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Purpose: To assess the diverse cell populations of human corpus cavernosum in patients
with severe erectile dysfunction (ED) at the single-cell level.

Methods: Penile tissues collected from three patients were subjected to single-cell RNA
sequencing using the BD Rhapsody™ platform. Common bioinformatics tools were used
to analyze cellular heterogeneity and gene expression profiles from generated raw data,
including the packages Seurat, Monocle, and CellPhoneDB.

Results: Disease-related heterogeneity of cell types was determined in the cavernous
tissue such as endothelial cells (ECs), smooth muscle cells, fibroblasts, and immune cells.
Reclustering analysis of ECs identified an arteriole ECs subcluster and another one with
gene signatures of fibroblasts. The proportion of fibroblasts was higher than the other cell
populations and had the most significant cellular heterogeneity, in which a distinct
subcluster co-expressed endothelial markers. The transition trajectory of differentiation
from smooth muscle cells into fibroblasts was depicted using the pseudotime analysis,
suggesting that the expansion of corpus cavernosum is possibly compromised as a result
of fibrosis. Cell-cell communications among ECs, smooth muscle cells, fibroblasts, and
macrophages were robust, which indicated that inflammation may also have a crucial role
in the development of ED.

Conclusions: Our study has demonstrated a comprehensive single-cell atlas of cellular
components in human corpus cavernosum of ED, providing in-depth insights into the
pathogenesis. Future research is warranted to explore disease-specific alterations for
individualized treatment of ED.
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INTRODUCTION

Erectile dysfunction (ED) is defined as the inability to attain and/or
maintain penile erection sufficient for satisfactory sexual
performance, which exerts substantial effects on a certain
proportion of men at least occasionally (1). This disease occurs in
3-76.5% of the global male population with an average prevalence of
30% and was found to be associated with aging, health status, and
emotional function (2–4). Moreover, EDmight be a warning sign of
cardiovascular disease owing to their shared pathophysiological
links and risk factors such as diabetes mellitus, endothelial
dysfunction, and inflammation (5). The etiology is multifactorial
and can be broadly classified into organic and psychogenic. Of the
organic etiologies, vasculogenic (affecting blood supply), neurogenic
(affecting innervation and nervous function), and endocrinologic
(relating to endocrine factors) are common causes of ED. The
mechanisms involved in the development of ED have been well
investigated in the past decades, in which nitric oxide (NO) and
soluble guanylate cyclase (sGC) in the intracellular cyclic guanosine
monophosphate (cGMP) signaling are principally responsible (6).
Although several theories have been proposed in the development
of ED, few studies have assessed the cellular composition,
intracellular communications, and molecular characteristics of
human corpus cavernosum at the single-cell level.

High-throughput single-cell RNA sequencing (scRNA-seq) has
been a frequently used tool to profile transcriptome information at
the level of individual cells, which can characterize cellular
heterogeneity and identify closely related cell populations (7).
Recent advances in biotechnology and computational science have
transformed the data analysis of the genome and transcriptome,
holding vast potential in enhancing our understanding of cell and
disease biology (8). For instance, many new approaches have been
designed to facilitate a complete and detailed gene expression
profile, such as identification of novel cell types and associated
markers, prediction of developmental trajectories, and
establishment of cell-cell interaction (9–11). Therefore, scRNA-seq
can enable the transcriptomic profiling of thousands of cells in a
single experiment and may uncover related pathological processes
in a wide variety of tissues and organisms. The penile erectile tissue
plays a key role in the erectile process, especially the smoothmuscles
and endothelium. Accordingly, a comprehensive transcriptomic
analysis of cell types in ED would provide more in-depth
information on its nature.

In the present study, we aimed to profile the transcriptome of
single cells from patients with severe ED and generate a single-
cell atlas of human corpus cavernosum. Furthermore, we
compared the cell populations with a special focus on the
subsets of smooth muscle cells (SMCs), fibroblasts, and
endothelial cells (ECs).
Abbreviations: cGMP, cyclic guanosine monophosphate; DEGs, differentially
expressed genes; ECM, extracellular matrix; ED, erectile dysfunction; ECs,
Endothelial cells; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; NO, nitric oxide; PBS, phosphate-buffered saline; sGC, soluble
guanylate cyclase; scRNA-seq, single-cell RNA sequencing; SMCs, smooth muscle
cells; UMAP, uniform manifold approximation and projection; UMI, unique
molecular identifiers.
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METHODS

Patient and Samples
The study protocols and tissue acquisition procedures were
approved by the local institutional review board. Informed
consent to participate in the study was provided by all subjects.
Human cavernous tissue samples were collected from three adult
patients with severe ED who received penile implants at our
medical center. Fresh tissue samples were surgically removed and
immediately dissected into fractions that were dissociated into
single cells as described below.

