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Abstract

Chest radiography (CXR) is the most commonly used imaging modality and deep neural

network (DNN) algorithms have shown promise in effective triage of normal and abnormal

radiograms. Typically, DNNs require large quantities of expertly labelled training exemplars,

which in clinical contexts is a major bottleneck to effective modelling, as both considerable

clinical skill and time is required to produce high-quality ground truths. In this work we evalu-

ate thirteen supervised classifiers using two large free-text corpora and demonstrate that bi-

directional long short-term memory (BiLSTM) networks with attention mechanism effectively

identify Normal, Abnormal, and Unclear CXR reports in internal (n = 965 manually-labelled

reports, f1-score = 0.94) and external (n = 465 manually-labelled reports, f1-score = 0.90)

testing sets using a relatively small number of expert-labelled training observations (n =

3,856 annotated reports). Furthermore, we introduce a general unsupervised approach that

accurately distinguishes Normal and Abnormal CXR reports in a large unlabelled corpus.

We anticipate that the results presented in this work can be used to automatically extract

standardized clinical information from free-text CXR radiological reports, facilitating the

training of clinical decision support systems for CXR triage.

Introduction

Chest radiography (CXR) is the most commonly used imaging modality, with over two billion

procedures performed annually [1]. There is a general consensus that an Artificial Intelligence

(AI)-supported reporting of CXR images could be a valuable adjunct to imaging interpretation,

providing substantial benefit in many clinical contexts, from improved workflow prioritization

and clinical decision support to large-scale screening and global population health initiatives [2–

4]. Indeed, deep learning algorithms have been successfully applied to detect heterogeneous tho-

racic disease [3, 5], triage normal and abnormal radiographs [2], and identify specific pathologies

such as pulmonary tuberculosis [6], pneumonia [7], and lung cancer [8].

Deep learning models require large quantities of expertly labelled training exemplars [9]

and the well-established computer science mantra “Garbage In, Garbage Out” holds especially

true in clinical applications of AI [10]. Whilst the gold-standard of image annotation remains

direct application of expert knowledge, the sheer size of the required datasets makes this
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endeavour impractical [11]. Therefore, Natural Language Processing (NLP) approaches offer

an opportunity to automate the annotation of free-text reports [12]. For example, the Medical

Language Extraction and Encoding (MedLEE) system relies on controlled vocabulary and

grammatical rules to convert free text into a structured database [13]. PeFinder, an NLP system

for pulmonary embolism classification, uses pre-defined lexical cues and context terms to

achieve high sensitivity and positive predictive value [14]. Finally, NegEx, utilises hand-crafted

regular expression rules to identify pertinent negatives from patient discharge summaries [15].

Nevertheless, applying text mining techniques to radiological reports, which may contain bro-

ken grammar and misspellings, poses a number of challenges due to extensive variability in lin-

guistic ambiguity. Indeed, in the publicly-available ChestXray14 [16] imaging dataset, labels do

not accurately reflect the visual content of the images, with positive predictive values of 10–

30% lower than the values presented in the original documentation [11].

Neural network-driven modelling of radiological language has been proposed to supersede

the hand-crafted rules and grammatical relations of the traditional rules-based algorithms

[17]. Recently, a bi-directional long short-term memory (BiLSTM) network, which does not

use any hand-engineered features, was demonstrated to perform favourably in a corpus of

CXR reports (f1 = 0.87) [18]. Similarly, a supervised approach using a Recurrent Neural Net-

work (RNN) with attention mechanism achieves high accuracy on expert-labelled CXR dataset

(f1 = 0.93) [19]. Finally, Convolutional Neural Networks (CNNs) have been used to extract

pulmonary embolism findings from thoracic computed tomography reports, outperforming

state-of-the-art NLP systems (f1 = 0.94) [17].

Multi-label annotation of abnormal reports has been the primary aim of radiological lan-

guage models [2, 4, 18, 19]. Nevertheless, practicalities of day-to-day clinical workflows suggest

that the ability to identify ‘normal’ images and remove them from worklists would be antici-

pated to generate significant efficiency and cost savings [2, 20]. In addition, for clinicians

reviewing images at the point of care, accurate triage of abnormal findings has potential

safety, clinical outcome, and assistive (e.g. reduced cognitive overload) benefits [21, 22].

