of cells onto target tissues. OCT observation then allowed
us to detect tight and complete adhesions between multi-layered
cell sheets noninvasively (Figs. 2 and 3). OCT can be a powerful
tool for analyzing the quality of engineered tissues in clinical cell
sheet-therapy.

While the therapeutic effects of adult stem/progenitor cells
including skeletal myoblasts are generally thought to be mainly
due to the paracrine effects of various factors secreted from
implanted cells [35], beating cardiac cells and cardiac tissue are
expected to contribute to the mechanical support of damaged heart
tissue via electrical and functional couplings as well as their
paracrine effects [36,37]. In an effort to make a more advanced
regenerative therapy, attempts at engineering beating myocardial
tissue using cardiac cell sheets have already been performed [4]. In
fact, multi-layered cardiac cell sheets give good therapeutic effects in
rat models [38,39]. In addition, we have also succeeded in the
fabrication of spontaneously beating human cardiac cell sheets,
using human induced pluripotent stem cells (hiPSCs) [20,40].
hiPSC-derived cardiac cell sheets have been shown to be feasible
and safe in a large animal model [41]. In the near future, cardiac cell
sheets will be used clinically for regenerating damaged heart tissues.
This study showed that beating of cardiac cell sheet-tissues could be
cross-sectionally detected by OCT (Movies 4 and 5). OCT could be
also be used to evaluate the beating and functional coupling of
engineered cardiac tissues.

Fig. 2. Observation of two C2C12 cell sheets by OCT. Upper and lower left pictures are merged images of (1) the top-view observations of two C2C12 cell sheets at 0 (A) and
23 min (B) after layering, respectively; and (2) the red-colored space images between the cell sheets, and the right panels are the cross-sectional observations of the cell
sheet. Green lines in the left pictures show the cutting sites in the right panels.
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Recently, we observed cell-sheet-transfer-process and the
adhesion between a cell sheet and target tissue by OCT using
the rat model [29]. At present, to evaluate the potential for
clinical use, we are attempting to observe and analyze the

transplantation of cell sheets onto beating heart tissue using a
porcine model by OCT. OCT could also be used clinically, as a
method to observe and analyze adhesions and functional
couplings between transplanted cell sheets and target tissues,

Fig. 3. Observations of multi-layered C2C12 cell sheets by OCT. Three of the pictures on the left show the merged images of (1) the top-view of a triple-layered (A),
quadruple-layered (C), and quintuple-layered (E) C2C12 cell sheets just after layering, and (2) the red-colored space images between layered cell sheets. The three other
pictures on the left show the merged images of (1) the top-view of a triple-layered (B), quadruple-layered (D), and quintuple-layered (F) C2C12 cell sheets at each time after
layering (B: 26 min; D: 23 min; F: 16 min), and (2) the red-colored space images between layered cell sheets. The panels on the right show these same cross-sectional
observations. Thicknesses shown in the three photographs (B, D, F) were calculated at the points indicated. Green lines in the left pictures show the cutting sites in the right
panels.
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as well as to assess the quality of engineered tissues before
transplantation.

In this study, the dynamics of layered cell sheets were observed
noninvasively by OCT. OCT technology allowed us to analyze in
real time the cross-sectional adhesion between (1) multi-layered
cell sheets, and (2) beating 3-D cardiac tissues in detail. Using this
method, we were able to confirm the rapid adhesion and func-
tional coupling of 3-D tissues. In addition, OCT observation could
allow investigators and clinicians to fabricate three-dimensional
tissues by confirming the adherence and functional coupling
between layered cell sheets. We are confident that OCT technology
can be used a powerful method in cell sheet engineering and the
clinical application.
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