Sample Preparation for scRNA-Seq
Immediately after surgical removal, every tissue sample for
scRNA-seq was washed with phosphate-buffered saline (PBS),
cut into pieces about 1 mm3 on ice, and enzymatically digested at
37°C, with gentle rotation to obtain a single-cell suspension.
Subsequently, DMEM complete medium was added for the
termination of digestion, and then 70-mm and 40-mm cell
strainers were used in sequence to filter the suspension. After
the lysis of erythrocytes, the cells were centrifuged at 500 xg for
15 min and washed twice with PBS. Finally, the pellets were
resuspended in ice-cold PBS with 0.05% bovine serum albumin,
evaluated for cellular concentration and viability via BD
Rhapsody™ Scanner (BD Biosciences, La Jolla, CA, USA), and
processed for scRNA-seq using the BD Rhapsody™ platform.

Single-Cell Transcriptome Capture, Library
Construction, and Sequencing
All libraries for scRNA-seq were generated as described previously
(12). Briefly, cell capture was achieved by random distribution
across the microwells. Beads with oligonucleotide barcodes were
prepared and loaded onto the cartridge, allowing a single bead to
pair with a single cell. Cell-lysis buffer was used and then RNA
molecules could hybridize to the beads. Beads were pooled together
into a single tube to synthesize complementary DNA for reverse
transcription. Each complementary DNAmolecule was then labeled
on the 5’ end with its unique molecular identifiers (UMI) and cell
label information. Next, second-strand complementary DNA was
synthesized and ligated with the adaptor for universal amplification.
Random priming polymerase chain reaction was performed to
enrich the 3’ end of the transcripts. The sequencing library for
each sample was sequenced on the NovaSeq platform (Illumina, San
Diego, CA, USA) with a 150-bp paired-end run.

Raw Data Analysis
Raw sequencingdatawere processed and examined through theBD
Rhapsody Whole Transcriptome Analysis pipeline. For clustering
analysis and visualization, the gene expression matrices were
analyzed in the R environment using the package Seurat (version
3.2.2) (13, 14). Quality-filtered reads were investigated to detect the
sequences of cell labels and UMI, which were later mapped to the
Genome Reference Consortium Human Build 38 for annotation.
The dimensionality of filtered data was reduced via principal
component analysis with the highly variable genes on the scaled
data. The top 50 principal components were used for uniform
manifold approximation and projection (UMAP) to visualize data
April 2022 | Volume 13 | Article 874915
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in two dimensions. Clustering analysis was performed with the
FindClusters function in the Seurat package. Differentially
expressed genes (DEGs) for clusters or subtypes were identified
using the FindAllMarkers function with default parameters. Major
cell typewas annotatedwith selectedmarker gene listed:ECs (VWF,
PODXL, EMCN, PECAM1), SMCs (ACTA2, TAGLN, MYH11),
fibroblasts (DCN, LUM, COL1A2, PDGFRA, IGF1), T cells (CD2,
CD3D/E/G), neutrophils (S100A8/9), macrophages (CD163,C1QA,
C1QB, C1QC), monocytes (CD14, FCGR3A), natural killer cells
(NKG7, GZMA), neural cells (SOX10, PLP1), mast cells (TPSB2,
TPSAB1), B cells (CD79A, IGHM,MZB1).

Pseudotime Trajectory Analysis
Pseudotime trajectories were constructed with the R package
Monocle 2, which could determine the transcriptional dynamics
among cell types and clusters (15). The cell trajectory and
position with tree structure were plotted, in which the data
were reduced to two dimensions using the discriminative
dimensionality reduction with trees method. Significant genes
of clusters along the pseudotime values were identified with the
differential_Gene_Test function and visualized using the
plot_pseudotime_heatmap function with the default parameters.