In this study we describe an approach to automatically extract standardized clinical informa-

tion from free-text CXR radiological reports. More specifically, it is anticipated that accurate

identification of Normal and Abnormal entities (irrespective of clinical sign or pathology) will

facilitate training of AI-enabled triage systems at scale. We evaluate the utility of classical super-

vised machine learning techniques as well as state-of-the-art Long Short-Term Memory net-

works (LSTM) in the context of large corpora of free-text reports from Greater Glasgow and

Clyde Health Board (n = 500,000) and the Beth Israel Deaconess Medical Center (MIMIC-CXR

database [n = 227,835]) [23]. Additionally, we use ivis, an unsupervised Siamese Neural Net-

work-based algorithm [24], which accurately classifies radiological reports and visualises docu-

ment embeddings. Finally, we explore generalisability of machine learning techniques across

European and North American radiological report corpora.

Materials and methods

Radiology reports and data preparation

Internal training, validation, and testing sets were produced using an in-house corpus of

500,000 deidentified CXR reports provided by NHS Greater Glasgow and Clyde (GGC) Safe-

Haven. NHS GGC is the largest health board in Europe and delivers health care for 1.1 million

patients with seven cute hospital sites. The reports cover the period between January 2007 and

January 2019. The repository consists of text typed or dictated by the clinicians after radio-

graph analysis and does not contain clinician or patient identifiable information such as

names, addresses or dates of birth. The reports had a minimum of 1 word and maximum of
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380 words, with an average of 33.2 words and standard deviation of 20.5 words. On average,

there were 4.8 sentences per report. Prior to analysis, reports were converted to lower case and

lemmatized. Numbers, punctuation marks, special characters, and words that occurred in

fewer than three documents were discarded. The final vocabulary contained 9,598 words.

A random sample of 5,000 reports was selected from the corpus for the purpose of creating

expert-labelled training, validation, and testing sets. The reports were manually labelled by a

clinical fellow (DF) with special interest in Radiology. The annotation schema included three

classes–Normal, Abnormal, and Uncertain. The decision on the labelling was guided by the

Fleischner Society Glossary of Terms for Thoracic Imaging [25]. A report was deemed to be

Normal if it was explicitly stated as such in the free-form report and if there were no reported

medical or surgical paraphernalia (e.g. pacemaker, sutures). An Abnormal label was assigned

to reports with at least one documented radiological sign or presence of medical or surgical

paraphernalia. If a report was normal for the patient (e.g. hyperinflated lungs in a patient with

known Chronic Obstructive Pulmonary Disease), the report was still categorised as Abnormal.

In cases where insufficient clinical information was provided to reliably label a report as Nor-

mal or Abnormal, a label of Uncertain was assigned. Reports that were either blank or incon-

clusive (e.g. “see above”, “same as above”) were excluded from the labelling exercise. All

reports were labelled using the open source text annotation tool Doccano [26]. The final

labelled corpus consisted of 4,821 reports.

The external testing set was drawn from 227,835 radiographic studies recorded within the

MIMIC-CXR database [23]. A random sample of 500 reports was selected from the corpus for

the purpose of creating an expert-labelled testing set. Pre-processing and annotation were per-

formed as above. Following exclusion of inconclusive reports (e.g. reported only as “as above”,

“see above”), the final external testing corpus contained 465 reports. The reports had a mini-

mum of 2 words and maximum of 118 words, with an average of 13.4 words and standard

deviation of 16.2 words. On average, there were 2.9 sentences per report.

Supervised report classification

Expert-annotated reports were used to train three types of supervised classifiers: non-neural

(i.e. classical machine learning algorithms), LSTM-based, and attention-based models

(Transformers).

Non-neural classifiers. The labelled corpus, consisting of Normal, Abnormal, and

Unclear reports, was converted to term frequency-inverse document frequency (tf-idf) matrix

and reduced to 100 dimensions using Singular Value Decomposition (SVD). Subsequently,

the transformed matrix was randomised into training (80%) and testing sets (20%) using a

stratified split (Fig 1). Five supervised machine learning algorithms were evaluated on tf-idf/

SVD-transformed radiology reports–K-Nearest Neighbour Classifier (KNN), Logistic Regres-

sion (LR), Gaussian Naïve Bayes Classifier (NBC), Random Forest (RF), and Support Vector

Machine (SVM). Each model’s hyperparameters were tuned on the training set using a Grid

Search algorithm with stratified five-fold cross-validation. Hyperparameters that yielded the

best macro-averaged f1 statistic across the five folds were retained for predictions on the inde-

pendent testing set.