Cell-Cell Communication Prediction Analysis
Cell-cell communicationnetworkwaspredicted via the computational
tool CellPhoneDB (version 2.0), which served as a publicly available
repository of potential receptor-ligand interaction (16). Cell type-
specific interactions between ligands and receptors were analyzed
and only those expressed in at least 10% of the cells for each clusters
were included.The cluster labels of every cellwere randomlypermuted
1000 times todetermine theexpression levelsof the interactingclusters.

Cell Cycle Analysis
To score the cell cycle phases of every single cell, the
Cell_Cycle_Scoring function in Seurat was used based on the
expression of canonical marker genes (17). A total of 42 S phase
genesand54G2/Mphasegeneswere included in theanalysis.Cell cycle
phases (G1, S, and G2/M) were then assigned to every single cell.

Statistical Analysis
Statistical analyses were performed using R software, version 4.1.2
(http://www.rproject.org). Gene Ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were performed using the database for annotation,
visualization, and integrated discovery (DAVID, version 6.8) to
identify biological and functional processes associated with DEGs
in each cluster. The P-value for each gene set was calculated by
Frontiers in Endocrinology | www.frontiersin.org 3
Fisher’s exact test and those less than 0.05 were considered
statistically significant.
RESULTS

Cell Populations in the Human
Corpus Cavernosum
To investigate cellular heterogeneity in ED at single-cell resolution,
we collected 3 tissue samples from 3 distinct patients (Table 1) and
performed scRNA-seq. After standard data processing and quality
control procedures, we obtained transcriptomic profiles for 37,892
cells (Figure 1A). Principal cell clusters were classified using an
unsupervised graph-based clustering strategy, acquiring a
comprehensive UMAP plot of the cellular composition
(Figures 1B; S1, S2). Cells with similar profiles were annotated
based on the expression of lineage-specific marker genes, which
consisted of ECs (C0, C2, C13), fibroblasts (C1, C3, C4, C5, C10,
C12, C18), SMCs (C6), T cells (C7), neutrophils (C8), macrophages
(C9), monocytes (C11), natural killer cells (C14), mast cells (C15),
neural cells (C16), and B cells (C17). The proportions of these cell
lineages in the human cavernous tissue from three patients were
evaluated, in which ECs, SMCs, fibroblasts accounted for 31.7%,
5.3%, 51.5% on average (Figure 1C). The lineage-specific marker
genes for themajority of sequenced cells were as follows: ECs (VWF,
PODXL, EMCN, PECAM1), fibroblasts (DCN, LUM, COL1A2,
PDGFRA, IGF1), and SMCs (ACTA2, TAGLN, MYH11)
(Figure 1D and Table S1). ECs and fibroblasts were categorized
into three clusters and seven clusters, the diversity of which was
mainly attributed to their cellular heterogeneity. The information of
DEGs in each cluster was summarized in Table S2.

Molecular Signatures of Endothelial
Subpopulations
As illustrated in Figure 2A, three distinct endothelial cell
populations were identified, termed endothelial cell, type 1-3
(ECs I-III). Pan-endothelial markers (PECAM1, CDH5, TIE1)
were expressed in all populations of ECs. A number of factors
that are indispensable for arterial differentiation showed an
abundant expression level in ECs III (e.g. SOX17, HEY1,
SEMA3G). GO enrichment analysis of the DEGs identified cell
type-specific processes (Figure 2B). For instance, ECs III (C13)
participated in focal adhesion and cell junction while ECs II (C2)
were more likely to be involved in protein targeting and protein
localization. To determine how the molecular signatures of ECs
were altered in patients with ED, we performed unbiased
clustering on endothelial subpopulations and observed further
TABLE 1 | Characteristics of patients included in this study.