LSTM classifiers. The internal labelled corpus, consisting of Normal, Abnormal, and

Unclear reports, was randomised into training (80%) and testing sets (20%) using stratified

splits. Each report was then represented as a tokenised sequence of words. We limited the maxi-

mum length of the input sequence to 40, padding shorter sequences with zeros, whilst cropping

longer sequences. Model inputs were mapped to an Embedding layer, which was initialised

either by using either pre-trained fastText [27] weights or by drawing from a uniform
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distribution in the (−0.01, 0.01) range. The fastText model was trained on an unlabelled corpus

of lemmatised and pre-processed free-text reports (n = 495,179, see above). Window size was

set to three and embedding dimensionality was set to 50. Subsequently, a Bidirectional LSTM

(BiLSTM) architecture [28] was implemented, with each LSTM layer consisting of 100 memory

cells. The loss function was the categorical cross-entropy between the predicted probabilities of

the report tags and the true tags.

Our BiLSTM model was also supplemented with an attention mechanism (BiLSTM-ATT)

[19, 29], in which the BiLSTM layer is followed with an attention module. The attention module

generates a predictive distribution over the LSTM encodings for each step by firstly calculating

the dot-product of the latest hidden state and the previous states, and then using the SoftMax

function [30]. Applying these scores to the previous hidden state vectors effectively samples the

most useful input vectors dynamically by predicting which vectors are most important for the

predictions. By enabling selective sampling of relevant information from all encoder states, the

model is able to deal with long sequences of words and maintain global information about the

input sentence. Finally, all models were trained for 20 epochs with batches of 32 sentences

using the Adam optimiser with the learning rate set to 0.001. Training was terminated early if

the validation loss did not improve for three consecutive epochs.

Transformer classifiers. The Transformer is a novel neural network architecture based

solely on a self-attention mechanism [31]. Four Transformer models were trained on the inter-

nal training set—Bidirectional Encoder Representations from Transformers (BERT) [32], Dis-

tilBERT [33], XLNet [34], and RoBERTa [35]. Each Transformer model was initialised using

pre-trained weights provided by the HuggingFace’s Transformers library [36]. A sequence-

classification head (a linear layer) was added on top of the base model’s hidden states. Radiol-

ogy reports were then represented as a tokenized sequence according to the requirements of

each of the Transformer models–using a punctuation and wordpiece tokenizer (BERT,

Fig 1. Flowchart showing supervised approach to radiology report classification.

https://doi.org/10.1371/journal.pone.0229963.g001
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DistilBERT), SentencePiece tokenizer (XLNet), or Byte-Pair Encoding (RoBERTa). We limited

the maximum length of the input sequence to 128, padding shorter sequences with zeros,

whilst cropping longer sequences. Subsequently, all models were trained using the Adam opti-

mizer for 20 epochs. Training was terminated early if validation loss did not improve for three

consecutive epochs.

Unsupervised report classification

Reliable ground truths in radiological data is a scarce resource, which requires considerable

clinical time and expertise. To address this limitation, we introduce a fully unsupervised

approach to assigning Normal and Abnormal labels to free-text radiological reports.

Dimensionality reduction using siamese neural networks. The unsupervised ivis algo-

rithm [24] was used to reduce dimensionality of 50-dimensional fastText embeddings of unla-

belled reports within the GGC corpus. To obtain report-level embeddings, fastText word

vectors within each report were averaged [37] and the resulting 50-dimensional vector was

used to as inputs into the ivis algorithm. ivis Siamese Neural Network was initialised using

three identical three-layer dense networks consisting of 500, 500, and 2,000 neurons each,

followed by an embedding layer with the number of neurons reflecting dimensionality of

desired embeddings. The layers preceding the embedding layer use the SELU activation func-

tion, which gives the network a self-normalizing property [38]. The weights for these layers are

randomly initialized with the LeCun normal distribution. The embedding layers use a linear

activation and have their weights initialized using Glorot’s uniform distribution. The network

was trained using a triplet loss function, whilst Euclidean distance was used to establish simi-

larity between points in the embedding space [24]. Nearest neighbour selection was limited to

130 points and the training was halted early if the triplet loss did not improve for five epochs.

Gaussian mixture model clustering. A Gaussian Mixture Model (GMM) with two mix-

ture components was applied to either FastText or ivis embeddings (Fig 2). Posterior probabil-

ities of each mixture component were then obtained on the expertly labelled internal (GGC)

and external (MIMIC-CXR) testing sets. The GMM’s performance was evaluated by compar-

ing ground truth labels of the testing set to mixture component probabilities.

CheXpert labeller. The CheXpert labeller is an NLP tool based on keyword matching

with hardcoded rules describing negation [4], which assigns each report with one or more

labels associated with thoracic pathology. The labeller operates in three stages: 1) extraction, 2)

classification, and 3) aggregation. In the extraction stage, all mentions of a label are identified,

including alternate spellings, synonyms, and abbreviations. Mentions are then classified as

positive, uncertain, or negative using local context. In cases where keyword matching fails to

produce a reliable result, a label of No Findings is assigned. We considered all reports with a

label of No Findings to be Normal, whilst remaining reports were considered to be Abnormal.

Performance assessment

Model performance was assessed on internal (NHS GGC) and external (MIMIC-CXR Data-

base) testing sets. The following performance metrics were recorded–precision, recall,

f1-score, and Area Under Receiver Operating Characteristic Curve (AUROC). In multi-class

classification problems, we weigh the average of the precision, recall, and f1-score by the num-

ber of instances of each class.
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Results

Supervised report classification

Five supervised multi-class classifiers were trained on tf-idf/SVD-transformed document

matrices (n = 1,315 Normal, n = 2,399 Abnormal, n = 142 Uncertain)–KNN, Logistic Regres-

sion, Naïve Bayes, Random Forest, and SVM (Fig 3). For each model, an exhaustive grid search

was carried out on the training set using 5-fold cross validation, optimising the f1 score, and

the best performing parameters were fixed for subsequent performance assessment. SVM and

Logistic Regression performed consistently well in identifying Normal and Abnormal reports,

both in internal (AUROC 0.97–0.98, Fig 3B and 3E) and external (AUROC 0.97–0.98, Fig 3G

and 3J) testing sets. Although SVM performed well in differentiating Unclear reports in the

internal testing set (AUC = 0.86), all classifiers yielded suboptimal accuracy for this class in the

external set (AUROC 0.39–0.51, Fig 3F–3J).

Next, we used the expert-labelled internal radiological reports to train a series of three-class

BiLSTM classifiers using tokenised report sequences. We hypothesised that by considering

temporal word relationships within each report, a more nuanced and generalisable model

could be obtained through modelling radiological language with BiLSTMs. As above, perfor-

mance was assessed on both internal and external testing sets. Pre-training BiLSTM with fas-

tText embeddings (BiLSTM-fastText) produced robust classifiers compared to randomly

initialised model weights (Fig 4A–4D, Table 1). Whilst BiLSTM-fastText resulted in marginally

Fig 2. Flowchart demonstrating unsupervised approach to radiology report classification.

https://doi.org/10.1371/journal.pone.0229963.g002
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better detection of Unclear class compared to the top-performing SVM classifier (AUCBiLSTM-

fastTet = 0.87 vs. AUCSVM = 0.86, Fig 4A), this performance was further superseded by intro-

ducing attention mechanism to BiLSTM-fastText architecture (AUCBiLSTM-Att-fastText = 0.88,

Fig 4C, Table 1).

Fig 3. Performance assessment of non-neural classifiers on internal and external testing sets. A-E. ROC curves displaying performance metrics on

an expert-labelled internal testing set (n = 329 Normal, n = 601 Abnormal, n = 35 Uncertain). F-G. ROC curves demonstrating classifier performance

on external MIMIC-CXR free-text reports (n = 272 Normal, n = 184 Abnormal, n = 9 Uncertain).

https://doi.org/10.1371/journal.pone.0229963.g003

Fig 4. Performance assessment of BiLSTM classifiers on internal and external testing sets. A-D. ROC curves displaying performance metrics on an

expert-labelled internal testing set (n = 329 Normal, n = 601 Abnormal, n = 35 Uncertain). E-H. ROC curves demonstrating classifier performance on

the external MIMIC-CXR expert-labelled free-text reports (n = 272 Normal, n = 184 Abnormal, n = 9 Uncertain).