Patient Diagnosis Age (years) BMI (kg/m²) Possible mechanism Disease severity*

Patient #1 Erectile dysfunction 29 29.4 Vasculogenic (primary disease) Severe
Patient #2 Erectile dysfunction 55 30.4 Neurogenic (surgical injury) Severe
Patient #3 Erectile dysfunction 32 23.2 Vasculogenic (pelvic trauma) Severe
April 2022 | Volume
*The disease severity of erectile dysfunction was classified by international index of erectile function.
BMI, body mass index.
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FIGURE 1 | Overview of the single-cell landscape for corpus cavernosum in erectile dysfunction. (A) Schematic graph describing the workflow of the experiment.
Human corpus cavernosum samples from three patients with erectile dysfunction were collected for single-cell RNA-seq. (B) A UMAP view and clustering analysis of
combined single-cell transcriptome data from human corpus cavernosum (n = 37892). Clusters are distinguished by different colors with the general identity of each
cell cluster shown on the right. (C) The cellular composition distribution for each patient sample. (D) Feature plots of expression distribution for selected genes.
Expression levels for each cell are color-coded and overlaid onto the UMAP plot. Cell types were mainly classified as endothelial cells (green), smooth muscle cells
(orange), and fibroblasts (pink). UMAP, uniform manifold approximation and projection.
Frontiers in Endocrinology | www.frontiersin.org April 2022 | Volume 13 | Article 8749154
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FIGURE 2 | Endothelial subpopulations display specific functional transcriptomic signatures. (A) 13101 endothelial cells (clusters 0, 2, 13) were highlighted and
colored in the UMAP plot of all clusters. (B) Functional enrichment analysis with GO terms was performed with the significantly up-regulated genes in three
endothelial subpopulations. (C) Endothelial cells were extracted and reclustered into 7 subclusters plotted in a UMAP map. (D) Heatmap depicting differentially
expressed genes among endothelial subclusters. (E) Expressions of SEMA3G, GJA5, TSPAN2, DCN, LUM, and IGF1 in each subcluster.
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heterogeneity with 7 subclusters (Figure 2C and Table S3). Two
distinct cell subclusters (sC5, sC6) were identified and exhibited
unique gene expression patterns compared with the others
(Figure 2D). In particular, the expression levels of arteriole
markers (HEY1, SERPINE2, SEMA3G, GJA5) were exclusively
enriched in the endothelial sC5 and similar to the transcriptome
profile of ECs III (C13). Interestingly, our results showed a strong
enrichment of canonical fibroblast-specific markers (DCN, LUM,
IGF1) in the endothelial sC6 (Figure 2E). Conversely, the other
five subclusters expressed partially overlapping markers,
suggesting a continuous phenotype gradient rather than the
presence of true endothelial subpopulations.

Heterogeneity of Fibroblasts and SMCs
Seven fibroblasts populations and one SMCs population were
identified based on unbiased clustering analysis of the raw
scRNA-seq data (Figure 1B). The GO or KEGG functional
analysis suggested significant enrichment of extracellular matrix
Frontiers in Endocrinology | www.frontiersin.org 6
(ECM) organization and cell adhesion (Figures S3, S4). To obtain
a clearer identification of cell subpopulations, fibroblasts and
SMCs were combined and reclustered into 13 subclusters,
including ten subtypes of fibroblasts, two distinct subtypes of
SMCs (sC5 and sC8) as well as one subtype expressing endothelial
markers (sC9) (Figure 3A and Table S4). The SMCs in the sC5
displayed high levels of cell type-specific markers (ACTA2,
TAGLN, MYH11). In contrast, cells in the sC8 co-expressed
fibroblasts and smooth muscle markers, which may represent a
transition state from SMCs to fibroblasts (Figure 3B). In
comparison with the other subclusters, endothelial signature
genes (EMCN, VWF, and PECAM1) were strongly enriched in
a subset of fibroblasts (sC9) (Figure 3C). GO functional analysis
revealed biological processes related to cell junction and focal
adhesion, consistent with several functions in the ECs
(Figure 3D). These results perhaps suggested that a cell
subpopulation that shared characteristics of ECs and fibroblasts
was likely to be involved in the development of ED.
A