https://doi.org/10.1371/journal.pone.0229963.g004
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To assess how well our BiLSTM models generalise to an external testing set, we compared

predicted labels to manually annotated reports from the MIMIC-CXR database (n = 272 Normal,

n = 184 Abnormal, n = 9 Unclear, Fig 4E and 4F). Randomly-initialised BiLSTMs (BiLSTM-ran-

dom) exhibited worse performance compared to both fastText-pretrained models and non-neu-

ral classifiers (Fig 4F and 4H). Interestingly, BiLSTM-Att-fastText, generalised well across

Normal and Abnormal classes, and performed favourably on the Unclear class in the internal

and external testing sets (Fig 4C and 4G).

Finally, four self-attention based models (BERT, DistilBERT, XLNet, and RoBERTa) were

evaluated on the internal and external testing sets (Fig 5). Whilst all models performed well in

classifying Normal and Abnormal reports (AUC = 0.97–0.99), XLNet achieved favourable

Table 1. Performance comparison of supervised multi-class classifiers on internal and external testing sets. Class-weighted values are reported.

Classifier Internal Testing Set (n = 978) External Testing Set (n = 465)

Precision Recall F1-score Precision Recall f1-score

KNN 0.82 0.86 0.84 0.81 0.82 0.81

Logistic Regression 0.85 0.90 0.87 0.91 0.93 0.92

Naïve Bayes 0.78 0.82 0.80 0.70 0.47 0.38

Random Forest 0.83 0.88 0.86 0.84 0.80 0.80

SVM 0.85 0.90 0.88 0.91 0.93 0.92

BiLSTM-fastText 0.93 0.93 0.93 0.91 0.91 0.91

BiLSTM-random 0.91 0.91 0.91 0.72 0.58 0.57

BiLSTM-Att-fastText 0.94 0.94 0.94 0.90 0.91 0.90

BiLSTM-Att-random 0.90 0.91 0.90 0.73 0.55 0.53

BERT 0.92 0.93 0.92 0.94 0.93 0.93

DistilBERT 0.91 0.91 0.91 0.93 0.93 0.93

XLNet 0.93 0.93 0.93 0.95 0.95 0.95

RoBERTa 0.91 0.91 0.91 0.93 0.93 0.93

https://doi.org/10.1371/journal.pone.0229963.t001

Fig 5. Performance assessment of Transformer-based classifiers on internal and external testing sets. A-D. ROC curves displaying performance

metrics on an expert-labelled internal testing set (n = 329 Normal, n = 601 Abnormal, n = 35 Uncertain). E-H. ROC curves demonstrating classifier

performance on the external MIMIC-CXR expert-labelled free-text reports (n = 272 Normal, n = 184 Abnormal, n = 9 Uncertain).

https://doi.org/10.1371/journal.pone.0229963.g005
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performance on the Unclear class in both internal and external testing sets (AUC = 0.80 and

AUC = 0.83 respectively, Fig 5C and 5G).

Unsupervised report classification

We demonstrated that supervised classifiers achieve excellent performance using a relatively

small number of labelled training exemplars (n = 3,856 reports). Furthermore, neural networks

that utilise the BiLSTM architecture with attention mechanism appear to generalise well to

external radiological reports. Nevertheless, generation of reliable ground truths remains a bar-

rier to training effective deep learning models due to the required clinical time and expertise.

To address this limitation, we set out to develop and evaluate an unsupervised approach to

assigning Normal and Abnormal labels to free-text radiological reports.

An internal corpus of n = 495,179 unlabelled reports was represented as a collection of

50-dimensional fastText document vectors (see Methods). We hypothesised that free-text enti-

ties can be modelled using Gaussian Mixture Distributions due to inherently distinct semantic

structure of Normal and Abnormal reports. To test this hypothesis, a GMM with two compo-

nents was constructed from the unlabelled document vectors and posterior probabilities of

each component were extracted from the expert-labelled reports of the internal (n = 1,315

Normal and n = 2,400 Abnormal) and external (MIMIC-CXR, n = 272 Normal and n = 184

Abnormal) corpora. Whilst GMM performance on an internal testing set was sub-optimal,

model validation on an external testing set produced acceptable metrics (AUC = 0.50 and

AUC = 0.86 respectively, Fig 6D).

Recently, we introduced a novel algorithm, ivis, for dimensionality reduction and feature

engineering in large datasets [14]. ivis is a parametric method that utilises a Siamese Neural

Network to generate low-dimensional data representations that preserve both local and global

properties of original observations. To further refine fastText embeddings, we applied ivis to

50-dimensional report vectors prior to GMM clustering (Fig 6A). Reduction of fastText

reports to two-dimensional ivis representations resulted in marked performance improve-

ments in both internal and external datasets (AUC = 0.89 and AUC = 0.90 respectively, Fig 6B

and 6C). GMM performance was enriched further by expanding ivis representations to ten

embedding dimensions (ivis-10D, AUCInternal = 0.89, AUCExternal = 0.94, Fig 6E and 6F).

Finally, we compared GMM-clustered ivis embeddings to annotations generated by the

CheXpert Labeller. The labeller is a rule-based classifier which operates in three stages: 1)

extraction, 2) classification, and 3) aggregation. In the extraction stage, all mentions of a label

are identified, including alternate spellings, synonyms, and abbreviations. Mentions are then

classified as positive, uncertain, or negative using local context. The CheXpert Labeller is tai-

lored for CXRs, and recently demonstrated favourable performance on free-text reports [23].

Both the Labeller and GMM-clustered ivis-10D embeddings achieved comparable perfor-

mances on an internal and external dataset (f1-scoreInternal = 0.81 and f1-scoreExternal = 0.92,

Table 2). Interestingly, just two-dimensional ivis embeddings achieved acceptable classifica-

tion performance, making the datasets amenable to interpretable visualisation (Fig 6A–6C).

Discussion

In this work we examine the application of supervised machine learning algorithms to classifi-

cation of free-text CXR reports. Rigorous performance benchmarking on two independent

corpora from two international health systems demonstrate that BiLSTM networks with self-

attention mechanism produce state-of-the-art classification results and are generalise to exter-

nal testing sets. Furthermore, we introduce a fully unsupervised approach for abnormality
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detection in free-text reports, which performs favourably compared to a well-established rules-

based classifier tuned for CXR labelling.

Our analysis of five non-neural supervised classifiers (KNN, Logistic Regression, Naïve

Bayes, Random Forest, and SVM) demonstrated that whilst all models achieved excellent per-

formance on an internal testing set, only SVM successfully captured Normal and Abnormal

entities in both testing sets. Reports labelled as Unclear were consistently misclassified by all

Fig 6. Unsupervised report classification using fastText, ivis, and Gaussian Mixture Model clustering. A. Two-dimensional ivis representation of

50-dimensional fastText embeddings of n = 495,179 unlabelled radiological reports from NHS GGC. Colour gradient reflects posterior probability of

Normal and Abnormal report cluster. B. Scatterplot of predicted ivis embeddings for n = 3,715 expert-labelled reports in the internal testing set. Blue

and red points represent manually-labelled Normal and Abnormal reports respectively. Colour gradient reflects contours of posterior probability

distributions obtained from GMM model trained on two-dimensional ivis representations of n = 495,179 unlabelled radiological reports. C. Scatterplot

of predicted ivis embeddings for n = 456 expert-labelled reports in the MIMIC-CXR testing set. Blue and red points represent manually-labelled

Normal and Abnormal reports respectively. Colour gradient reflects contours of posterior probability distributions obtained from GMM model trained

on two-dimensional ivis representations of n = 495,179 unlabelled radiological reports. D. ROC curves of unsupervised GMM classifier applied to

50-dimensional fastText embeddings of internal (n = 3,715) and external (n = 456) manually-labelled reports. E-F. ROC curves of unsupervised GMM

classifier applied to two- and ten-dimensional ivis embeddings of manually labelled internal (n = 3,715) and external (n = 456) reports.

https://doi.org/10.1371/journal.pone.0229963.g006

Table 2. Performance comparison of unsupervised classifiers on internal and external radiological reports. Average performance values are reported.