B D

C

FIGURE 3 | Reclustering of fibroblasts and smooth muscle cells. (A) UMAP plot of combined fibroblasts and smooth muscle cells identified via non-hierarchical
cluster analysis. (B) Expression of selected cell-type-specific genes in subclusters. Dot size corresponds to the percentage of cells in a subcluster expressing the
gene, and the color is proportional to the gene expression frequency (red represents high expression frequency). (C) Violin plots of gene expression demonstrating
specifically high expression of EMCN, VWF, PECAM1, and CDH5 in sC9 fibroblasts. (D) GO analysis of the transcriptomic signature in the sC9 fibroblasts
subpopulation.
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Differentiation Trajectories Between SMCs
and Fibroblasts
Although clustering analysis could reveal heterogeneity among
fibroblasts and SMCs in ED tissue samples, it also remained to be
determined if they have common differentiation trajectories. The
transition trajectory between SMCs and fibroblasts was depicted
using Monocle 2 method to identify potential relationships
across calculated states. Pseudotime ordering of fibroblasts and
SMCs generated 5 states organized into two main branches
(Figure S5). The predicted pseudotime trajectory began from
the right branch and advanced as cells approach the up and
bottom left branches, suggesting that SMCs may differentiate
into fibroblasts in ED (Figure 4A). Consistently, the cells in the
sC5 and sC8 (SMCs) were mainly localized in the early stages of
pseudotime trajectory while the others (fibroblasts) moved
towards the termini (Figure 4B). Comparing these two
Frontiers in Endocrinology | www.frontiersin.org 7
branches, we found that fibroblasts in the sC9 were more likely
to go through cell fate 1, whereas the other fibroblasts subclusters
did not exhibit preference to fates 1 and 2 (Figure S6).
Significantly changed genes were assigned to 6 clusters in the
trajectory heatmap, demonstrating dynamic gene expression
patterns (Figure 4C). SMC markers (ACTA2, MYH11,
TAGLN) were down-regulated along the pseudotime, peaking
in the left of the trajectory. By comparison, marker genes for
fibroblasts (DCN, LUM, COL1A2) had an increased expression
towards the right of the trajectory (Figure 4D).

Cell Communication and Cell
Cycle Analysis
To systematically figure out possible cellular behavior and response
to neighboring cells, ligand-receptor pairs were determined
between various cell types in ED. The most abundant interactions
A

B

D

C

FIGURE 4 | Putative differentiation trajectories from smooth muscle cells to fibroblasts. (A) Pseudotime analysis on fibroblasts and smooth muscle cells, arranging
them into two major trajectories. (B) All cells in subclusters on the pseudotime are color-coded to match the colors in Figure 3A. (C) Heatmap showing differentially
expressed genes among the identified 6 gene clusters. (D) Color-coded pseudotime feature plots for selected genes of smooth muscle cells (ACTA2, MYH11,
TAGLN) and fibroblasts (DCN, LUM, COL1A2).
April 2022 | Volume 13 | Article 874915
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occurred between fibroblasts and ECs. Moreover, fibroblasts
exhibited robust interactions with macrophages. SMCs also
showed a medium interaction with macrophages, fibroblasts, and
ECs (Figures 5A, B). The specific ligand-receptor pairs among
SMCs, ECs and fibroblasts were further investigated in detail to
analyze their underlying mechanism of cellular communications
(Figure 5C). For instance,VEGFA onfibroblasts was closely bound
Frontiers in Endocrinology | www.frontiersin.org 8
with FLT1 and KDR on ECs, and many receptors were also
involved including EGFR and IGF1R. The collagen family had a
large proportion in interactions predicted for fibroblasts, in which
COL1A2 showed higher expression compared with the
other members.

To dissect the cell cycle phase in the cavernous tissue, the
possible states for each cell cluster were scored using genetic
A

B

C

FIGURE 5 | Potential ligand-receptor interactions analyses in different subpopulations. (A) The chord diagram shows the quantity of communication among distinct
cell types, which are proportional to edge width. (B) Heatmap of the number of predicted interactions between cell groups. (C) Bubble chart shows the potential
ligand-receptor pairs between SMCs and fibroblasts as well as ECs and fibroblasts.
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signatures for the G1, S, and G2/M phases. The overall
distribution of cell cycle was approximately comparable, yet
several clusters had their own patterns (Figures 6A–C). The
percentage of cells in the G1 phase was increased in the SMCs
(C6) and certain fibroblasts (C3, C12, C10). Meanwhile, the G2/
M-phase genes were primarily expressed in the T cells (C7),
neutrophils (C8), macrophages (C9), and monocytes (C11).
Collectively, these findings implicated that severe ED may be
associated with abnormal alterations in ECs, SMCs, and
fibroblasts, with inflammatory cells engaged in the loss of
erectile function as well.
DISCUSSION