Classifier Internal Testing Set (n = 3715) External Testing Set (n = 456)

Precision Recall f1-score Precision Recall f1-score

fastText+GMM 0.42 0.65 0.51 0.88 0.84 0.84

ivis-2D+GMM 0.83 0.80 0.80 0.88 0.88 0.88

ivis-10D+GMM 0.82 0.80 0.81 0.91 0.91 0.92

CheXpert Labeller 0.81 0.81 0.81 0.93 0.93 0.92

https://doi.org/10.1371/journal.pone.0229963.t002
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algorithms in the external testing set (Fig 3F–3J). These findings are consistent with the general

notion that SVMs are well-suited for a text classification task due to 1) the algorithm’s ability

to learn independently of the dimensionality of the feature space, 2) suitability to problems

with dense concepts and sparse instances (document vectors are sparse as each document vec-

tor contains only few entries which are not zero), and 3) linearly separable nature of most text

problems [39]. Indeed, an SVM trained on a bag of phrases was used to detect hospital admis-

sions due to specific diseases [40] as well as classify medical subdomain across clinical notes

[41]. Interestingly, the SVM only marginally outperforms Logistic Regression classifier. Con-

sidering that Logistic Regression predictions may be viewed as locally interpretable [42], the

minor trade-off in accuracy may be justified in favour of trusting and understanding intuition

behind each classification [43].

Non-neural classifiers rely on a bag-of-words (BOW) representation of the training corpus.

The approach maintains word multiplicity, but disregards grammatical nuances and word

order of original sentences. Additionally, BOW matrices are often sparse, with only a few

entries which are not zero. This convention has often proven to be problematic for non-neural

classifiers due to the data sparsity problem [44]. In recent years, deep artificial neural networks

have been found to yield consistently good and often state-of-the-art results on a variety of

NLP tasks [18]. It can be argued that by considering complex inter-relationships between

words within sentences, deep neural networks achieve state-of-the-art performance across

NLP tasks such as part-of-speech tagging, shallow parsing, named entity recognition, and

semantic role labelling [45].

We demonstrated that BiLSTM networks learn to differentiate Normal and Abnormal CXR

reports and generalise well to an independent testing set (Table 1). Traditionally, BiLSTMs have

shown performance improvements in NLP tasks over Unidirectional LSTMs, lkely due to inclu-

sion of information from both future and past words in the sentence [28]. We demonstrate that

an important requirement to a generalisable model is initialising the network with pre-trained

word embeddings. Indeed, pre-trained BiLSTMs weights considerably outperformed random

weight initialisation in terms of precision, recall, and f1-scores (Table 1). Previous reports have

shown only marginal accuracy gains attributed to pre-training [18]. However, this is like

because only an internal testing set was used to benchmark algorithm performance, whilst we

note considerable gains on external datasets.

To pre-train our models, we applied fastText to an unlabelled corpus of n = 495,179 reports

from NHS GGC. Several important features prompted us to choose fastText over other compa-

rable approaches. First, the algorithm is fast and can train on our corpus within a few minutes.

This allowed us to experiment with hyperparameters in order to produce better embeddings.

Second, fastText operates at a character level, meaning that word vectors can still be extracted

for those words that are not present in the original vocabulary. This is especially important as

spelling and abbreviations vary greatly between radiological reports [46]. Indeed, it is not

unreasonable to hypothesise that this feature of the fastText algorithm contributed signifi-

cantly to model generalisability across testing sets. Finally, unlike word vectors from word2vec

[47], fastText word features can be averaged together to form good sentence representations

[37]. It is plausible that adding more reports into the pre-training corpus will lead to further

performance gains–this is something that we intend to explore in greater detail as our work

evolves.

In an earlier work, the attention mechanism was demonstrated to achieve high accuracy on

an expertly labelled CXR dataset (f1-score = 0.93) [19]. The attention layer learns heteroge-

neous text representations for each label under an assumption that each snippet containing

distinguishing information could be anywhere in the text and would differ across labels [19].

As such, attention can help combine global and local information in order to improve
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classification performance [48]. In this work, a BiLSTM (pre-trained with fastText vectors)

with attention mechanism was the top-performing LSTM classifier (f1-scoreInternal = 0.94,

f1-scoreExternal = 0.90, Table 1). Interestingly, the approach also identified Uncertain reports

considerably better on an external testing set (AUC = 0.67, Fig 4G), suggesting that more

nuanced information can still be learnt from small number of exemplars. Overall, this work,

together with independent reports [19, 48, 49], suggests that training a BiLSTM with attention

on a relatively small corpus of labelled data produces generalisable state-of-the-art free-text

classifiers that may augment training of computer vision models.