The penile erectile tissues, specifically the cavernous smooth
musculature and the smooth muscles of the arteriolar and
arterial walls, are essential for the initiation and maintenance of
an erection. Any interruption of the hemodynamics and
neurophysiology can affect the normal process of penile
erection. The cellular composition and molecular profiles of
Frontiers in Endocrinology | www.frontiersin.org 9
corpus cavernosum have been altered in the development of
ED, in which structural changes feature increased vascular
resistance, decreased smooth muscle content, impaired
endothelium-dependent relaxation, and fibrosis of cavernous
tissue (18, 19). Although our understanding of the fundamental
mechanisms and pathophysiology have been enhanced in the
past decades, many challenges remain to be addressed,
especially in severe ED. For example, treatment options in these
patients are still limited at present with unsatisfactory clinical
outcomes as they are frequently refractory to first-line oral
pharmacotherapy. The scRNA-seq platforms can generate
notable insights into the cellular diversity through the in-depth
profiling of DEGs, emerging as a powerful tool to explore
molecular underpinnings in specific physiological and
pathological states (7, 20). In recent years, scRNA-seq has
broadened our knowledge of various biological processes with
immense implications for both basic and clinical research.
Therefore, we performed a comprehensive and detailed analysis
of human penile samples from patients with severe ED at the
single-cell level, providing an opportunity to understand this male
sexual dysfunction on a genomic scale.
A

B C

FIGURE 6 | Cell cycle analysis. (A) UMAP plot of all clusters at three stages (G1, S, G2M), which are color-coded to match the colors in Figure 1B. (B) Distribution
of cell counts at three stages (G1, S, G2M) in the tissue samples. (C) Bar chart shows the cell counts in each cluster at three stages (G1, S, G2M).
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The vascular endothelium in the penis has a prominent role in
modulating vascular tone and blood flow, whose dysfunction has
been proposed as a common characterization of ED and also
associated with cardiovascular disease (5, 18). As a molecule
responsible for initiating physiologic penile erection, NO
catalyzed by endothelial nitric oxide synthase in the blood vessel
appears essential for vasodilation of penile arteries via the NO-
sGC-cGMP pathway (21, 22). In our study, pan-endothelial cell
markers and other canonical markers are used to identify ECs in
the human corpus cavernosum (23–25). The proportion of ECs
was largest in the patient with primary vasculogenic ED (P#1).
Among the subpopulations of ECs, fibroblasts-like and arterial
ECs have demonstrated distinct transcriptional profiles compared
with the others. The primary source of penile blood consists of
three paired arteries (cavernous, dorsal, bulbourethral), which
supply the trabecular erectile tissue and the sinusoids. We have
found that a unique cell subtype of ECs has co-expressed
fibroblasts markers. Similarly, the clustering analysis of
fibroblasts and SMCs implied the existence of an endothelial
subcluster. Their cellular differentiation trajectories were also
analyzed, indicating that ECs were possible to transform into
fibroblasts (Figure S7). Taken together, these findings suggested
potential crosstalk between ECs and fibroblasts in the pathogenesis
of ED. In the endothelial clusters (C0, C2, C13), focal adhesion
and protein localization are mainly enriched functions, especially
compact cellular junctions in arterioles; in contrast, their
physiological roles in angiogenesis and cell migration have not
been apparent in severe ED. The heterogeneous phenotypes of
ECs have been investigated in multiple tissues and diseases,
showing that vascular ECs have transcriptome similarity across
tissues but vary substantially in different pathological states
(26–28). Many genes that are specifically expressed in ECs
subpopulations other than arterial ECs can regulate ECM
organization and the formation of caveolae such as MMRN1
and CAVIN2 (29, 30). The other genes warrant further study to
enhance our understanding of ECs in the settings of ED.