Recently, several novel network architectures, based solely on attention mechanisms, have

achieved state-of-the-art performance across NLP tasks [31]. In this work we demonstrate that

four Transformer-based models, namely BERT, DistilBERT, XLNet, and RoBERTa, achieve

excellent performance (AUC: 0.97–0.99, Fig 5) on free-text radiological reports, which general-

ises well to an external testing set. Although performances of all Transformer-based models

were comparable to BiLSTM with attention mechanism for Normal and Abnormal reports,

XLNet identified Uncertain reports with increased accuracy (AUCXLNet = 0.80–0.83 vs. AUC-

BiLSTM-Att-fastText = 0.67–0.88). This improvement is likely due to the capacity of XLNet to learn

bidirectional contexts and its autoregressive formulation [34]. Nevertheless, despite marginal

increase in performance, training and finetuning Transformer-based models is a computation-

ally expensive task. Marginal performance gains are offset by the hardware resources required

to complete training and inference experiments.

So far, we have shown that supervised classifiers achieve excellent performance using a rela-

tively small number of labelled training exemplars (n = 3,856 reports). Nevertheless, genera-

tion of reliable ground truths remains a barrier to training effective deep learning models due

to the required clinical time and expertise [11]. To address this limitation, we set out to

develop and evaluate an unsupervised approach to assigning Normal and Abnormal labels to

free-text radiological reports. Our top-performing approach involves three steps: 1) obtaining

sentence vectors by averaging fastText word features, 2) feature extraction using ivis, a novel

Siamese Network algorithm, and 3) fitting a GMM with two components (assuming that dis-

tributions of Normal and Abnormal reports are inherently different) to ivis embeddings. Per-

formance of this three-step approach was comparable to the CheXpert Labeller, which utilises

hand-crafted rules tailored for CXR report annotation [4, 23]. We have previously applied ivis

to structured single-cell datasets [24], demonstrating that the algorithm reliably preserves local

and global distances in a low-dimensional space. Briefly, ivis employs a Siamese Neural Net-

work architecture that learns to discriminate between similar and dissimilar fastText vectors

without imposing strong priors. This property enables natural creation of dense clusters with

shared nearest neighbours, making sentence vectors amenable to modelling with GMMs.

Interestingly, although ivis was trained on the unlabelled internal corpus, it performed consid-

erably better on an external testing set (Table 2). This was also the case for the CheXpert Label-

ler. It is likely that given that external testing set reports were shorter than internal reports

(external average: 13.4 words vs. internal average: 33.2 words), the external reports were more

linearly separable (Fig 6C), resulting in improved unsupervised performance.

Whilst ivis+GMM performance was comparable to CheXpert Labeller, we have identified

several advantages of our unsupervised approach. First, GMMs can be used to obtain posterior

probabilities of each component for every report. This provides a degree of granularity to our

results. For example, at a component probability threshold greater than 0.99, ivis+GMM iden-

tified 30% of Abnormal reports with 100% positive predictive value. Conversely, the CheXpert

Labeller provides strictly categorical outputs, that cannot be used to fine-tune an algorithm’s

confidence. Second, ivis+GMM is a general approach and is not restricted to CXR reports. It is

likely that application of this algorithm will yield comparable results in other free-text medical
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records. Finally, ivis is a dimensionality reduction technique, which can be used to visualise

complex data structures in two-dimensional space. It has been shown to scale linearly to mil-

lions of data points, resulting in more interpretable visualisations than comparable techniques

such as t-distributed Stochastic Neighbour Embedding (t-SNE) [50].

Taken together, we have shown that supervised machine learning algorithms can reliably

label free-text CXR radiological reports with excellent performance and using a relatively small

number of training exemplars. More specifically, pre-training BiLSTM with fastText weights

and the inclusion of the attention mechanism yields state-of-the-art accuracy that can be gen-

eralised to an independent testing set. To the best of our knowledge this is the first study

where the generalisability of a machine learning algorithm for free-text CXR report interpreta-

tion has been demonstrated across two independently sourced and expert-labelled testing sets.

Furthermore, we validate a general fully unsupervised approach that utilises Siamese Neural

Networks and GMMs to reliably label large free-text corpora. Although direct application of

expert knowledge to unlabelled radiograms remains the gold-standard of image annotation,

we anticipate that our results can be used to effectively extract standardized clinical informa-

tion from CXR radiological reports, facilitating large-scale training of modern clinical decision

support systems for CXR triage.
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