Along with the ECs that form the interior surface of blood
vessels (tunica intima), SMCs and fibroblasts are also primary
components of the vascular wall, which constitute the middle
(tunica media) and outer section (tunica externa), respectively.
Our experiments revealed the mean proportion of fibroblasts was
more than 50% in the corpus cavernosum of ED. In particular, the
patient who suffered from pelvic trauma (P#3) had the largest
number of fibroblasts, consistent with their functions in tissue
homeostasis and wound healing (31). These results have
suggested that ED caused by injury or trauma could mostly be
attributed to cavernous fibrosis while endothelial dysfunction has
been relatively crucial in primary vasculogenic ED. Penile fibrosis
has been thought to be a diffuse process related to conventional risk
factors and etiological factors for ED (32). As a consequence,
smooth muscle contraction and relaxation would be damaged,
making the penis incapable of becoming completely rigid and
impairing patients’ quality of life to a certain degree. The fibrotic
process of the corporal spongy tissue occurs based on intricate
molecular pathways and cellular interactions, yet little research has
been directed to this benign disease until now. The scRNA-seq data
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in our analysis uncovered the heterogeneity offibroblasts and SMCs
as well as predicted trajectory of differentiation, suggesting that
corpora cavernosa fibrosis is possibly responsible for the
development of ED. The aberration of many developmental
pathways has been highlighted in the KEGG analysis, including
PI3K-Akt, MAPK, and Ras signaling pathways. Multiple regulatory
mechanisms have been participated in the differentiation of SMCs,
including TGF-b signaling, Notch signaling, and epigenetic
regulation (33). The transition of healthy SMCs into
myofibroblasts can be induced in Peyronie’s disease, which may
share a similar mechanism with ED (34). Co-expression of
PECAM1, VWF, and EMCN in one subpopulation suggests
differentiation into ECs-like fibroblasts from part of SMCs via a
distinct cell fate. The scRNA-seq analysis of vascular malformations
revealed that a small fraction of SMCs had the capacity to be
transformed into ECs and fibroblasts (35). Consequently, our results
suggest that extensive penile fibrosis that develops in the human
corpus cavernosum can contribute to severe ED.

Complex cell-cell communication networks are of great
significance for basic cellular activities and coordination of cell
actions. Abnormal cell signaling may cause pathological disease
progressions such as endothelial dysfunction, diabetes, and cancer
(36–38). Furthermore, extracellular vesicles deliver many
functional molecules for intercellular communication in several
male diseases (39). Gene expression measurements of our scRNA-
seq datasets have shown strong interactions among macrophages,
fibroblasts, SMCs, and ECs, emphasizing the role of these cells in
the cavernous tissue in ED. The fibroblasts-related ligand-receptor
pairs mainly center on collagenization of the smooth muscle and
endothelium. Of note, the ligand-receptor expression of CD74-
related pairs was increased in ECs, B cells, and macrophages, such
as the interaction with secreted amyloid precursor protein.
Previous studies have demonstrated that various regulatory and
trophic factors can influence the local penile tissue environment,
including vascular endothelial growth factor, tumor growth factor,
and insulin-like growth factor (40–42). Le Hiress et al. reported
that the CD74 signaling system was critical for a phenotypic swift
to proinflammatory ECs in patients with pulmonary arterial
hypertension (43). As pulmonary hypertension and ED can both
be treated with inhibitors of phosphodiesterase 5, CD74 may be
another highly potent target for ED. More evidence is needed to
tentatively confirm this hypothesis, shedding further light on the
molecular biology and signal transduction of penile erection.

Several limitations of our study should be outlined to optimize
and expand scRNA-seq datasets for ED. First, a relatively small
number of patients with severe ED were recruited owing to the
difficulties of obtaining human penile tissues. In addition, the
single-cell suspension of certain samples was excluded as they did
not meet the requirements of quality control procedures. Second,
lackofhealthy controlsmeans that the comparisonbetweenEDand
normal tissues was not feasible in our study. Third, another
limitation mainly lies in the validation of our findings. Generally
speaking, many novel computational approaches are still in their
infancy and the biological interpretations of findings are heavily
biased by the researcher’s familiarity with studied topic. With the
recent maturation in scRNA-seq and the development of powerful
April 2022 | Volume 13 | Article 874915
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analysis tools such as Human Cell Atlas, our understanding of ED-
associated cellular functions will be increasingly improved in
the future.
CONCLUSIONS

In conclusion, we performed a scRNA-seq analysis of penile
cavernous tissue from patients with severe ED, providing detailed
expression profiles of cellular subsets. Our data suggest that penile
fibrosis and inflammation have been noteworthy characteristics in
the late stage of ED, which may offer deep insight into the erectile
process and serve as an essential resource for targeted therapy for
this common male sexual dysfunction.
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